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Generation and Updating GEM-PROs through a Systematic Pipeline

The need for continuous updating of GEM-PRO models is evident based on the fact that the number of
3D biomacromolecules deposited in publicly available databases continues to increase exponentially
each year [1]. The updated GEM-PRO modeling framework provides an automated pipeline for querying
online servers and databases that contain protein-related information to construct high-quality,
reproducible and reliable GEM-PRO models, starting from any metabolic model. By constructing such a
pipeline, we had to overcome a number of challenges, such as the selection of reliable,
organism-specific identifiers to enable efficient mapping and the development of a quality control
screening technique to determine which structures were high enough in quality to be used in the model.
In this section, we discuss the results related to the mapping of protein structures to genes and provide
details related to the quality of these structures in the section “Quality control and quality assessment of
all structures.

One of the main goals of this contribution is the creation of new models that can be easily queried,
mapped onto a metabolic network, and linked to existing constraint-based modeling techniques [2] (e.g.,
COBRApy [3]. Following the workflow displayed in Figure 2, we have organized the discussion of all
updates to the GEM-PRO modeling framework based on the five stages of the pipeline: (i) assessing
metabolic gene coverage of structures; (ii) the integration of standard, high-quality I-TASSER homology
models [4]; (iii) the quality assessment of all structures and homology models; and (iv) model refinement
of structural and sequence-based properties. Each of the above points is discussed in further detail in
the following sections.

Mapping the PDB to a GEM

In the first step of this “structural reconstruction”, the main goal is to automate the querying of online
servers and databases that contain protein structural information and other protein-related information
and effectively link this data to the metabolic network reconstruction. The main question that is
addressed in this section is, “What is the most effective way to link information stored in a GEM to
information stored in different protein-related databases?” Several challenges arise at this stage, which
will be further elaborated on below, which include selecting an appropriate identifier for mapping, dealing
with redundancy in the data frame output, and the reliability of the information being mapped to the
metabolic network reconstruction.

The input of our semi-automated mapping procedure is a high-quality metabolic network reconstruction
that should be in a standard, compatible format, such as the Systems Biology Markup Language (SBML)
or a Matlab file [5]. Previously published metabolic network reconstructions are readily available [6]. The
main outputs of the mapping include correct UniProt accession codes and PDB entries, sequence
information, and structural information [7,8].
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At this stage, all information is passed into the Pandas Python module [9,10], which has proven to be a
useful open source tool capable of efficiently organizing large-scale data into a so-called “data frame”,
similar to a queryable SQL table. Throughout this protocol, we will be referring to the organization of the
metabolic network reconstruction into the data matrix as the “master data frame”. The master data frame
initially contains information from the original metabolic network reconstruction, including the gene IDs,
the metabolic reaction catalyzed, the metabolites involved in the reaction, etc. This information is
obtained utilizing the COBRApy Python module [3].

Another challenge that arises in this stage is understanding how to query various databases and get the
maximum amount of available data for a set of genes. The manner of mapping and the use of specific
identifiers are different for each database and must be carefully selected before commencing the
mapping process. For example, different identifiers (e.g. gene identifier, gene name, EC number,
UniProt accession number, etc.) might be required for the querying of particular databases (KEGG,
Entrez, BioCyc databases, or manual annotation from genomics datasets) in order to gain maximum
coverage or non-ambiguous mapping of genes in a GEM model. Moreover, the list of candidate genes to
map data to may not necessarily be complete or comprehensive, as many ambiguous identifiers might
be present in the list. For example, proteins may not have well defined EC numbers, but their functions
are considered in metabolic reconstructions. (e.g. a gene has not been assigned an identifier) or entirely
unambiguous (e.g. a gene is assigned a non-specific identifier, such as EC i.j.k.-). Thus in this step it is
necessary to ensure that a suitable identifier is used.

Itis important to note that a gene and its respective gene product may have a number of biological roles
and may co-complex with numerous gene-products to catalyze more than one reaction. For example, a
reaction may be comprised of a single functional chain (homomer) or multiple chains (gene products) to
form a functional heteromer or multimeric complex. Genes may encode multiple isozymes, which serve
a given purpose under a particular environmental condition. As a result, each reaction can have multiple
representative structures, which leads to redundancy in the master data frame. We approach this
challenge in two different ways: (i) we make use of Gene-Protein-Reaction rules (GPRs), which are a
part of the original reconstruction and (ii) we provide examples of how to query the master data frame in
the Supporting Information. For the first case, GPRs provide information detailing the number of different
gene(s) required to catalyze a reaction or, whether multiple genes catalyze the same reaction
independently. For both cases, multiple row entries in the metabolic network reconstruction may appear
to be linked to the same PDB entry. For the second case, we have provided discrete examples in the
Supplementary IPython notebooks to provide a tutorial-like examples of how to properly query the data
frame to avoid redundant information

The final challenge at this stage is to evaluate how confident we can be in the information that has been
mapped to the metabolic network reconstruction. There is a spectrum of quality to consider, which
includes if the entries have been manually curated or reviewed (for higher quality), whether the names or
identifiers of the PDBs have changed or become obsolete, or whether the structures mapped through
UniProt are theoretical or experimental. For example, for certain genes with a low PDB coverage, it is
advantageous to include UniProt entries that have not been reviewed or may contain theoretical
structures. Therefore, during this mapping process, we have also kept track of where the data is coming
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from (i.e. which database source) and how confident we are in its quality. This information we later use
for validation, cross-checking and reproducibility purposes. For example, as information is added to the
master data frame, the columns will contain an alpha code to designate the source of the data (e.g. ‘m’
for genome scale model or reconstruction, ‘u’ for UniProt, ‘p’ for PDB database, etc.). More details are
supplied in the Supplementary IPython notebooks and provided master data frames. In this way, we
keep track of all of the information that has been mapped from a given database to the GEM. Finally,
addressing the quality of the actual structural information will be discussed in more detail below. We
approach this task by examining the effects of small-scale sequence variations on individual protein
structures, according to the wild-type sequence given by its record obtained through UniProt or other
sequence databases.

E. coli

We have used the Blattner gene numbers (b-numbers) present in the iJO1366 model for E. coli to map
the genes to their respective UniProt accession codes (UAC) which then are used to map to
protein-related databases. Using a combination of specific identifiers, we achieve maximum coverage of
protein structures for a given set of genes in a metabolic model. In the case of the E. coli model, we
used the blattner (or “b number”) identifier as well as the UniProt accession code (UAC) to query the
Protein Data Bank (PDB) [1,11]. We specify only reviewed UniProt entries as there is a one-to-one
mapping of b-number to UAC for all genes, and only experimental protein structures from the PDB to
ensure the highest quality of data in this reconstruction. A further check for available structures was
carried out by sequence alignment to the entire PDB, and cross-referenced with the structures identified
by the ID mapping and the metadata available in the PDB entry.

Temperature related properties were retrieved by EC number and UniProt accession code through the
BRENDA [12] and ProTherm databases [13], respectively. Protein complex information was obtained
directly from the EcoCyc database [14] utilizing b-numbers.

T. maritima

We followed a similar procedure for mapping T. maritima gene identifiers, with the source of those IDs
being the Ensembl Genome database [15]. However, a number of UACs existed as unreviewed entries,
and if there was more than one unreviewed entry for a gene, it was manually inspected to ensure the
correct mapping. Finally, the available mappings to the PDB database were obtained along with manual
alignment to the entire PDB, filtering out of T. maritima specific proteins.

Homology Modeling

Fortunately, the increasing number of newly deposited experimental structures provides additional
templates for constructing higher quality template-based homology models. In this section, we discuss
basic details of the selected homology modeling platform and refer the interested reader to the helpful
reviews [16] and methodological reports for more details [17-20]. There are a number of available
homology modeling tools and methods to date [4,21-26], many of which perform remarkably well for
various types of proteins and conditions [17—20]. Homologous templates are commonly identified
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through protein sequence alignments using comparative modeling algorithms [21]. Threading methods
[27,28] are capable of identifying common recognizable folds between proteins, even when their
evolutionary origins may be different. For query proteins that have no structurally related protein in the
PDB, the structure can be built de novo through ab initio methods [22—-24]. Here, we selected the
I-TASSER (iterative threading assembly refinement) suite of programs [4,24], which has been the
highest ranking program for automated protein structure prediction for the the past two CASP
experiments [4,18,26,29].

In the original GEM-PRO models, the homology model for a given gene was selected from a composite
of three different homology modeling techniques [30,31]. While this approach proved quite successful,
we were interested in updating the choice of homology modeling technique in the updated GEM-PRO
models by using a single homology modeling approach for the sake of consistency and reproducibility.
We chose a single homology modeling framework, the I-TASSER (iterative threading assembly
refinement) suite of programs [4,24] to predict the 3D structures of genes without available experimental
structures.

We have filled in the gaps where there are missing structures by querying a previously generated
database of I-TASSER homology models for E. coli [32,33], and manually generated homology models
for all remaining genes in E. coli and T. maritima [34]. In the final master data frame, we note where
available homology models have been mapped to their respective genes. We also include additional
information in the data frame that explains the type of computational prediction method used to model
the protein structure (e.g. template-based versus ab initio), the corresponding URL (for downloading the
homology file from the source), the label (i.e. the identifier of the model given by the homology model
database), and information related to the confidence of the homology model (e.g. C-score), the native
(homologous) template used for the model, etc. All columns added to the master data frame from this
stage are preceded by a ‘i’ for I-TASSER. For most homology modeling procedures, the FASTA (amino
acid) sequence of a protein is all that is required to generate a homology model of a protein. It is
important to note that certain PDB structures with unresolved residues or gaps in the structure can also
be homology modeled to enhance the structural coverage of the amino acid sequence.

We are also interested in assessing the overall quality of the information coming from homologous
templates in terms of (i) which organism the protein was crystallized from; (ii) the resolution of the
template and (iii) the deposition date. We used these properties to compare the templates that were
used to construct homology models in the previous GEM-PRO models with those of the recently
updated versions. Using the PDB 4-letter identifier, we first query the PDB database for a numeric
taxonomy identifier which we use to query the UniProt taxonomy url (http://www.uniprot.org/taxonomy)
for information regarding the organism type. For information regarding the deposition date and the
resolution, we use the Python module, ProDy [35].

Finally, we provide comparisons between previous models and their homology models as well as note
where there are new templates available for genes that have become available in the last couple years.
Comparisons are run utilizing the PSQS program [36] as well as assessing differences in secondary
structure, and we also report quality of the current models utilizing the PROCHECK program [37] where
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possible. PSQS mainly provides an energy-like measure based on statistical potentials of the mean
force between residue pairs, as well as between single residues and solvent. PROCHECK provides
geometric checks based on Ramachandran plots. For the current template-based models, a confidence
score was assigned to each homology model based on the TM-score, which is a measure that is
automatically provided from I-TASSER. A TM-score and root mean squared deviation (RMSD) from the
original template provide an estimate that indicates how close the model is to the native structure. In
general, TM-score is in the range [0,1] and a value greater than 0.5 indicates higher confidence. The
models are also ranked based on the structure density of I-TASSER refinement simulations (for more
information, please see [38].

QC/QA Procedure

In some cases, certain genes have more than one crystallographic structure, such as the well-studied
structure of lysozyme and its many point mutants. In addition, certain PDB structures may require
homology modeling if they are lower in confidence than a standard threshold. Therefore, in the updated
GEM-PRO, we provide additional assessments of the quality of all structures (both crystallographic and
homology model) mapped to the GEM model. The main objective of this section is to discuss the quality
assessment and quality control of the data that has been thus far mapped to the metabolic network
reconstruction. In a previous version of GEM-PRO, experimental structures were additionally classified
and ranked according to whether a protein was bound to a native metabolite or ligand, in order to ensure
proper binding predictions. While the updated version of the GEM-PRO modeling framework does not
include the bound state of a protein as a target characteristic in the quality control pipeline, this data is
accessible in the knowledge base. Instead, we are mainly interested in quantifying the general quality
attributes of the experimental structure of the protein. The final outcome of the quality assessment is the
classification of experimental structures into three groups (right panel of Figure 3): (i) high quality
structures requiring no modification; (ii) high quality structures requiring minimal (site-directed)
modification, and (iii) low quality structures requiring homology modeling. These three metrics ultimately
classify PDB files as lower-quality structure if they have a large number (above a set threshold) of point
mutations and low SI. For the structures that are flagged as “lower-quality,” we either perform molecular
modeling techniques to minimally modify the structure (i.e., if a PDB structure has single point mutations
or gaps of less than two sequential residues, which is described in more detail below) or homology
modeling.

For structures with multiple chains (that might come from other gene IDs or UACs), we simply rank the
PDB file via the alignment score of the chain corresponding to the gene. All sequence alignments were
conducted by first extracting the resolved amino acids available in the PDB structure using Biopython
and then utilizing the EMBOSS needle package for pairwise sequence alignment between the resolved
amino acids and the canonical UniProt sequence [39,40]. In the event that the PDB entry with the best
alignment score and the PDB entry with the highest identity do not match, we manually determine
whether the structure is suitable or not. The quality scoring metric was designed to assess the quality of,

S7


https://paperpile.com/c/lD0vio/9ZAK
https://paperpile.com/c/lD0vio/1Jea+sGpg

in terms of completeness and resolution, and rank order all the PDB files for a given gene, based on the
following terms,

Spap =Ssi T Sres T Sgg [S1]

where S, refers to the total quality score of a single PDB file, which is based on its percent sequence
identity (Sg, or coverage of the canonical amino acid sequence), the resolution score (S_,) of the
crystallographic structure, and, for cases where I-TASSER homology models were available, the
similarity (Jaccard similarity) of secondary structural features between the PDB structure and its
corresponding homology model (Sgg). Furthermore, we also consider the overall completeness of
resolved residues in the protein (if there are gaps in resolved amino acids within the structure) and the
difference in % a/ composition compared to the I-TASSER homology model. In certain cases,
differences in the amino acid sequence between the PDB structure and the homology model (due to
insertions, deletions or mutations during crystallography) together with the model refinement generated
slight deviations in per-residue secondary structural annotations (see Figure S7). The rankings of all
structures for E. coli and T. maritima are provided in the master data frames (Supplementary Files).
Each of the individual metrics are discussed in more detail below. Using a Z-score based approach,

Z=X-plo [S2]

we determine which structures are significantly lower in each of these metrics than the rest of the
population. A p-value of 0.10 was chosen as a threshold for determining significance (Z < 1.65).
Structures below a certain cutoff are given lower scores for each metric, and are ranked lower than
others with the goal of utilizing the structures for future molecular modeling. However, constructing
GEM-PRO models for other organisms can use a less stringent cut-off if fewer crystallographic
structures are available. In this case, our methods also allow for a "coarse grained" assessment of
mutation type to rank similar mutations (e.g. polar to polar point mutation) higher than dissimilar mutation
types (e.g. polar to nonpolar point mutation).

Coverage of the canonical (wild-type) amino acid sequence

The first metric for ranking PDB structures, Sy, scores the sequence identity between what is considered
the wild-type sequence (directly from the UniProt, RefSeq, or Ensembl databases) and the PDB
sequence [7,8,15,41]. In practice, we use a weighted sequence identity score, which accounts for any
bias towards proteins with shorter sequences. Differences in the sequence such as point mutations or
amino acids introduced to assist in crystallization of a protein can be found in this way. Higher scoring
structures have a better alignment to the wild-type sequence, and cutoffs are set based on the available
structures for the genome. As an additional check, we normalize the sequence identity score according
to the length of the protein. To do so, the raw percent sequence identity is multiplied by the sequence
length, divided by the average total sequence length of the population of PDB structures. This allows for
the higher scoring of PDB structures with longer sequence identity overall.
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Furthermore, we assess completeness or the degree of missing or unresolved fragments of the protein.
This identifies whether there are major sequential gaps in the protein structure, which may require
further homology modeling. While S, will undoubtedly rank structures such as these with lower scores,
we are also interested in knowing why a PDB structure has a lower ranking compared to others. This
metric is assessed by evaluating observed gaps in the protein (ignoring gaps at the N or C termini) and
marking structures with significant gaps as lower quality structures. We have taken the threshold to be
one standard deviation from the mean Sl as a cutoff for identifying low-quality PDB structures in the
model. Similar to the sequence identity, a threshold is determined for each PDB file on the basis of
resolution and is reflected in its overall quality score. If an unresolved region of a protein has less than
two sequential residues missing, we have carried out standard molecular modeling techniques to
minimally modify and insert the missing residue (see the following section, “Structural and sequence
refinement” for more details). Otherwise, we perform homology modeling to fill in the larger gaps in
sequence. This threshold is chosen based on the confidence in the resulting model: we find that minimal
modeling of gaps of two amino acids or less is acceptable using AMBERTtools and minimal minimization
of the modeled structure. Once a gap in protein structure is greater than two amino acids, we find that
I-TASSER suite of programs produces highly confident structures. We also assess whether
missing/mutated residues are distributed over the entire protein (i.e., multiple single point mutations) or if
they are sequential (i.e., in ‘bulk’) and where these gaps are located in the protein sequence (we
consider all residues that are not within 10 residues from either the N or C termini, due to the inherent
flexibility of the protein at these regions).

Resolution quality of the protein structure

The second metric, S, for ranking PDB structures is based on the resolution, which is a descriptor of
the degree of confidence in the resolved atomic coordinates (in A) of all heavy atoms (for NMR
structures, we consider the first member of the ensemble). A higher resolution indicates that a smaller
Angstrom distance between atoms can be seen, for instance a structure noted at a 1 A resolution clearly
resolves atoms at or above that distance. The resolution for each structure was obtained from the
header section of the PDB file, and cross-referenced with the entry from the PDB website.

Assessment of composition of secondary structural features

The final metric for ranking PDB structures, Sqq, assesses the similarity in the percent alpha helix/beta
sheet composition of a PDB structure and its matching homology model.

We utilize an implementation of the Jaccard similarity score to measure the similarity of location and
length of alpha helices and beta sheets. This metric is only available for structures that have a generated
homology model. We reason that if a homology model has been generated utilizing the PDB structure as
a template, it has gone through several refinements to become an energetically more favorable
structure. This metric allows for comparisons between multiple PDB structures by directly calculating the
percentage of secondary structural features.

The difference in per-residue secondary structure is a consequence of the I-TASSER homology
modeling procedure but does not indicate that a homology model has lower confidence. For the majority
of cases, the homology models in GEM-PRO have been constructed from homologous templates from
other proteins with high sequence identities (over 70% sequence identity [42]). In GEM-PRO, missing or
mutated parts of the protein have also been homology modeled and refined through the I-TASSER suite
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of programs. I-TASSER performs further refinement procedures on the homology model that minimizes
the total potential energy of the final structure. Therefore, local (i.e. per residue) changes in secondary
structural elements may occur as a result of changing in the secondary amino acid sequence and/or
performing the model refinement steps.

While the GEM-PRO quality assessment pipeline has been designed to identify which structures are
lower in confidence, we store all available PDB structures for a given gene in the master GEM-PRO data
frame. In this way, we ensure that no information is lost in the process of ranking.

Model Refinement

Once the available experimental structures have been compared to the computationally generated
homology models, we obtain three sets of structures, some of which may require additional refinement.
The first set are experimental structures that meet all criteria above, with an amino acid sequence that
matches the canonical “wild-type” mapped from UniProt or other sequence databases. The second set
contains structures that differ from the wild-type sequence only by point mutations, and are used as
input for this refinement step in order to revert the PDB sequence to the wild-type sequence and fill in
missing parts of the protein that do not exceed 1 residue per gap. The third set contains experimental
structures that are to be ranked lower than the homology models, due to not meeting the cutoffs as
outlined.

The procedure for model refinement is as follows. First, the sequence of amino acids that is resolved in
the structure is compared to its mapped sequence. The point mutations are corrected initially using the
Biopython structural bioinformatics module [39]. These allow us to change the “mutated” residues to the
correct wild-type amino acids by first stripping the R-group atoms, leaving only the peptide backbone
atoms of the given residue. Next, the amino acids present in the wild-type sequence are filled in, and the
structure PDB file is then passed through the AMBERtools suite of programs (AMBER14) to fill in the
heavy atoms of the newly changed amino acid [43]. Homology structures of proteins as well as the
models based on crystallographic proteins are modeled at physiological pH. The structure is then
minimized with a steepest descent minimization for 10,000 cycles to relieve any overlapping van der
Waals interactions. As shown in Figure 5 in the main text, the original crystal structure and the modified
structure differ by two residues. The modified structure has been reverted back to the original wild-type
sequence. Through the series of modification steps, the final structure aligns exactly with the wild-type
sequence and the structure has been minimized to a local minimum. A final QC/QA step was taken by
aligning the final wild-type PDB structure to the desired sequence to ensure a final correct structure. In a
small handful of cases, the automatic mutation pipeline failed to mutate the correct residue due to
inconsistent residue numbering in the PDB file or the use of insertion codes. For these cases, the PDB
file was manually altered and minimized.

To summarize, using the above mapping, QC/QA, and refinement pipelines, the updated GEM-PRO
models provide representative, high-quality protein structures for a each gene product in the metabolic
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model. The overall coverage and quality of the selected experimental and homology-based structures for
each organism is detailed in Table 2 of the main text. All mapping-related information has been stored in
the GEM-PRO master data frame for each of the model systems.

Model Comparisons

Table S1: Comparisons between previous and current GEM-PRO modeling frameworks. In the comparisons, we evaluate the
model coverage in terms of modeling-method-agnostic metrics (sequence identity, coverage of the canonical amino acid
sequence), and other properties such as the coverage of protein-metabolite interactions, and protein complex stoichiometry.

Previous GEM-PRO E. coli T. maritima
Coverage of genes by at least 1 PDB structure 465/1366 120/478
Coverage of genes by homology models 803/1366 358/478
Maximum sequence coverage 1268/1366 478/478
Coverage of protein-metabolite interactions 24% --
Coverage of protein complexes 519/1106 --
Updated GEM-PRO E. coli T. maritima
Coverage of genes by at least 1 PDB structure 597/1366 149/478
Coverage of genes by homology models 1366/1366 342/478
Number of genes with high quality PDB structures 354/597 112/145
Number of genes with high quality PDB structure 136/597 24/145
requiring point mutations
Number of genes with low quality PDB structure 106/597 13/145
to be replaced by homology models
Maximum sequence coverage 1366/1366 478/478
Coverage of protein-metabolite interactions 39% --
Coverage of protein complexes 1085/1106 --
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Figure S2: A direct comparison between the old and new GEM-PROs in terms of number of available structures per gene. The
distribution of structural coverage of the previously built GEM-PROs (in purple) of (a) T. maritima, and (b) E. coli are compared
to their current 2015 versions (in green).
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E. coli
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Figure S3: A direct comparison between the original E. coli GEM-PRO (2013) and current GEM-PRO indicating which
subsystems have newly added crystallographic structures.
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T. maritima

Glycerophospholipid Metabolism
Ribose Metabolism
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Arginine Biosynthesis

Sucrose Metabolism
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Methionine Metabolism
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Spermidine Biosynthesis
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Phenylalanine Tyrosine Tryptophan Biosynthesis
Riboflavin Metabolism

Pyruvate Met
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Pentose Phosphate Pathway
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Laminarine Metabolism
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Figure S4: A direct comparison between the original T. maritima GEM-PRO (2009) and current GEM-PRO indicating which

subsystems have newly added crystallographic structures.
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Homology Modeling

The results of the homology modeling pipeline for all three organisms are summarized in Table S2.
Where possible, we compare quality information for the new models to compare to the old ones.

Table S2: Structural quality measures for homology models in T. maritima and E. coli. PSQS provides an total energetic score,
with lower scores indicating better quality. PROCHECK provides geometric measures, and a G-factor below -1 is considered
unusual. The TM-score is in the range [0,1], with a value >0.5 implying correct topology of a model.

T. maritima E. coli
Method Quality measure 2009 2015 2013 2015
PSQS Average total score -0.19+0.10 -0.18 £ 0.11 -0.162 £ 0.10 -0.164 £ 0.12
Average % of residues - 86.3% £ 5% 88.8% £ 5% 87.1% £ 20%
PROCHECK in favored positions
Average overall G-factor - -0.78 £0.2 0.088 + 0.21 -0.10 £ 0.27
Zhang TM-score - 0.79+0.2 - 0.82+0.17
a 4o b 160 -
T. maritima Total PSQS Scores E. coli Total PSQS Scores
35 2009 140 2013

2015

W 2015

120

-0.2 0.0 0.2
Total PSQS score

-0.2 0.0 0.2 -0.6 -0.4

Total PSQS score

—-0.4

Figure S6: Distribution of total PSQS scores for all homology models in (a) T. maritima and (b) E. coli. A lower PSQS score
indicates higher quality. In (a) and (b), previous distributions of PSQS scores for older GEM-PRO models are shown in purple,
while current models are shown in green. In (c), only current PSQS scores are shown as older models were unavailable.

E. coli

Zhang, et al. have previously generated homology models for the E. coli genome. 1365 out of the 1366
genes were successfully linked to a homology model in the I-TASSER database. The remaining one
gene was modeled utilizing the I-TASSER workflow. Out of the 1366 genes, 23 were modeled ab initio
without a template, while the remaining 1343 could be modeled with an experimental structure as a
template. The complete coverage of the iJO1366 model allowed for a detailed comparison between the
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models and available PDB structures, discussed in the QC/QA section. The mean TM-score for all
homology models in the E. coli GEM-PRO is 0.82 + 0.17.

For the PDB template-based quality checks, we find that the homology models from the previous version
of GEM-PRO are derived from 285 different species, with the top 40% of templates coming from E. coli
(20.5%), H. sapiens (7%), S. typhimurium (4.8%), B. subtilis (3.4%), T. thermophilus (3%) and M.
tuberculosis (3%). The average resolution of all previous templates used is 2.2 +0.7 A. Finally, the most
recently deposited templates (73 templates) date back to 2008.

For the recently updated E. coli GEM-PRO model, homology models are derived from 183 different
species, with the top 44% of templates coming from E. coli. The average resolution of all templates used
is 2.4 £0.7 A. Additionally, the latest templates being used are from 2012. We find over 50 additional
templates since 2008 that are not in the previous model and over 130 newly deposited templates
compared to the previous GEM-PRO since 2009.

For the energetic and geometric-based quality checks, we utilize the PSQS and PROCHECK programs
in order to assess energetic and conformational stability [36,37]. A negative PSQS score indicates
higher quality of a model, while PROCHECK indicates if the conformation of residues are in favored or
unfavored positions. find that the average total PSQS score for all homology models in the previous
version of GEM-PRO is -0.162 £ 0.10, while the updated models have an average total score of -0.164 +
0.12 (see Figure S6b for a plot of these scores). The similarities of these two scores can be explained by
1) the updated model now fills in structural gaps (within the protein and also at the termini), potentially
basing these regions off of lower quality templates and 2) this is including ab initio based models which
intrinsically are of lower quality. For current models, PROCHECK reports that the average percentage of
residues in favored positions is 87.1% + 20%, and an average overall G-factor of -0.10 + 0.27.

T. maritima

For the T. maritima model, there were no previously generated I-TASSER models. As a result, we
manually generated homology models utilizing the I-TASSER workflow on genes that did not have an
experimentally available structure in the PDB. I-TASSER was run utilizing the mapped UniProt amino
acid sequences as input, and the results of each run were stored in the final GEM-PRO dataframe. 333
out of the 478 genes in T. maritima required the generation of a homology model. All models were
generated from a template, with a mean TM-score of 0.79 + 0.2.

For the PDB template-based quality checks, we find that the homology models from the previous version
of GEM-PRO are derived from 102 different species, which is similar to the current T. maritima
GEM-PRO (103). The top 30% of templates in the previous version are derived from E. coli (19%), T.
Thermophilus (8.3%), A. Fulgidus (5.6%) whereas the top 30% of templates from the recent GEM-PRO
are derived from E. coli (15%), T. Thermophilus (7.5%) and B. subtilis (3.9%) T. maritima (2.7%) and A.
aeolicus (2.7%). The average resolution for the previous model’s templates is 2.2 + 0.5 A whereas the
average resolution for the updated version is 2.4 + 0.7 A. Finally, we find over 100 newly deposited PDB
templates (as of 2007) that are now used in the current T. maritima GEM-PRO model.
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For the energetic and geometric-based quality checks, we find that the average total PSQS score for all
homology models in the previous version of GEM-PRO is -0.19 + 0.10, while the updated models have
an average total score of -0.18 £ 0.11 (see Figure S6a for a plot of these scores). These models were
generated similarly to the E. coli models, and similarly, we are now modeling for gaps to ensure 100%
sequence coverage of these models which may account for the slight difference of PSQS score. For
current models, PROCHECK reports that the average percentage of residues in favored positions is
86.3% * 5%, and an average overall G-factor of -0.78 + 0.2. We were unable to calculate the
PROCHECK properties of the older models due to unavailability at the current time.

QC/QA Procedure
E. coli
b low similarity high similarity
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Figure S7: In (a): displayed is a plot of the PDB secondary structure content (alpha helix/beta sheet composition) per residue
versus the matching I-TASSER homology model secondary structure content per residue. Blue dots represent alpha helices
while red dots represent beta sheets. In (b): The distribution of the Jaccard similarity score in secondary structural content
throughout all available PDB-homology pairs. In (c): The distribution of the difference in percent composition of secondary
structure content when comparing homology model and experimental structure. In each of the panels, the cut-off threshold is
demonstrated by the dashed grey line.

For E. coli, the sequence identity cutoff was found to be 83.6%. The lower ranked PDBs are linked to
proteins in reactions used for outer membrane transport, tRNA charging and murein biosynthesis
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subsystems. Using a resolution cutoff of 2.6 A filters out structures which are found mostly in the
subsystems of outer membrane transport, citric acid cycle and outer membrane porin transport. Finally,
the similarity of secondary structure elements cutoff was set at a score of 0.51. Overall, 82% of all
available structures are kept as representative structures and subject to further refinement, and 18% are
marked to use homology models as the representative structure instead.

high quality low quality

Ssi

Density
O R N W & U1 OO N

1.0 0.8 0.6 0.4 0.2 0.0
% sequence identity

E Sres

Angstroms

Figure S8: Top: the distribution of the sequence identities for all PDB structures compared to the wild-type E. coli sequence
across all genes with available crystal structures. Shown by the green filled square, a determined cut-off threshold has been
chosen as a means to score the PDB file. Bottom: the distribution of the crystallographic resolution for the PDB structures within
the set of genes with available crystal structures. In each of the panels, the cut-off threshold is demonstrated by the dashed
grey line.

S18



T. maritima

high quality low quality
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Figure S9: Top: the distribution of the sequence identities for all PDB structures compared to the wild-type T. maritima
sequence across all genes with available crystal structures. Shown by the green filled square, a determined cut-off threshold
has been chosen as a means to score the PDB file. Bottom: the distribution of the crystallographic resolution for the PDB
structures within the set of genes with available crystal structures. In each of the panels, the cut-off threshold is demonstrated
by the dashed grey line.

For T. maritima, the sequence identity cutoff was 82.5%. The lower ranked PDBs are linked to proteins
in reactions used for starch metabolism, laminarine metabolism and methionine metabolism. Using a
resolution cutoff of 2.9 A filters out structures which are found mostly in the subsystems of lipid, purine
and chorismate biosynthesis. Secondary structure composition similarities and differences were not
calculated for T. maritima due to the lack of homology models for genes already covered by a PDB
structure. Overall, 91% of structures are kept as representative structures and subject to further
refinement, and 9% are marked to use homology models as the representative structure instead.

Model Refinement

E. coli

136 experimental structures from the PDB were subject to the model refinement pipeline, and 132
successfully mutated to the correct wild-type sequence. The remaining 4 were manually inspected and
had issues mainly due to insertion codes which led to inconsistent numbering in the PDB file. We
manually adjusted the content of the PDB file with the correct numbering and reverted the sequence to
the wild-type.
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T. maritima
24 experimental structures from the PDB were subject to the model refinement pipeline, and 20

successfully mutated to the correct wild-type sequence. The remaining 4 were manually inspected and
had numbering issues similar to the E. coli structures. These structures were adjusted accordingly in

order to provide input to the model refinement pipeline.
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Dissemination of GEM-PRO and Development of New Training Resources

Protein Fold Families in Metabolism

A fundamental interest in evolutionary biology is centered on understanding how proteins are organized
into the complex biomolecular networks that are observed today. Protein fold family (Pfam) information
is a widely used resource for identifying the evolutionary relationship between proteins. Proteins with
similar folds or domain organization but little sequence or functional similarity are classified into different
"superfamilies" and are assumed to have only a very distant common ancestor. Proteins having the
same fold and some degree of similarity in amino acid sequence and/or functionality are classified in
"families" and are assumed to have a closer common ancestor. In this section we describe the approach
taken to merge protein fold family information together with information related to the metabolic network
of T. maritima [31] and E. coli (see iPython notebook titled, “Protein_Fold_Familes.ipynb”).

In the updated GEM-PRO for E. coli, we map a total of 803 unique Pfams across 596 (43%) genes in
the metabolic network model, whereas, for T. maritima, we find 216 unique Pfams across 143 (29%)
genes. In the Supplementary IPython notebook titled, "Protein_Fold_Familes.ipynb" we provide scripts
for a basic analysis that enables a comparison of the number of unique folds in proteins across
subsystems of metabolism as well as how to find trends in this data. For example, we illustrate the
distribution of unique fold families, such as the Rossmann fold domain, across all metabolic subsystems.
The Rossmann fold is highly distributed across various genes in several specific subsystems in both T.
maritima and E. coli, which include cofactor biosynthesis (16), cell envelope biosynthesis (9), and
oxidative phosphorylation and TCA cycle (8). Previously, Pfam and SCOP classification information
were used in conjunction with a genome-scale modeling approach for the discovery and characterization
of evolutionary structural folds and domains throughout metabolism [31]. This study has enabled a
comparison of “patchwork” [44,45] and “retrograde” [46] models of enzyme evolution.
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Subsystem
Figure S11: Coverage of protein fold families in E. coli GEM-PRO model. In (a), a bar plot indicating the distribution of PFAM

accession numbers (x-axis) across different genes in the metabolic model. In (b), the distribution of clans across all genes in
the metabolic network. In (c) is the distribution of clans and PFAM accession numbers across subsystems in the metabolic

network. In (d) is a pie chart that presents the number of subsystems in E. coli with n number of PFAM types. For example, half

of all subsystems have less than 30 unique PFAMs and one quarter have less than 10.



m_subsystem norm_clan norm_pfam num_clans num_genes num_pfams
Transport, Outer Membrane Porin 1.4 0.636364 5 7 11
Transport, Inner Membrane 5.904762 1.467456 42 248 169
Transport, Outer Membrane 2.181818 0.648649 11 24 37
Nucleotide Salvage Pathway 1.813953 0.661017 43 78 118
Glycerophospholipid Metabolism 2.4 1.090909 10 24 22
Alternate Carbon Metabolism 2.78125 1.011364 64 178 176
Cofactor and Prosthetic Group Biosynthesis 3.086207 0.832558 58 179 215
Cell Envelope Biosynthesis 1.962963 0.654321 27 53 81
Murein Recycling 2.416667 1.16 12 29 25
Nitrogen Metabolism 1 0.533333 16 16 30
Arginine and Proline Metabolism 1.863636 0.803922 22 4 51
Membrane Lipid Metabolism 1.071429 0.384615 14 15 39
Pyruvate Metabolism 2.294118 1.114286 17 39 35
rosine, Tryptophan, and Phenylalanine Metabo 24 1.142857 10 24 21
Valine, Leucine, and Isoleucine Metabolism 1.666667 1 9 15 15
Lipopolysaccharide Biosynthesis / Recycling 2.24 1 25 56 56
Unassigned 2.428571 0.586207 14 34 58
Citric Acid Cycle 1.466667 0.536585 15 22 41
Cysteine Metabolism 1.315789 0.555556 19 25 45
Purine and Pyrimidine Biosynthesis 2 0.55 11 22 40
Inorganic lon Transport and Metabolism 3.28 1.171429 25 82 70
Methionine Metabolism 1.071429 0.441176 14 15 34
Alanine and Aspartate Metabolism 1.714286 0.857143 7 12 14
tRNA Charging 1.846154 0.615385 13 24 39
Methylglyoxal Metabolism 2.666667 1.333333 3 8 6
Threonine and Lysine Metabolism 1.818182 0.689655 11 20 29
Histidine Metabolism 0.9 0.818182 10 9 11
Oxidative Phosphorylation 2.75 0.933962 36 99 106
Glycine and Serine Metabolism 2.142857 1 7 15 15
Pentose Phosphate Pathway 1.666667 0.882353 9 15 17
Glycolysis/Gluconeogenesis 1.65 0.825 20 33 40
Folate Metabolism 1 0.454545 10 10 22
Glutamate Metabolism 1.375 0.785714 8 11 14
Glyoxylate Metabolism 1 0.8 4 4 5
Anaplerotic Reactions 2 1 5 10 10
Murein Biosynthesis 2 0.909091 5 10 11
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Table S3: Displayed are the various subsystems in E. coli metabolism and the number of pfams (num_pfams), number of clans
corresponding to those pfams (num_clans), these values normalized to the number of genes (num_genes) in the particular
subsystem (norm_pfams and norm_clans, respectively).

m_subsystem norm_clan norm_pfam | num_clans | num_genes| num_pfams

Cysteine Metabolism 1.2 0.666667 5 6 9
Pyruvate Met 2.166667 1.3 6 13 10

Fatty Acid Synthesis 2 0.888889 4 8 9
Arginine Biosynthesis 1.166667 0.875 6 7 8
Valine, Leucine, and Isoleucine Metabolism 24 1.5 5 12 8
Citric Acid Cycle 26 26 5 13 5
Pantothenate and CoA Biosynthesis 1 1 1 1 1
Lysine Biosynthesis 14 1 5 7 7
Purine Metabolism 2.6 1.3 5 13 10
Methionine Metabolism 1.833333 1 6 11 11
Purine Biosynthesis 2.333333 0.666667 6 14 21
Aminosugar Metabolism 15 1.2 4 6 5
Lipid Biosynthesis 2 2 2 4 2
Thiamine Biosynthesis 3 3 1 3 1
Folate Metabolism 2.8 1.4 5 14 10
Peptidoglycan Biosynthesis 3.333333 25 3 10 4
tRNA Metabolism 4.166667 2777778 6 25 9
Transport 11.875 5.277778 8 95 18

Alternate Carbon Metabolism 2.6 1.444444 5 13 9
Others 1.5 1 4 6 6

Starch Metabolism 0.5 0.5 4 2 4
Phenylalanine Tyrosine Tryptophan Biosynthesis 4 1.5 3 12 8
Riboflavin Metabolism 1 1 5 5 5
Arabinose Metabolism 2 2 1 2 1
Threonine Metabolism 4 1.333333 2 8 6
Alanine and Aspartate Metabolism 3 3 1 3 1
Pyrimidine Biosynthesis 4.5 4.5 2 9 2

NAD Metabolism 1.714286 1.333333 7 12 9
Glutamate Metabolism 1.75 0.875 4 7 8
Histidine Biosynthesis 1.428571 1 7 10 10
Energy Metabolism 6 3.75 5 30 8

Biotin Biosynthesis 1 0.666667 2 2 3
Carbohydrate Metabolism 3.333333 3.333333 3 10 3
Cellulose Metabolism 1.25 1.25 4 5 4
Butanoate Metabolism 2 2 1 2 1
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Terpenoid biosynthesis 2.25 1.285714 4 9 7
Chorismate Biosynthesis 1.5 1.2 4 6 5
Pyrimidine Metabolism 2.8 1.75 5 14 8
Glucuronate Metabolism 1.25 1.25 4 5 4
Entner-Doudoroff pathway 2 2 2 4 2
Pantothenate and CoA Metabolism 1.75 0.875 4 7 8
Ribose Metabolism 1 0.5 1 1 2
Proline Biosynthesis 2 0.75 3 6 8
Glycolysis/Gluconeogenesis 1.857143 1.857143 7 13 7
Pentose Phosphate Pathway 2.25 2.25 4 9 4
Galactose metabolism 7 7 1 7 1
Mannan Metabolism 3 3 2 6 2
Raffinose Metabolism 0.666667 0.666667 3 2 3
Glycine and Serine Metabolism 2.5 0.833333 2 5 6
Glycogen synthesis 3 3 1 3 1

Xylan Metabolism 2.333333 2.333333 3 7 3
Glucan Metabolism 2 1.2 3 6 5
Glycogen Metabolism 1 1 1 1 1
Serine Metabolism 1 1 1 1 1
Glycerophospholipid Metabolism 1 1 1 1 1
Pentose and Glucuronate Interconversions 1 1 1 1 1
Inositol Phosphate Metabolism 0.75 0.75 4 3 4
Laminarine Metabolism 1 0.75 3 3 4
Maltose Metabolism 0.666667 0.666667 3 2 3
Mannitol Metabolism 1 1 1 1 1
Spermidine Biosynthesis 1 0.666667 2 2 3
Vitamin B6 Metabolism 1 0.333333 2 2 6
Rhamnose Metabolism 1.5 1.5 2 3 2
Sucrose Metabolism 0.6 0.6 5 3 5
Fructose Metabolism 1 1 1 1 1

Table S4: Displayed are the various subsystems in T. maritima metabolism and the number of pfams (num_pfams), number of
clans corresponding to those pfams (num_clans), these values normalized to the number of genes (num_genes) in the
particular subsystem (norm_pfams and norm_clans, respectively).

We compared the spread of molecular motifs by comparing the distribution of annotated Pfams across
metabolism. For E. coli, we map a total of 1159 unique Pfam folds to gene products in GEM-PRO (596
of which are taken from the official Pfam database and 775 have been generated from the publicly
available source code [47]). Our findings suggest that there are a total of 1162 unique Pfams in E. coli
metabolism, suggesting that a great deal of proteins share the same motif. For T. maritima, we identified
143 (29%) genes with Pfam annotations and 147 genes with predicted Pfam annotations. As the total
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number of genes in the metabolic model for T. maritima is much lower than for E. coli (478 versus 1366,
respectively), it is not surprising that the number of unique Pfams is also lower in T. maritima (216). Of
these Pfams, many are readily distributed across a range of metabolic subsystems, such as glycolysis,
citric acid cycle, alternative carbon metabolism and cofactor and prosthetic group biosynthesis (See
Figure S11 (a-c)).

Classifying Pfams into clans allows for identifying functional motifs, such as ligand or cofactor binding
domains. In E. coli, we identify 175 unique clans that represent the distinctive molecular features in all
Pfams in metabolism. One example of the most predominant clan is that of the Rossmann fold, or
NADP-binding motif. In contrast, other motifs, such as the FAD oxidoreductase-C terminal domain, are
observed in only three subsystems and in two different genes, namely glcD, did. Despite the difference
in gene count between E. coli and T. maritima, the average number of unique clans per subsystem for
both organisms 2.1. Further, the subsystems with the maximum number of unique clans in both
organisms are related to inner and outer membrane transport, and those with the fewest number of
unique clans are histidine biosynthesis in E. coli and arginine and cysteine biosynthesis in T. maritima.

Growth at Different Temperatures

Thermotolerance and thermosensitivity are protein properties that determine the catalytic activity of
proteins at various temperatures. Once a knowledgebase of temperature-related data is collated and
mapped to a metabolic network model of a specific organism, the growth rate can be predicted across a
range of temperatures. Furthermore, both in silico and in vivo experiments have been designed to
pinpoint which reactions in the metabolic network of E. coli are rate-limiting at a given temperature [30].
In this section, we provide an example as a tutorial of a previously published approach to predict
temperature-dependent growth rate of E. coli. To illustrate this previous application of GEM-PRO
(RC1366-GP), the predicted and measured temperature data together with the methodology of
integrating this data with constraint-based methods is provided as a Supplementary IPython notebook,
titled “Temperature_Dependent_Growth_ Prediction.ipynb.”

Different temperature-related metrics, including the critical temperature of cold denaturation, freezing
point, optimal temperature, melting point, and temperature of heat denaturation are queried from online
databases or predicted using previously published methods [48-51], and integrated into the GEM-PRO
model of E. coli. Using a constraint-based modeling approach, we use the temperature data to add
further constraints to the genome-scale model of E. coli (iJO1366) to simulate growth under different
temperatures. The maximum flux through a given reaction was set by a temperature-based activity
function, which considers the molar fraction of protein in the native folded state (versus the denatured
state) and a minimum biomass requirement. Using this approach, both the growth rate of E. coli at
different temperatures as well as the proteins predicted to participate in the rate-limiting reactions (at a
given temperature) were predicted and found to be in good agreement with experimentally measured
growth in matching conditions [30].
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Figure S12: (a) Sources of predicted melting temperature values coming from different in silico or experimental methods. (b)
Simulated growth of iJO1366 with temperature constraints added. Highlighted in yellow is the region that correlates well with
experimental growth rates per Chang et al., 2013. (c¢) Reaction “hot spots”, or pathways of the metabolic pathway that are
limited due to the temperature constraints added to a simulation at 42.2 °C.
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Metabolite Versatility in co-crystallized complexes
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Figure S13: In (a) is the total number of crystallographic structures in iJO1366 that are co-crystallized to substrates (bound) or
apoenzymes (unbound). In (b), the total number of all ligands in the PDB ligand expo database were classified based on a
previous approach [52] into various types of ligands. In (c), the same classification scheme was carried out on iJO1366
GEM-PRO ligands. In (d) are the various reaction types in iJO1366 (given by their EC number) and how many are
co-crystallized with ligands or substrates.
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Figure S14: In (a) is the minimum variance (top 10% of most similar ligands bound to genes in the E. coli model) in substrate
similarity (determined via Tanimoto coefficients of InChl metabolite footprint similarities) between all reactions in iJO1366,
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classified by EC number and in (b) is the maximum variance (top 10% of most diverse ligands bound to genes in the E. coli
model).

Enzyme Abundances and Protein Complex Stoichiometry
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Figure S15: In (a) displayed is the coverage of enzyme complex stoichiometry for the E. coli metabolic model. In (b), is the
distribution of the number of enzyme complexes a peptide participates in. In (c) and (d) are homomer and heteromer
stoichiometry distributions. In (e), a zoom of the homomer stoichiometry graph in (c) shows a preference for even stoichiometry.
In (f), using complex stoichiometry coupled with ribosome profiling data and constraint-based modeling, the maximal and
minimal abundances are computed using flux variability analysis assuming free peptide abundance are minimized. As shown in
the plot, the range of potential enzyme abundance indicates that enzyme abundances are quite constrained by stoichiometry.
While GEM-PRO focuses on proteins in metabolism, curation efforts have also led to the reconstruction of stoichiometry for
enzymes involved in protein synthesis, which is available in the original publication [53]. The updated version of GEM-PRO for
E. coli reports 1034 enzyme complexes with their respective complex stoichiometries, which is 500 additional enzyme
complexes more than the previous version of the GEM-PRO (iRC1366-GP) [54]. Of the 1034 complexes, 574 can be mapped
to experimental structures and the remaining can be mapped to homology models. For T. maritima, 27% of the genes have

complete or partial structural coverage of one or more of the subunits in the enzyme complex.
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Proteins with the largest free abundances

e Aspartate carbamoyltransferase regulatory chain

e Acetyl-CoA carboxylase carboxyltransferase subunit beta
{ECO:0000255|HAMAP-Rule:MF_01395}
ACCase subunit beta {EC0O:0000255|HAMAP-Rule:MF_01395}
Acetyl-coenzyme A carboxylase carboxyl transferase subunit beta
{ECO:0000255|HAMAP-Rule:MF_01395}
Dipeptide transport ATP-binding protein DppD
Dipeptide transport ATP-binding protein DppF
Arginine transport ATP-binding protein ArtP
ABC transporter arginine-binding protein 1
Putative ABC transporter arginine-binding protein 2
PTS-dependent dihydroxyacetone kinase, ADP-binding subunit DhalL
Thiosulfate-binding protein
Sulfate transport system permease protein CysT

Comparative Systems Biology of Different Species

The homologs of T. maritima and E. coli were found using a bi-directional (BBH) best hit BLASTP search
of genomes for E. coli K-12 MG1655 and T. Maritima MSB8. The BBH search was performed using
annotated genomes from the RAST server [55] with a minimum cutoff of 20% sequence identity. We
compared structural similarity between E. coli and T. maritima homologs as well as an all-versus-all
comparison, using a pairwise structural alignments using the FATCAT algorithm [56].

E. coli proteins that share structural similarity with the most T. maritima proteins are involved in reactions
such as succinyl-CoA synthetase (ADP-forming) (60), pyruvate kinase (42), phosphogluconate
dehydrogenase (39), ribulose 5-phosphate 3-epimerase (33). Of this highly similar subset of proteins,
only half of the cases shared one or two Pfam domains and a slight majority (56%) share at least one
metabolite in common. Secondary carbon metabolism reactions, including Fructoselysine kinase and
glutamyl-tRNA reductase, had relatively fewer structural matches (6 and 7 respectively), in T. maritima
subsystems such as terpenoid biosynthesis, pantothenate and CoA metabolism, peptidoglycan
biosynthesis, folate metabolism and others. All alignments were clustered based on the
root-mean-squared-deviation (RMSD) of the protein backbones and considered only alignments with
coverages of greater than 70% of the protein. Alignments with high overlap were considered to have an
RMSD less than 5 A. In central carbon metabolism, we identified proteins in both the E. coli and T.
maritima metabolic networks that have highly similar structural domains to a large set of proteins, and
are involved in reactions such as transaldolase, fructose-bisphosphatase, isocitrate dehydrogenase
(NADP-dependent), glucose-6-phosphate isomerase, malate dehydrogenase and citrate synthase.
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Figure S16: Explained Variance. Here we look at the percentage of variance explained as a function of the number of clusters
from K-means clustering. We are interested in choosing the number of clusters such that adding another cluster doesn't give a
largely different coverage of the data (i.e. the marginal gain drops off). At the point in the graph where the marginal gain drops,
we find an angle (or “elbow”) in the graph. The number of clusters is chosen at this point, hence the "elbow criterion". The
"elbow" is indicated by the red circle and the number of clusters chosen was 4.

To calculate the different the different physico-chemical properties, we took all crystallographic
structures and homology models in the GEM-PRO models. For the crystallographic structures, we
filtered out all chains not corresponding to the gene of interest, such that each structure file consisted of
a single monomeric chain. The chain corresponding to the gene of interest was found via the
‘p_uniprot_chain_map’ column in the GEM-PRO master dataframe, which provides a mapping of the
chains in the PDB file to the uniprot accession number, which can then be linked to the gene of interest.
We then evaluated the computed properties of the entire proteomes of E. coli and T. maritima
individually as well as combined, using PCA and K-means clustering algorithms (see below).

Multivariate analyses, like principal component analysis (PCA), allow for the identification of correlation
in different protein structural properties, which may be correlated based on a given metabolic
subsystem, across catalytic reaction types, or another grouping. To carry out such an analysis, all data
was organized into a matrix where each column represents the values of a different property, (such as
solvent-exposed surface area, or SASA), and each row is a given protein. Each of the above properties
was normalized by the range of values of the specified property across all proteins. The eigenvalues, A,
of the matrix represent the variance of a property (or the degree of correlated change in the data set)
which is associated with each axis that is formed as a result of performing PCA. The coefficients of an
eigenvector indicate the contribution of the original variables to the vector and are referred to as factor
loadings. When the variance is small along a number of axes, it can be ignored and, thus, a reduction of
the original highly dimensional data is achieved. For statistical analyses, like PCA and K-means
clustering, we used the sklearn [57] and scipy [58] python packages.
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Comparing 29 different physical properties (see Table S5), we find that the largest differences in
mean-normalized values between E. coli and T. maritima are associated with relative SASA (average
per residue solvent accessibility per protein), the percent of nonpolar residues on the surface of the
protein, percent of polar residues on the surface of the protein, percent of positive residues on the
surface of the protein, percent of negative residues on the surface of the protein, and percent of buried
nonpolar residues. In particular, we find there to be an increase in buried nonpolar residues in T.
maritima relative to E. coli. In T. maritima, we also find there to be significant depletion in solvent
accessibility and polar and nonpolar surface residues and significant enrichment in charged surface
residues and buried nonpolar residues compared to E. coli. Some of the most interesting differences
between E. coli and T. maritima are related to relative SASA, which indicate that proteins in the
thermophilic metabolic network are on average larger (and less solvent accessible) than proteins in E.
coli metabolism. In the largest cluster of proteins, we find an increase in the number of proteins with
surface charges and solvent accessibility and a depletion in polar residues, while the second group of
proteins has an enrichment in polar residues and is depleted in the surface charge and average solvent
accessibility. The transmembrane proteins found in the first cluster (e.g., porins) are mainly correlated
because their surfaces are made of mostly occupied by a-helices with much lower protein surface

charge compared to that of the second cluster.

Based on the clustering analysis described above, we also find that the majority (61%) of all E. coli
“hotspot” proteins are in cluster 3 and 23% are in cluster 2. While cluster 3 happens to be the largest
cluster (41% of all T. maritima and E. coli proteins), the majority of proteins in this cluster have increased
solvent-exposed surface areas, which is likely to make them less stable at higher temperatures.

GEM-PRO descriptor Description
ovality (SASA/Nres”2/3)
average angstrom distance to surface
ssb_avg_res_depth (averaged over all atoms in residue)
average angstrom distance to surface
ssb_ca_depth (averaged over all alpha carbon atoms in residue)
ssb_cys_bridge number of cysteine bridges
ssb_mean_rel_exposed relative mean exposed surface area
ssb_per_310_helix percent 310 helical residues in protein
ssb_per_5_helix percent pi helical residues in protein
ssb_per_B percent of buried residues in protein
ssb_per_ B_NP percent of buried nonpolar residues in protein
ssb_per B_P percent of buried polar residues in protein
ssb_per_B _neg percent of buried negative residues in protein
ssb_per_B_pos percent of buried positive residues in protein
ssb_per_NP percent nonpolar residues in protein
ssb_per_P percent polar residues in protein
ssb_per_S percent of surface residues in protein
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ssb_per_ S NP percent of surface nonpolar residues in protein
ssb_per S P percent of surface polar residues in protein
ssb_per_S_neg percent of surface negative residues in protein
ssb_per_S pos percent of surface positive residues in protein
ssb_per_alpha percent alpha helical residues in protein
ssb_per_bent percent bent/coil residues in protein
ssb_per_beta_bridge percent beta bridge residues in protein
ssb_per_ext_beta percent beta sheet residues in protein
ssb_per_hbond_turn percent residues participating in hydrogen bonds at turns in protein
ssb_per_irr percent disordered residues in protein
ssb_per_neg percent negative residues in protein
ssb_per_pos percent positive residues in protein
ssb_sasa solvent exposed surface area
ssb_size total size (amino acid length)

Table S5: The GEM-PRO columns corresponding to computed structural properties and their descriptions.
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