Supplementary information

Title: Unique glycosignature for intervertebral disc and articular cartilage cells and tissues in immaturity and maturity

E.C. Collin^{1,†}, M. Kilcoyne^{2,3,†}, S.J. White³, S. Grad⁴, M. Alini⁴, L. Joshi^{1,3}, A.S. Pandit^{1,*}

¹ Center for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Ireland

² Microbiology, School of Natural Sciences, National University of Ireland Galway, Ireland

³ Glycoscience Group, National University of Ireland Galway, Ireland

⁴ AO Research Institute, Davos, Switzerland

*Corresponding authors

[†] These authors have contributed equally.

Lectin/antibody	Abbreviation	Binding specificity	Concentration	Inhibitory
			(mg/mL)	glycan
Lotus tetragonolobus agglutinin	LTA	Fuc- α -(1 \rightarrow 3), Fuc- α -(1 \rightarrow 6), Fuc- α -(1 \rightarrow 2)	15	100mM Fuc
Ulex europaeus agglutinin I	UEA-I	Fuc- α -(1 \rightarrow 2)	10	100mM Fuc
Aleuria aurantia agglutinin	AAA	Fuc- α -(1 \rightarrow 6), Fuc- α -(1 \rightarrow 3)	20	100mM Fuc
Anti-Lewis ^b antibody	Leb	Fuc- α -(1 \rightarrow 2)-Gal- β -(1 \rightarrow 3)-[Fuc- α -	1.25x10 ⁻³	
		$(1\rightarrow 4)$]GlcNAc		
Sambucus nigra agglutinin I	SNA-I	Neu- α -(2 \rightarrow 6)-GalNAc > Lac, GalNAc > Gal	20	100mM Lac
Maackia amurensis agglutinin	MAA	Neu- α -(2 \rightarrow 3)-GalNAc, Gal-3S > Lac	20	100mM Lac
Griffonia simplicifolia isolectin	GS-I-B ₄	Terminal α-Gal	10	100mM Gal
Concanavalin A	Con A	a-Man > ϵ -Glc > a-GlcNAc, complex	20	100mM Man
		biantennary structures		
Peanut agglutinin	PNA	Gal (Gal- β -(1 \rightarrow 3)-GalNAc (T-antigen) >	10	100mM Gal
		GalNAc > Lac > Gal, terminal β -Gal)		
Artocarpus integrifolia	Jacalin (AIA)	Gal, Gal- β -(1 \rightarrow 3)-GalNAc (T-antigen), Gal- α -	10	100mM Gal
agglutinin		$(1\rightarrow 6)$, sialylation independent		
Soya bean agglutinin	SBA	GalNAc > Gal	10	100mM
				GalNAc
Wisteria floribunda agglutinin	WFA	GalNAc, GalNAc- α -(1 \rightarrow 6)-Gal > GalNAc- α -	10	100mM
		$(1\rightarrow 3)$ -GalNAc (Forsmann antigen) > GalNAc		GalNAc
		$>>$ Lac $>$ Gal, GlcA- α -(1 \rightarrow 3)-GalNAc		
Anti-chondroitin-4- and -6-	CS-56	GlcA- α -(1 \rightarrow 3)-GalNAc-4S, GlcA- α -(1 \rightarrow 3)-	1/200 dilution	
sulfate antibody (CS-56 clone)		GalNAc-6S		
Anti-chondroitin-6-sulfate	C6S	GlcA- α -(1 \rightarrow 3)-GalNAc-6S	1/200 dilution	
antibody				

Table S1. Lectins and antibodies used for tissue histochemistry, their specificities, concentrations and inhibitory carbohydrates.

Figure S1. Representative images of hematoxylin and eosin stained ovine NP (1-2), AF (3-4) and cartilage tissue (5-6) at 3 and 11 months. ECM proteins and nuclei are stained in pink/red and purple/blue, respectively. Scale bar = 100μ m.

Table S2. Quantity of C0S, C4S and C6S disaccharides ($\mu g/\mu g$ of DNA) in 3 and 11 month ovine NP, AF and cartilage tissues. Data were normalized to DNA content and presented as mean \pm standard error of the mean (n=5). No significant difference was seen between the different groups (p < 0.05).

Age (months), tissue	COS	C4S	<i>C6S</i>	Total
3, NP	0.14±0.03	0.19±0.03	0.16±0.15	0.47±0.11
11, NP	0.25 ± 0.08	0.43 ± 0.14	0.04 ± 0.01	0.85±0.23
3, AF	0.13±0.02	0.10±0.01	0.24±0.09	0.47 ± 0.09
11, AF	0.10±0.03	0.21±0.07	0.03±0.01	0.37±0.10
3, cartilage	$0.10{\pm}0.04$	0.15±0.06	0.05 ± 0.02	0.30±0.12
11, cartilage	0.10±0.04	0.14±0.05	0.04 ± 0.02	0.29±0.10

Figure S2. Fucosylated motifs detected by UEA-I and AAA lectin staining in ovine NP, AF and cartilage tissues at three and 11 months. Quantification of UEA-I (A1) and AAA (B1) lectins binding to the ECM and onto the cells of NP, AF and cartilage tissues. Data were normalised to surface area and represented as mean \pm standard error of the mean (n = 5). * denotes significant differences between the different groups at *p*<0.05. Representative fluorescent images of the stained motifs detected by UEA-I (A2) and AAA (B2) lectins binding in NP, AF, and cartilage tissues. Fucosylated motifs and nuclei are stained in green and blue, respectively. Scale bar = 100µm.

Figure S3. Terminal α -Gal motifs detected by GS-I-B₄ lectin staining and galacosylated motifs detected jacalin lectin staining of ovine NP, AF and cartilage tissues at three and 11 months. Quantification of GS-I-B₄ (A1) and jacalin (B1) lectins binding to the ECM and onto the cells of NP, AF and cartilage tissues. Data were normalised to surface area and represented as mean \pm standard error of the mean (n = 5). * denotes significant differences between the different groups at p<0.05. Representative fluorescent images of the stained motifs detected by GS-I-B₄ (A2) and jacalin (B2) lectins binding in NP, AF, and cartilage tissues. Motifs and nuclei are stained in green and blue, respectively. Scale bar = 100µm.

Figure S4. Chondroitin sulfate detected by CS-56 (C4S + C6S) and C6S antibody staining in ovine NP, AF and cartilage tissues at three and 11 months. Quantification of CS-56 (C4S + C6S) (A1) and C6S antibody (B1) binding to the ECM and onto the cells of NP, AF and cartilage tissues. Data were normalised to surface area and represented as mean \pm standard error of the mean (n = 5). * denotes significant differences between the different groups at *p*<0.05. Representative fluorescent images of the stained motifs detected by CS-56 (C4S + C6S) (A2) and C6S antibody (B2) binding in NP, AF, and cartilage tissues. Motifs and nuclei are stained in green and blue, respectively. Scale bar = 100µm.