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Université de Sherbrooke, Sherbrooke, Québec, Canada J1K 2R1
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In this supplementary information, we first remove ambiguities that might arise from color coding in Fig. 1 and
Fig. 2 of the main text by plotting the corresponding raw data, first for the superconducting order parameter in
Sec. A. The location of the maximum Tc, of the maximum order parameter and of the end of the superconducting
dome as a function of doping is also given. The scattering rate Γ is in Sec. B. We also show in this section that the
scattering rate decreases drastically in the superconducting state, consistent with the reappearance of quasiparticles
in that state. Sec. C summarises the main crossover lines in the normal state found in previous work [1, 2]. We
show in Sec. D how the contribution to the kinetic energy from the plaquette can be isolated from more long-distance
related contributions. The plaquette contribution can be computed purely from the 4 site density matrix. It will be
shown that the latter contribution to the condensation energy is always negative, namely the superconducting state
always lowers the plaquette kinetic energy. Finally, Sec. E reports the the T −δ phase diagram for the second neighbor
hopping t′, to show that main findings of the main text are not altered by t′.

A. SUPERCONDUCTING ORDER PARAMETER
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FIG. S1. Superconducting order parameter |Φ| as a function of U/t [panel (a)] and as a function of δ for several values of the
interaction strength U/t [panels (b) to (g)]. The data are shown for temperatures T/t = 1/25 (green diamonds), 1/32 (blue
squares), 1/50 (red triangles) and 1/100 (black circles). Interpolation of these data gives rise to the color map in Fig. 1 of main
text. Dashed vertical line displays the optimal doping δopt.
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FIG. S2. Characteristic dopings in the U − T plane: optimal doping (δopt, black circles), the position of the maximum order
parameter for T = 1/100 (δΦmax , blue triangles) and the largest doping at which superconductivity disappears for the lowest
temperature studied, i.e. T/t = 1/100 ( δmax, green circles).

B. SCATTERING RATE
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FIG. S3. Scattering rate Γ = −ImΣ(π,0)(ω → 0) for U/t = 6.2, 7, 9 in the normal and superconducting states (full and dashed
lines, respectively). The data are shown for temperatures T/t = 1/32 (blue squares), 1/50 (red triangles) and 1/100 (black
circles). Interpolation of these data gives rise to the color map in top panels of Fig. 2 of the main text. The maximum of
the normal state scattering rate Γ(δ)|T is marked by a solid symbol and is displayed by solid white diamonds in top panels of
Fig. 2 of the main text. Leaving apart the Mott insulator at δ = 0, there is a maximum in the normal state Γ(δ)|T either close
to the first-order transition between pseudogap and correlated metal for T < Tp (cf. U/t = 6.2 and T/t = 1/100) or in the
supercritical region for T > Tp [3, 4]. Upon increasing temperature, the value of Γ(δ)|T at its maximum increases as does its
width in doping. The large scattering rate is sharply depleted upon entering the superconducting state, as already noticed in
Refs. [5, 6].
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C. PSEUDOGAP TO CORRELATED METAL TRANSITION IN THE NORMAL STATE
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FIG. S4. (a) Temperature versus hole doping phase diagram for U/t = 6.2 in the normal state obtained by CDMFT. Data
are taken from our previous investigations [1–4]. Horizontal (vertical) shaded lines indicate the values of temperature (doping)
of the observables in the other panels. At zero doping, the system is a Mott insulator and is characterised by a plateau
in the occupation at n(µ) = 1. At finite doping δ = 1 − n, the coexistence region across a first-order transition between
a pseudogap phase and a correlated metal is shown as red shaded area. Its boundaries are obtained by the jumps in the
occupation n versus chemical potential µ at constant values of temperature, as shown in panel (b) and discussed in Refs. [3, 4].
Extrapolations to T = 0 are a guide for the eye. The pseudogap to correlated metal first-order transition terminates at a
critical endpoint (δp, Tp) ≈ (0.045, 1/65). Let us first consider paths at constant T [panels (b,c,e,g,i)]. In the supercritical
region, T > Tp, only one normal-state phase exists and the n(µ) curves are continuous. The endpoint generates the Widom
line TW (line with red triangles in panel (a)). We estimate TW by the maxima of the charge compressibility κ = 1/n2(dn/dµ)T ,
max|µκ [1]. A semilogarithmic plot of κ versus δ at T/t = 1/60 is shown in panel (c), and a filled symbol indicates the position
of compressibility maximum. The value of κ at the maximum increases for T → Tp, indicating a divergence of κ at Tp, as
investigated in Ref. [1]. The Widom line governs the crossovers of other observables: the local density of states at the Fermi
level A(ω = 0) [1], the spin susceptibility χ [1], the c-axis DC conductivity σc [2], all show inflection points as a function of
µ. Their derivative with respect to µ are shown in panels (e,g,i), respectively. Let us now consider scans at constant doping
[panels (d,f,h)]. Solely for δ < δp, the temperature dependence of A(ω = 0), χ and the c-axis resistivity ρc = 1/σc all show
non-monotonic behavior. The position of the minima or maxima in such observables is our estimate for the pseudogap onset.
For definiteness, we define T ∗ (line with orange circles in panel (a)) by the maxima in χ(T ).
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D. KINETIC ENERGY IN CDMFT WITHIN HYBRIDIZATION EXPANSION IMPURITY SOLVER

In the hybridization expansion impurity solver, the partition function of the impurity solver is expanded in the
hybridization between the impurity and the bath. In single-site DMFT [7], the impurity consists of a site. The kinetic
energy per site can be shown [8] to be related with the average expansion order by Ekin = −〈k〉/β, where β is the
inverse temperature. Here we generalize this formula for the CDMFT case. We demonstrate that the kinetic energy is
the sum of two terms: similarly to the single-site DMFT case, there is a contribution related to the average expansion
order term, but there is another term coming from the cluster (plaquette) part. The latter can be computed from the
plaquette density matrix (or occupation numbers).

The kinetic energy per site reads

Ekin =
2

N

∑
i,j

∑
r,r′

tij (r − r′)
〈
c†i (r) cj (r′)

〉
(1)

where i, j are indices indicating the position within a cluster, N is the number of sites, and r, r′ indicate the position
of the cluster. The sum being on all positions and the hopping matrix tij (r − r′) being symmetric, there is no need
to add the hermitian conjugate. By inserting the definition of the Green function one obtains

Ekin =
T

N

∑
n

e−iωn0
−∑

i,j

∑
r,r′

tij (r − r′)Gji (r′ − r; iωn) , (2)

and by Fourier transformation on the position of the clusters

Ekin =
2T

N

∑
n

e−iωn0
−∑

i,j

∑
k̃

tij

(
k̃
)
Gji

(
k̃; iωn

)
. (3)

We keep a discrete wave vector sum. Using the expression for the inverse of the lattice Green function, the hopping
can be rewritten so that

Ekin =
2T

N

∑
n

e−iωn0
−∑

i,j

∑
k̃

[
iωn + µ− Σij (iωn)−Gij

(
k̃; iωn

)−1]
Gji

(
k̃; iωn

)
(4)

=
2T

N

∑
n

e−iωn0
−

∑
i,j

∑
k̃

[
(iωn + µ− Σij (iωn))Gji

(
k̃; iωn

)]
−
∑
i

∑
k̃

1

 . (5)

The self-consistency condition is given by

Gimp
ji (iωn) =

1

Nsr

∑
k̃

Gji

(
k̃; iωn

)
. (6)

where Nsr = N/Nc, and Nc is the cluster size (here Nc = 4). This relation allows one to perform the sum over k̃ and
to write Ekin as

Ekin =
2T

Nc

∑
n

e−iωn0
−

∑
i,j

[
(iωn + µ− Σij (iωn))Gimp

ji (iωn)
]
−
∑
i

1

 , (7)

where we used that
∑

k̃ = Nsr = N
Nc

. Inserting the expression for Gimp
ij (iωn)

−1
, one obtains

Ekin =
2T

Nc

∑
n

e−iωn0
−

∑
i,j

[
(Gimp

ij (iωn)
−1

+ timp
ij + ∆ij (iωn))Gimp

ji (iωn)
]
−
∑
i

1

 (8)

=
2T

Nc

∑
n

e−iωn0
−∑

i,j

[
(timp

ij + ∆ij (iωn))Gimp
ji (iωn)

]
(9)

=
2T

Nc

∑
n

e−iωn0
−∑

i,j

[
∆ij (iωn)Gimp

ji (iωn)
]

+
2T

Nc

∑
n

e−iωn0
−∑

i,j

[
timp
ij Gimp

ji (iωn)
]
. (10)
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FIG. S5. Different contributions to the difference in kinetic energy between the superconducting and the normal state as a
function of doping for U/t = 6.2, 7, 9 (left, central and right columns, respectively) and T/t = 1/50, 1/100 (full and dashed
line, respectively). Top panels: difference in total kinetic energy ∆Ekin; Central panels: contribution from terms outside the

cluster ∆E
(1)
kin; Bottom panels: contribution from terms within the cluster ∆E

(2)
kin. We relate the sign change in ∆Ekin to the

sign change in ∆E
(1)
kin. The various contributions are defined by Eqs. 13 and 14.

Using arguments analogous to those in single-site DMFT, [8] the first term is related to the expansion order [9] while
the second contribution is

2T

Nc

∑
n

e−iωn0
−∑

i,j

[
timp
ij Gimp

ji (iωn)
]

=
2T

Nc

∑
n

e−iωn0
−∑

K

timp
K Gimp

K (iωn) (11)

=
1

Nc

∑
K

timp
K nimp

K . (12)

where nimp
K is the occupation of the cluster momentum K. Finally, the total kinetic energy is given by

Ekin = − 〈k〉
Ncβ

+
1

Nc

∑
K

timp
K nimp

K (13)

where 〈k〉 is the average expansion order. This last equation serves to define

Ekin = E
(1)
kin + E

(2)
kin. (14)

The bottom panels in Fig. S5 shows that on short distances, namely within the cluster, the kinetic energy E
(1)
kin is

aways lowered upon entering the superconducting state. However, as the middle panels show, the contribution to the
kinetic energy gain coming from longer distance, or smaller wave vectors, can change sign.

Finally, Fig. S6 shows that the ratio between the potential energy gain and the kinetic energy gain is −1/2 in
the underdoped region. That ratio corresponds to the ratio between potential and kinetic energy contained in the
exchange energy, namely the term that scales like J = 4t2/U in the large U limit [10]. It seems that not much energy
gain comes from the term in the t − J model describing the hopping of holes. The divergences come from the zero
crossings of either the kinetic or the potential energy differences.
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FIG. S6. Ratio between potential energy gain and the kinetic energy gain upon entering the superconducting state in the
underdoped region, for T/t = 1/50 (red triangles) and 1/100 (black circles). The horizontal dashed line shows the value −1/2
expected from the exchange energy proportional to J .

E. EFFECT OF SECOND-NEIGHBOR HOPPING t′
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FIG. S7. Same as Fig. 2 of the main text, but for U = 6.0t and t′ = −0.10. All conclusions remain unchanged with a finite t′.
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For U = 0, the effect of next-nearest-neighbor hopping t′ is to move the van Hove singularity to finite doping. This
does have some quantitative effect on the phase diagram at finite U . However for very large U we expect that this
is less important. Given that the sign problem is less severe at t′ = 0 and that values of U can be quite large, the
results in the main text are all for t′ = 0. Nevertheless, we performed calculations for t′ = −0.1, U = 6.0, which is
larger than the critical threshold to open a Mott gap at n = 1. The results are in Fig. S7. The value of doping where
the first-order transition occurs moves to larger doping, as suggested by Fig. 18 of Ref. [11]. But one can verify that
our qualitative conclusions concerning the organizing principle of the phase diagram are unchanged. The first order
transition in the normal state along with the associated crossovers leave their mark in the superconducting state, even
though there is no longer a first-order transition in the superconducting state.
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