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Supplementary Methods 
 

ChIP-seq assay 
	
Sorted cells were cross-linked at a concentration of 2 million cells/ml with 1% formaldehyde 

for 6 min at room temperature. Cross-linking was stopped with 0.125 M glycine. Chromatin 

sonification into 200-400 bp fragment size was done with Bioruptor with cooling device 

(Diagenode) at 4°C for 10 min with 30s pulse/pause cycles. Sheared lysates were clarified by 

centrifugation (12,000g, 10 min, 4°C). 10 µl Dynabeads Protein A (Life Technologies) were 

preincubated with either 1 µg IgG control (Santa Cruz Biotechnology) or specific antibodies 

for H3K4me1 (Abcam, ab8895), H3K4me3 (Diagenode, pAb-003-050), H3K27me3 

(Diagenode, pAb-069-050) and PU.1 (Santa Cruz, sc-352).  

 

For immunoprecipitation, sheared chromatin of 1 million cells was added to the preincubated 

beads over night at 4°C. Chromatin complexes were isolated by magnetic bead selection 

and washed with RIPA and TE buffer. Chromatin complexes were digested with 50 µg/ml 

RNase (Roche) at 37°C for 30 min. Immunoprecipitated DNA was purified using QIAquick 

PCR Purification Kit according to the manufacturer's protocol (Qiagen). DNA concentration of 

immunoprecipitated DNA was determined by using Qubit dsDNA HS Assay kit (Life 

Technologies). Libraries were prepared and subjected to deep-sequencing on the Illumina 

platform according to the manufacturer's protocols.  

 

The differential PU.1 binding analysis 
	
To detect differential PU.1 binding, the PU.1 peaks in MPP, CDP, cDC and pDC were 

merged to generate a complete set of peaks. The coverage of reads within the peaks in the 

complete set was used to estimate the peak signal. The differential PU.1 peaks between 

pairs of cell types (MPP versus CDP and cDC versus pDC) were detected using exact 



 3	

empirical test from EdgeR (1). Peaks with low read support (i.e., counts-per-million < 3.0) 

were excluded from further analysis. A peak was considered differential if it produced a 

significant fold change and p value < 0.01 after Benjamini-Hochberg multiple test correction 

(2). De novo motif detection for PU.1 was performed with MEME-ChIP (3) by providing 

200bp regions around the summits of differential peaks. The motif with highest number of 

binding sites was reported.  

 

Identification of PU.1 co-binding transcription factors 
	
First, differentially expressed genes upon DC commitment (MPP versus CDP) and 

specification (cDC versus pDC) were detected described as above (Supplementary Figure 

S5A). Second, transcription factor motifs were collected from Jaspar (4), Uniprobe (5) and 

Homer (6) (Supplementary Figure S5B). AICS Irf8 motif was obtained by applying the tool 

MEME-ChIP with default parameters (3) to Irf8 ChIP-seq peaks (7). The Irf8 ISRE and 

IEACS motifs were obtained from the sequences provided in the literature (8). The motifs of 

transcription factors with low gene expression or low variation upon DC development were 

excluded from further analysis.  

 

Next, peaks were assigned to genes if they were in the proximal promoter (1kb upstream of 

the TSS) and in the gene body (Supplementary Figure 5C). To detect distal peaks, we also 

associated peaks when they were 50kb around the TSS and there was no other gene in 

between the TSS and the peak. Binding site detection was then performed within PU.1 

differential peaks close to differentially expressed genes on the same cell type. All differential 

peaks were corrected to have uniform size, i.e., 250bp +/- the peak summit. Motif search was 

based on Biopython (9), utilizing the distribution of the information content of each motif to 

define a bit score threshold on the basis of a false discovery rate (FDR) test (Supplementary 

Figure S5D). We used the FDR value of 0.1 for all binding sites.  
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We selected random genomic regions with replacement from the mouse genome (mm9) and 

devised a method to make random regions to have the same proportion of CG content and 

mappability characteristic as DNA regions inside PU.1 peaks. For that, the whole genome 

was split into bins of 1000 bps. Then, the proportions of CpGs (ratio between the number of 

CpGs and the sum of the number of Cs and Gs) and unmappable regions (number of base 

pairs that overlap with regions that occur four or more times in the genome) were evaluated 

for each bin. Finally, the filtered random data set is built by randomly selecting bins with up to 

1% difference of CpG and unmappable regions proportion from the regions of differential 

PU.1 binding. The unmappable regions were obtained upon processing the alignability data 

set (50bp window) from the mappability track of the ENCODE repository and blacklisted 

genomic regions (10). The final number of regions equals 10 times the number of regions in 

the largest differential PU.1 peaks data set.  

 

Finally, we employed a one-tailed Fisher’s exact test to measure if the proportion of 

differential PU.1 peaks close to differentially expressed genes with at least one transcription 

factor binding site is higher than the proportion of binding sites in random regions. The test 

was repeated for all motifs and cell-specific differential peaks. Final p values were corrected 

using the Benjamini-Hochberg method (2). The corrected p values (or enrichment scores) 

were visualized in heat map format (Figure 4A; Supplementary Figure S5E). The 

transcription factors with p value < 0.05 were predicted as PU.1 co-binding partners. 

 

Construction of DC regulatory networks 
	
The PU.1 co-binding transcription factors identified above and the key DC regulators 

selected from the literature (11-18) were used to build lineage-specific transcription factor 

networks (Figure 5; Supplementary Figure S5F). For MPP and CDP networks, differentially 

regulated genes during DC commitment (MPP versus CDP) were considered. For cDC and 

pDC networks, differentially regulated genes during DC subset specification (cDC versus 
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pDC) were considered. In each network, nodes represent transcription factors or genes that 

are connected by edges if the transcription factor (source) is predicted to bind to the gene 

(source) in the previous analysis. Binding sites of transcription factors enriched in the 

particular cellular context are depicted in black. In addition, nodes are color-coded differently, 

i.e., enriched transcription factors in red; non-enriched transcription factors in gray; selected 

key genes in white. Networks were generated by Cytoscape (19). 

 

Detection of H3K4me1 footprints 
	
Transcription factor binding sites are likely to occur between two regions with high levels of 

active histone marks (20,21), referred to as footprints. We employed a modified version of 

our computational method described in Gusmao et al. (21) to detect significant footprints in 

H3K4me1 ChIP-seq data. Briefly, the number of states of the hidden Markov model was 

reduced to include only background, histone level and footprint states. Additional transitions 

were added from the histone level DOWN state to the FOOTPRINT state and from the 

FOOTPRINT state to the histone-level UP state. The parameters of the model were 

estimated using H3K4me1 ChIP-seq data from random genomic regions. Given the lower 

resolution of ChIP-seq data and the nature of the probabilistic model, footprints from 

H3K4me1 tend to span larger regions. Therefore, we further reduced the footprint by 

considering only 250 bp upstream and downstream of its center. 
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Supplementary Figures 
	

 

 

 

 

 

 

 

 
	
	
	
	
	
	
	
	
	
	
	
	
	

Supplementary Figure S1. Dynamics of gene expression during DC development in 
vivo in FACS sorted progenitors and DC subsets.  
Heat map representation of gene expression (mRNA) in MPP, MDP, CDP, cDC and pDC 
obtained by FACS sorting from mice  using the same 3194 differentially expressed genes as 
in Figure 1A. MPP, MDP and CDP, 2, 3 and 3 replicates, respectively; cDC, a panel of CD8+, 
CD8-CD4+, CD8-CD4-CD11b+ subsets in 5, 4 and 5 replicates, respectively; pDC in 5 
replicates (GSE15907; (22)) .Red, high expression; blue, low expression. 
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Supplementary Figure S2. Epigenetic regulation during DC commitment. 
(A) Boxplot analysis of mRNA expression and of H3K4me3, H3K27me3, H3K4me1 and PU.1 
occupancy of up or down-regulated genes from MPP to CDP (218 and 211 genes, 
respectively). Changes across DC development (MPP, CDP, cDC and pDC) are shown. 
H3K4me3 and H3K27me3, TSS±1kb; H3K4me1 and PU.1, TSS±50kb. (B) The percentage 
of genes with H3K4me3, H3K27me3 or both (bivalent domain) or no modifications is shown. 
All genes, top panel; Up and down-regulated genes between MPP and CDP, middle and low 
panel, respectively. (C) H3K4me3 occupancy and mRNA profiles of Cd74 gene (MHC class 
II invariant chain), which is up-regulated upon DC development. (D) Enriched gene ontology 
terms of genes, which gain H3K4me3 from MPP to CDP.  
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Supplementary Figure S3. Epigenetic regulation during DC subset specification. 
(A-B) Boxplot analysis of mRNA expression and of H3K4me1, H3K4me3, H3K27me3 and 
PU.1 occupancy of differentially expressed genes during CDP-cDC transition (1773 genes, 
Figure 1A) and CDP-pDC transition (2181 genes, Figure 1A). Changes across DC 
development (MPP, CDP, cDC and pDC) are shown. H3K4me3 and H3K27me3, TSS±1kb; 
H3K4me1 and PU.1, TSS±50kb. (C-D) Occupancy for H3K4me1, H3K4me3, H3K27me3 and 
PU.1 and mRNA expression profiles (log2 expression) of the cDC gene Cd83 and the pDC 
gene Siglech in MPP, CDP, cDC and pDC. Arrow indicates the direction of transcription. 
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Supplementary Figure S4. PU.1 peaks in promoters and enhancers. 
(A) The genomic distribution of PU.1 peaks in DC progenitors (MPP, CDP) and subsets (cDC, 
pDC). Promoter, TSS±1kb; 3’ Ends, TES±1kb. (B) PU.1 peaks in active enhancers (regions 
modified by both H3K4me1 and H3K27ac), poised enhancers (regions only modified by 
H3K4me1) and active promoters (regions modified by H3K4me1, H3K4me3, H3K27ac and 
close to TSS±1kb) in MPP, CDP and cDC are shown. Others refers to PU.1 peaks without 
these histone modifications. The information on enhancer and promoter annotation was 
obtained from ChIP-seq analysis of GM-DC (GSE36104; (23)). 
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Supplementary Figure S5. Workflow of regulatory network inference analysis. 
(A) First we compiled all potential transcription factors and genes from the list of differentially 
expressed (DE) genes between two cell types, i.e. cDC versus pDC. (B) Next, we collected 
motifs from differentially expressed (DE) transcription factors (TFs) from public databases. (C) 
We identify differential peaks (DP; i.e. PU.1 peaks) close to differentially expressed (DE) 
genes of (A) in the same cell type, i.e. cDC differential peaks close to cDC differential genes. 
(D) Motif search from (B) within identified peak regions of (C). (E) Enrichment analysis of 
transcription factor motifs within differential peaks (DP) of (C) indicates transcription factors 
co-binding with PU.1 in a cell type-specific manner. (F) Construction of cell type-specific 
transcription factor regulatory networks by connecting enriched transcription factors to its 
putative targets. For example, Ap1 has an edge to Bcl6 because: Bcl6 is up-regulated in cDC, 
Bcl6 has a Ap1 binding site on a cDC differential peak close to its promoter and Ap1 binding 
is enriched within cDC differential peaks.  

(F) Cell active regulatory networks (E) Transcription factor enrichment  
analysis under DP regions of DE genes 

(C) Differential peaks (DP) close to DE genes  

(D) Motif search within DP regions and DE genes  

(A) Differentially expressed (DE) genes (B) Motifs of DE transcription factors 
from databases 

Figure S5   
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Supplementary Figure S6. Gene expression of PU.1 co-binding transcription factors. 
Gene expression of potential PU.1 co-binding transcription factors of Figure 4A in MPP, 
CDP, cDC and pDC is depicted in heatmap format. Red, high expression; blue, low 
expression.  
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Supplementary Figure S7. ROC analysis of predicted Irf8 binding sites. 
(A) ROC curve analysis of predicted Irf8 binding sites within PU.1 peaks in cDC or pDC 
using Ir8 ChIP-seq data from in vitro cDC and pDC (red). The random shuffled Irf8 peaks 
served as background control (black). (B) ROC curve analysis of predicted Irf8 binding sites 
within PU.1 peaks in cDC or pDC using Ir8 ChIP-seq data from in vivo cDC and pDC (red; 
GSE66899). Peaks identified in the input ChIP-seq data were used as control (black). 
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Supplementary Figure S8. Enrichment of transcription factor motifs for enhancer 
elements. 
(A) The overlap of PU.1 peaks with H3K4me1 footprints, which represent the enhancer 
elements, during DC development. (B) Heat map depicts the enrichment of transcription 
factor motifs in MPP, CDP, cDC and pDC based on H3K4me1 footprints with PU.1 peaks. P 
values are plotted and color-coded using a continuous spectrum from gray (p value > 0.05) 
to blue (p value < 0.05). The genes were arranged according to their order in Figure 4A, with 
two newly identified transcription factors at bottom. (C) The enrichment analysis of 
transcription factor motifs based on H3K4me1 footprints without PU.1 peaks, which identified 
much less transcription factors. 	
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Supplementary Figure S9. Knockout phenotype of key genes in the regulatory 
circuitry of DC development. 
(A) The knockout phenotype of PU.1, Irf8, Stat3/Stat5, Flt3, Batf3, Relb, Id2, Irf4, Spib and 
Tcf4 in multiple DC subsets (24,25) were shown in heatmap format and projected on the 
network. The color code indicates the impact of the factor on DC subsets (CD8+ cDC, CD8- 
cDC, CD103+ cDC, CD11b+ cDC, LC and pDC) inferred from the respective knockout 
phenotype. Red, high impact, loss of respective DC subset in knockout mice; white, no 
impact or not determined; blue, gain of respective DC subset in knockout mice. (B-H) 
Connections of respective transcription factors (yellow) within the DC regulatory circuitry. 
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Supplementary Figure S10. Cobinding of PU.1, Irf8 and Tcf4 in Irf1 gene in pDC. 
(A) PU.1, Irf8 and Tcf4 are predicted to impact on Irf1 in pDC (see network in Figure 6). (B) 
Occupancy of PU.1 and Irf8 in Irf1 enhancer region (H3K4me1) in pDC (highlighted in gray), 
which is in line with the predicted co-binding of Irf8 and PU.1.  (C) The PU.1 peak in mouse 
pDC is mapped to human genome using UCSC liftOver tool and shown as blue bar. The 
PU.1 peak collocates with Tcf4 occupancy in human pDC and predicted transcription factor 
binding sites for PU.1, Irf8, Tcf4 and Irf1. The ChIP-seq data of Irf8 and Tcf4 in pDC are from 
GSE62702 and GSE43876. Predicted transcription factor binding sites (TFBS), green. 
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