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Figure S1. The workflow for constructing and characterizing the
mMiRNA-mediated mRNA related ceRNA network in each cancer.

i) The miRNA-target regulations were identified by integration of the CLIP-seq
dataset with five prediction algorithms. And mRNA pairs that are coregulated by
miRNAs were identified. ii) The gene expression profiles were collected from the
TCGA database the mRNA interactions were identified in each cancer by considering
the expression consistency. iii) Cancer-specific ceRNA networks were constructed by
assembling all the mRNA related ceRNA-ceRNA interactions.
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Figure S2. The landscape of ceRNA-ceRNA interaction networks across 20 types
of cancer.

Its graphic visualization uses nodes to represent individual ceRNAs and edges to
represent miRNA-mediated RNA-RNA interactions. Nodes near the center of the
graph are contained within more tightly regulated, dense subnetworks. The color
bands which include nodes with similar connectivity, have a size increases with the
distance from the center. The networks are visualized with the Lanet plugin in the
network workbench.
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Figure S3. The percentage of nodes and edges of the ceRNA-ceRNA networks
across 20 types of cancer.

The left y-axis represents the percentage of ceRNAs in each ceRNA network,
corresponding to the orange bars. The right y-axis represents the percentage of
interactions in each network, corresponding to the blue bars.
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Figure S4. The ceRNA networks were robust in independent datasets.

The expression consistency of ceRNA-ceRNA interactions were significantly
correlated with each other in independent datasets. These independent datasets were
obtained from published literature with pubmed IDs as follow: 17157792, 17545524,
16141321, 17157791, 15721472, 20946665, 19193619, 15778709, 24194606.



Degree of genes

Figure S5. The
cancer.

Degree of genes

Degree of genes

Degree of genes

2 LGG GBM BLCA LUSC HNSC
2
o 1000 1000 r p
g 1000 R?-0.9 RZ-0.9 T~ R7-0.94 1000 R7=0.91 1000 RZ= 091
5 1004 v o x5 100 | v x5 100 | g, Y- X1 100 4 v=x178 100 4 =Y
o 104 10 4 10 4 oo 10 4 10 4
£ S,
E 0% T T 0 T T 0 T mm 0~ T T 0= T f
z 0 10 100 0 10 100 0 10 0 10 100 10 100
2 LAML PAAD STAD LIHC ov
g p
g, 1000 R?=0.92 100 4 R%=0.94 | R?=0.89 R%=0.91 1000 R?=0.92
5 1004 v x 156 o X8 100 v x18 100 - v X 100 | v X150
5 104 10 4 10 10 4 10
o
E o T 7 0 T 04 T 0~ T T 0= T T
5
z 0 10 100 0 10 0 10 0 10 100 10 100
2 READ LUAD PRAD UCEC BRCA
S q - 1000
g RP-0o1] 1000 7o RI-092| 0% R7= 0.1 1000 R?=0.91]
5 100 - Y= X132 100 | 100 o y = X146 100 - 100 - v = x4
6 10 1 10 4 10 1 10 1 10 1
Qo
E o T T 0 0% T T 0 0= T T
5
z 0 10 100 o o 10 100 0 10 100
2 KIRC COAD THCA CESC KIRP
$ 1000 1000 1000 r
g RZ-0.89 RZ-0.9 1000 R?-0.93
5 1004 Vx4 100 - 100 - M 100 4 v xi68
o 104 10 A 10 A 10 A
&
E 0+ T T 0 0 T 0- T T
5
E 0 10 100 0 0 10 10 100

Degree of genes

Degree distribution of the ceRNA networks across 20 types of

Degree of genes

Degree of genes

Degree of genes

Degree of genes

5 LGG GBM BLCA Lusc HNSC

B g 09 09

2 o] 851 28] 827

g 977 0% 857 08 7 -

c g2 ] R=073 831 R=074 05 R=0.75 05 o R=073
2 04 P < fe-32 03] P<1g32 g1 P =B.88e-15 gi ] P<ie3?
= T T T T T T T T T T T T T T T T - T T T T T
§ 18 10 180 20 18 100 150 200 120 40 60 80 100 S0 100 160 200 250
S LAML PAAD STAD LIHC oV

=

< 034 N 109 095 08 5

2 gg] e 0a il e

3 079 0.85 4 il 1 ] -

2 064 R=068 080 4 R=087 08 R=088 8921 R=0.71 0g R=072
b SE: P < 1e-32 075 4 P =207e-04 07 - P =830e08 070 P =552e08 03 P =1e-32
R e e \ \ \ : : \ 088 A 02 R T
g 150 100 150 200 250 1 20 1 20 40 60 120 40 BD 80 50 100 150 200
5 READ PRAD UCEC BRCA

S

K 0g F 09 E

T 09 084 0 08 284

S 08+ 071 ] 07 U&7

3 05 o7 ik} 0E 3

274 R=049 02 ] 0 R=0.65 0z R=058 833 R=0.70
5 - Feiesn 0.4 05 P e 01 F< 1e-32 03] P<ie32
o 08 T T T T T 031 04 T T T 0344 T T T T 02 T T T T

§ 150 100 150 200 250 1 10 200 300 1100 200 300 400 100 200 300 400
5 KIRC COAD THCA CESC KIRP

2 -
T 227 09 ] 0.9 -

£ 05 i 09

o074 081 06 - 08+

8 064 07 4

N R=051 06 E% R=060 074 R=061 877 R=070
5 f47 P <132 521 1 B P <132 06 P = 5.696-07 064 P=9.10e-15
8 1100 200 3,0 400 500 1100 00 500 1100 200 300 400 500 1m0 & 80 s 1m0 150

Degree ofgenes

Figure S6. Hub ceRNAs are more coexpressed with their neighbors than others.

The correlation between expression of ceRNAs and the total expression of their
ceRNA regulators is plotted as a function of the number of its ceRNA regulators;
genes at the center of the ceRNA network are regulated by hundreds of ceRNA

regulators and are significantly correlated with their total expression.
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Figure S7. Coexpression of ceRNAs in the network increases with the number of
common MiRNAs.

The ceRNA interactions were grouped by the number of miRNAs they share, and then
the correlation coefficient of expression was shown as boxplot in each group.
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Figure S8. Number of cliques at different k-values and cumulative ratios of
ceRNAs in cliques with k-values are not bigger than k.

The left y-axis represents number of cliques under different k-values, corresponding
to the triangle line. The right y-axis represents cumulative ratios of ceRNAs in cliques,
corresponding to the circle line.
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Figure S9. ceRNAs were strongly coexpressed in Dicer-low expressed groups.

The solid lines represent the distribution of correlation coefficient of ceRNA pairs in
the samples that are low expressed of Dicer; and the dash lines represent the
distribution of correlation coefficient of ceRNA pairs in the samples that are high
expressed of Dicer. The differences of the two distributions were tested by ranksum
test.
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Figure S10. ceRNAs were strongly coexpressed in Drosha-low expressed groups.

The solid lines represent the distribution of correlation coefficient of ceRNA pairs in
the samples that are low expressed of Drosha; and the dash lines represent the
distribution of correlation coefficient of ceRNA pairs in the samples that are high
expressed of Drosha. The differences of the two distributions were tested by ranksum
test.
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Figure S11. ceRNAs were strongly coexpressed in Dicer/Drosha-low expressed

groups.

The solid lines represent the distribution of correlation coefficient of ceRNA pairs in
the top 30% samples that are low expressed of Dicer and Drosha; and the dash lines
represent the distribution of correlation coefficient of ceRNA pairs in the top 30%
samples that are high expressed of Dicer and Drosha. The differences of the two

distributions were tested by ranksum test.
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Figure S12. ceRNA hubs (Top 15%) retained their high degree across cancers.
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Figure S13. ceRNA hubs (Top 20%) retained their high degree across cancers.
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Figure S14. The hallmark genes were regulated by more miRNAs than other
genes.
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Figure S15. The hallmark associated ceRNA networks are much denser than
expected by chance.

The number of edges in the random hallmark associated ceRNA networks were plot
as a box in each cancer, and the real number was marked as a start.
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Figure S16. The expression similarity of the predicted and known ceRNAs of
PTEN are higher than random conditions. The distribution were tested by
KS-test.
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The accuracy was the proportion of miRNA-gene regulations that are inlcuded in
these experimentally verified databases in each cancer. And the F-score was
calculated as 2*precision*recall/(precision+recall). The accuracy and F-score of
CLIP-supported miRNA-regulations were normalized to one.
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Figure S20. The expression of miRNAs were regulated by Dicer and Drosha in
various types of cancers.

The cumulative distribution of fold change of miRNA expression in Dicer or Drosha
low and high expressed samples. The line with ‘0’ shows the distribution of fold
changes in Dicer-low and Dicer-high samples. The line with ‘“+’ shows the distribution
of fold changes in Drosha-low and Drosha-high samples. The line with ‘+0’ shows the

distribution of fold changes in Dicer/Drosha-low and Dicer/Drosha-high samples.
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Table S1. The genome-wide gene expression profiles used in our current study.

Cancer Sample Gene Platform Node Edges
LGG 205 20,051 RNA-seq(Hiseq) 5,184 41,703
GBM 403 17,813 MicroArray 4,984 45,743
BLCA 96 20,500 RNA-seq(Hiseq) 1,815 3,338
LUSC 220 20,500 RNA-seq(Hiseq) 4,077 16,015
HNSC 303 20,500 RNA-seq(Hiseq) 4,786 33,210
LAML 173 20,500 RNA-seq(Hiseq) 4,525 30,905
PAAD 41 19,726 RNA-seq(Hiseq) 875 1,403
STAD 58 20,357 RNA-seq(GA) 1,077 2,542
LIHC 54 19,777 RNA-seq(Hiseq) 1,468 3,259
ov 558 17,813 MicroArray 4,563 30,609
READ 71 20,500 RNA-seq(Hiseq) 3,296 33,028
LUAD 355 20,500 RNA-seq(Hiseq) 5,096 36,377
PRAD 179 20,067 RNA-seq(Hiseq) 5,089 52,668
UCEC 333 20,500 RNA-seq(Hiseq) 5,302 72,495
BRCA 822 20,500 RNA-seq(Hiseq) 5,896 88,116
KIRC 470 20,500 RNA-seq(Hiseq) 5,985 94,798
COAD 192 20,500 RNA-seq(Hiseq) 5,419 113,527
THCA 470 20,117 RNA-seq(Hiseq) 6,219 116,312
CESC 99 19,982 RNA-seq(Hiseq) 2,003 5,039
KIRP 101 20,043 RNA-seq(Hiseq) 3,556 14,371

Table S2. The miRNA target sites were likely to localize on 3°UTR.

CLIP-Seq Genes with expression
3°UTR 607,232 (68.21%) 578,804 (69.05%)
CDS 242,701 (27.26%) 222,920 (26.59%)

5’UTR 40,293 (4.53%) 36,527 (4.36%)
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Table S3. The conserved ceRNA modules across cancers. (Table S3.xIsx)

Table S4. The cancer specific ceRNA modules. (Table S4.xIsx)

Table S5. The ceRNAs of PTEN across 20 types of cancer. (Table S5.xlsx)

Table S6. The proportion of ceRNA pairs that are co-localization or co-regulation

across 20 types of cancer.

Cancer Co-localization Co-regulation Union
LGG 0.39% 0.09% 0.47%
GBM 0.06% 0.07% 0.13%
BLCA 3.83% 3.42% 7.25%
LUSC 0.71% 1.27% 1.74%
HNSC 0.27% 0.61% 0.86%
LAML 0.98% 0.97% 1.79%
PAAD 9.05% 0.57% 9.48%
STAD 13.45% 13.02% 19.59%
LIHC 5.52% 0.92% 6.29%
ov 0.12% 0.15% 0.27%
READ 0.81% 0.08% 0.90%
LUAD 0.41% 0.79% 0.99%
PRAD 0.49% 0.32% 0.81%
UCEC 0.19% 0.35% 0.51%
BRCA 0.18% 0.39% 0.45%
KIRC 0.15% 0.25% 0.37%
COAD 0.70% 0.10% 0.80%
THCA 0.15% 0.21% 0.28%
CESC 3.87% 3.97% 6.53%
KIRP 0.89% 0.32% 1.18%

Dataset S1. The hallmark associated ceRNA networks across 20 types of cancer.
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Supplemental methods

Construction of the ceRNA networks in individual cancer types

Firstly, a hypergeometric test is executed for each possible gene pairs separately. For
each given gene pair of gene A and B, we identified the common miRNA regulated
them (AMB). The subset is required to have at least Opmi, mMiIRNAs. And then the

probality P for gene A and B is calculated according to

=
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where N is the number of all miRNAs, K and M is the total number of miRNAs
regulated gene A and B, x is the common miRNA number between these two genes.
Only gene pairs that regulated by three common miRNAs were analyzed in our study.
All P-values were subject to false discovery rate (FDR) correction. Candidate gene
pairs with FDR less than 0.01 were used for subsequent analyses.

Next, integrated with gene expression profiles in all individual cancer types, we
identified the ceRNA pairs in specific tumor type. To explore the active ceRNA pairs
in individual cancer, we computed the correlation coefficient (R) of each candidate
ceRNA pairs identified above. All the candidate gene pairs with R>0 and
p-adjusted<0.05 were identified as ceRNA-ceRNA interactions. After assembling all
significant ceRNA pairs, we generated the ceRNA network for each cancer type. A
node represents a gene, and two nodes are connected if they were coregulated by
miRNAs and co-expressed in this cancer.

Identification of co-localized and co-regulated gene pairs

The protein-coding genes within 5 kb of each other were regarded as being
co-localized gene pairs. In addition, we downloaded the TF-gene regulations from the
ChlIPBase database (1) and then used linear regression to identify the active TF-gene
regulations in each cancer (FDR<0.01). As in an earlier study (2), two overlap ratios

were calculated for a protein coding gene A and another protein coding gene B with
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different numbers of TFs: the proportion of TFs regulating A that were also regulating
B (rag), and the proportion of genes regulating B that were also regulating A (rga). We
chose the formula r=(rag*rea)’” to describe the degree of coregulation. The gene pairs
with an r greater than 0.8 were regarded as co-regulated.
The function similarity between the novel ceRNAs and known ceRNAs of PTEN
In order to estimate the function correlation between the novel ceRNAs and the
knonw ceRNAs of PTEN, we calcualted the function similarity for these two ceRNA
sets based on the GS? which quantifies the similarity of the Gene Ontology (GO)
annotations among two gene sets. Moreover, the significance of functional similarity
was caluculated by randomization test. We randomly chose the same number of genes
as the novel ceRNA sets and recomputed the function similarity. This process was
repeated 1,000 times. And the P-value is the fraction of function similarity in random
conditions, which is larger than that of real one.
Sensitivity correlation for ccRNA-ceRNA interactions
For each ceRNA interaction between gene A and B, we then computed the maximum
difference between the Pearson and partial correlation coefficients according to each
shared miRNA and defined it sensitivity correlation (S) :

Sag = max(corr(mRNA,, mRNAg) — corr(mRNA,, mRNAg |[miRNA))
In addition, we permutated the miRNA expression to evaluate the significance of the
S score. This process was repeated 1,000 times. The P-value is the fraction of S for all
random conditions, which is greater than the real one, which were further adjusted by

the BH-method.
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Supplemental Text S1

Benchmark analyses

The regulation and expression consistency is commonly used to investigate the
ceRNA-ceRNA regulations. To evaluate whether this two-steps approach is valuable
to learn the ceRNA-ceRNA network from an mRNA-mRNA correlation network, we
first defined a competing activity score (CAS) for each ceRNA-ceRNA interactions as

follow:

CAS = —log(pmirna ) — 108(Pexp )

where pmirna€Vvaluates the statistical significance of two mRNAs share the common
mMiRNASs and pey, evaluates the significance of expression correlation of two mRNAs.
The higher the activity score is, the more strong competion between these two
MRNAS is.

The performance of the CAS measurement was estimated by comparing gold
standard ceRNA-ceRNA interactions with random interactions. PTEN-associated
ceRNAs (n=607) were collected from previous studies (3-11) and considered as gold
standard ceRNA-ceRNA interactions. For each PTEN-ceRNA interaction, 100
random CASs were generated by randomly shuffling the expression profiles and
miRNA-regulations. As a result, we found that the CAS values of known
PTEN-related ceRNA pairs were significantly higher than random scores across 20
types of cancer (Figure S21). Moreover, the CAS scores of PTEN-related ceRNA
pairs were also significantly higher than those of coexpressed gene pairs (Figure S22).
These results suggest that the CAS index can give high levels of precision to

distinguish positive ceRNA interactions from negative ones.

18



LGG GBM BLCA Lusc HNSC

204 [ 20 20 4
15 P=4.11e-268 P=363e-238 17 —p=23e-210 P = 1.59¢-220 | P=101e-229
15 i 15 15
2 210 g ] 2 2 10
) S 107 S : S 107 S
01 T T 0 T T 0 01 T T 01 T T
Real Random Real Random Real Random Real Random Real Random
LAML PAAD STAD LIHC ov
204 2549
154 P=1.34e-241 15+ P=148e-222 151 P=7.2e-205 151 P=451e-219 20 4 P=17e-231
@ [ 15
210 <10 g <0 2
o a} ) 3} S 10
5 5 5 5 ]
5
0 0 0 0 04
T T T T T T T T T T
Real Random Real Random Real Random Real Random Real Random
READ LUAD PRAD UCEC BRCA
20 25 H 25 20 L] 2
154 P =248e-257 204 P =9.16e-250 20 4 P =367e-255 154 P = 1.66e-247 204 P = 1.88e-267
] @ 15 —— 9 45 %] | » 154
< 104 < : < < 104 : <
o G 104 : O 104 (3} G 104
5 51 —— 5 51 5
01 T T 01 T T 04 T T 01 T T 01 T T
Real Random Real Random Real Random Real Random Real Random
KIRC COAD THCA CESC KIRP
30 — B 20
el P =2.96e-277 207 F = 153285 20 P =1.95e-281 157 P=225e-213 15 P = 4.55e-229
o o 159 0 15 - ! 2Rt 2]
< 15 < 104 < < < 10+
O 104 I3} O 10 S . 3}
5 5 - 54 5
01 T T 0 T T 0 T T 01 T T 0 T T
Real Random Real Random Real Random Real Random Real Random

Figure S21. Box plot comparison of competing activity scores between
PTEN-associated ceRNAs and randoms. The scores of PTEN-associated ceRNAs
were significantly higher than random scores across 20 types of cancers. Significant P
values were calculated by the Wilcox-ranksum test.
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Figure S22. Box plot comparison of competing activity scores between
PTEN-associated ceRNAs and coexpression pairs of PTEN. The scores of
PTEN-associated ceRNAs were significantly higher than coexpression pairs across 20
types of cancers. Significant P values were calculated by the Wilcox-ranksum test.

Our method to identify ceRNA interactions was further evaluated based on
operating characteristic (ROC) curves. The negative training examples of ceRNA
pairs were detected based on the negative miRNA-target interactions obtained from

Bandyopadhyay et al. (12). Two candidate mRNAs were identified as negative
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ceRNA interactions if they interacted with a common miRNA. The gold standard
positive and negative ceRNA interactions were further merged into a list ranked by
CAS in descending order for which dynamic thresholds (ranging from minimum to
maximum of competing activity scores) were used as cut-off points. Receiver
operating characteristic (ROC) curves were ploted by using the CASs. As a result,
high AUC values (from 0.743 to 0.914) for ROC curves across 20 cancers (Figure 23).
These results validate that this two-steps approach is valuable to learn the
ceRNA-ceRNA network and the ceRNA networks across cancers can be used to

understand the biological mechanism of cancers.
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Figure S23. The ROC curves used to distinguish PTEN-associated ceRNAs from
negative ceRNAs, based on the competing activity score.

Supplemental Text S2

Considering other scenarios that may lead to coexpression between mRNAs, such as
co-localization and co-regulation by same transcription factors, we found that there
are only 0.13%-19.59% ceRNA pairs were co-localization or co-regulated by TFs
(Table S6). Analyzing the ceRNA networks after filtering those co-localized or
co-regulated pairs, we obtained the similar topological and functional landscapes of
ceRNAs networks across human cancers. Analysis of the ceRNA networks, we

obtained the similar topological and functional landscapes of ceRNAs networks
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across human cancers (Figure S24-S31). The ceRNA networks also show scale-free
and modular structures and the ceRNA pairs were strongly coexpressed in
Dicer/Drosha-low expressed groups. In addition, we found that in the
Dicer/Drosha-low expressed groups. These results further evidence that the structures

of the ceRNA networks and most of the results obtained in our study are robust.
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Figure S25. Hub ceRNAs are more coexpressed with their neighbors than others.
The correlation between expression of ceRNAs and the total expression of their
ceRNA regulators is plotted as a function of the number of its ceRNA regulators;
genes at the center of the ceRNA network are regulated by hundreds of ceRNA
regulators and are significantly correlated with their total expression.
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Figure S26. Coexpression of ceRNAs in the network increases with the number
of common mMiRNAs.The ceRNA interactions were grouped by the number of
miRNAs they share, and then the correlation coefficient of expressions were shown as
boxplot in each group.
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Figure S27. Number of cliques at different k-values and cumulative ratios of
ceRNAs in cliques with k-values are not bigger than k. The left y-axis represents
number of cliques under different k-values, corresponding to the triangle line. The
right y-axis represents cumulative ratios of ceRNAs in cliques, corresponding to the
circle line.
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Figure S28. ceRNAs were strongly coexpressed in Dicer- and Drosha-low
expressed groups. The solid lines represent the distribution of correlation coefficient
of ceRNA pairs in the top 30% samples that are low expressed of Dicer and Drosha;
and the dash lines represent the distribution of correlation coefficient of ceRNA pairs
in the top 30% samples that are high expressed of Dicer and Drosha. The differences
of the two distributions were tested by ranksum test.
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Figure S29. The network level comparision of ceRNA-ceRNA interaction
networks across cancers. a, The pie chart shows the proportion of ceRNA
interactions presented in different number of cancers. The majority of the ceRNA
interactions are cancer specific. b, The simpson index matrix shows the similarity
between each pair of ceRNA-ceRNA networks. Some pairs of cancers with same
origin were specifically shown. ¢, The core neuron ceRNA-ceRNA network that
presented in more than 18 cancers. d, The KEGG pathways enriched by the genes in
the core ceRNA network.
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Figure S30. The conserved and rewired network hubs in each cancer type. a,
Cumulative distribution functions of the ceRNA degree in each cancer. b, The
ceRNAs ranked in top 10% were likely to present in top 10% in other cancers.

d Insensitivity to Antigrowth Signals
a Genome Instability and Mutation @ )
Insensitivity to Antigrowth Signals
§ 08 \ ‘\ 334 200 110 & @
& 0.6 S
5 k-]
=] 50 12 3 =
c o
S 04 -
3 ™ FDR <0.01 E.
8 02 005<FDR<=0.01 &
2 01<FDR<=005 g _ |
o 00, £
£ 166 . * R
GEM | 9 . .. |
BLCA- & L + » =1
Luscy o * ° o 00 02 04 08 08 10
HNSC () [ 4 * 4 ) \ iz o ) h
LAML 4 b ® e Normalized_K-core
w m H Genome instability and mutation
§ LiHC] I - ] -
3 oV} ® s . ®
& READ! L 4
& LUAD|-@ g @i+ 8t £,
o FRaplo ® -+ L | &
UCEC| [ * TN s
BRCA|- @+ : * L SRR P
KIRC| H T - #| £-
COAD| " T | g
THCA | g L Eo B . e
CESC| * * |
KIRP| ® o 2o
................................................................................................. —
0.00 0.05 0.10 0.15 020 ==
Hallmarks The proportion of genes < . ; ; - .
b c 0.0 0.2 0.4 06 0.8 1.0
Insensitivity to Antigrowth Signals Genome Instability and Mutation Mormalized_K-core
0.25 -
0204 0307 LGG READ
) .25} GBM  =—— LUAD
$ . ’ = Bl CA PRAD
0.15- -1 LUsC = UCEC
g RN £ HNSC == BRCA
Z ! 8 ois o LAML = KIRC
= 0.10- ) = PAAD === COAD
é é 0.104 = STAD — THCA
2 o5 -4 LIHC CESC
" LI e Hﬂlﬂl DH] HIlIID oo
gglas vt |y

Figure S31. The ceRNA networks control broad cancer associated hallmarks. a,
The summary bubble-bar plot show the functional enrichment results of the ceRNA
networks across the cancers. b and ¢, The normalized degree of ceRNAs annotated in
the two hallmarks. d and e, Relationships between ceRNA layers and frequency of
ceRNAs implicated in two hallmarks identified in each layer.
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Supplemental Text S3

The structure and functions of ceRNA networks constructed based on multiple
molecular datasets.

Construction of the pan-cancer ceRNA networks

Identification of MRNA-mRNA regulation based on integrated analysis

With the increasement of miRNA expression, DNA methylation and DNA copy
number available for the same tumors, integration of these information may provide
further evidence that the two correlated genes are competitively binding same
miRNAs. The multivariate linear model could measure the expression association
between a miRNA and a mRNA, that also factors in variation (noise) in mRNA
expression induced by changes in DNA copy number and promoter methylation at the
MRNA gene locus. In this regression model, the gene expression, changes as a linear
function of DNA copy number, DNA methylation and miRNA expression. Then we
used the ordinary least square method to obtain an estimate for the coefficient of
miRNA, and test the null hypothesis the expression of the miRNA is not associated
with change in expression of this gene. The association of miRNA and mRNA were
obtained in ten types of cancers (Table S7) and a miRNA-mRNA pair was considered
as associated if the FDR is under 0.05. And then integrated with the CLIP-seq
supported target sites in the main text, we obtained the cancer specific
miRNA-mRNA regulations. Next, we performed the same procedure (by considering
the shared mMiRNAs and coexpression) and reconstructed the ceRNA-ceRNA
networks in each cancer.

Coregulation of mMRNA-related ceRNAs

A hypergeometric test is executed for each possible gene pairs separately. For each
given gene pair of gene A and B, we identified the common miRNA regulated them
(AMB). The subset is required to have at least Omin MIRNAS. And then the probability

P for gene A and P is calculated according to
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where N is the number of all miRNAs, K and M is the total number of miRNAs
regulated gene A and B, x is the common miRNA number between these two genes.
Only gene pairs that regulated by at least three common miRNAs were analyzed in
our study. All P-values were subject to false discovery rate (FDR) correction. In order
to obtain more ceRNA pairs in the networks constructed by integration of multiple
molecular datasets. Here, the FDR was relaxed to 0.05.

Coexpression of mMRNA-related ceRNAs

Next, integrated with gene expression profiles in all individual cancer types, we
identified the ceRNA pairs in specific tumor type. To explore the active ceRNA pairs
in individual cancer, we computed the correlation coefficient (R) of each candidate
ceRNA pairs identified above. All the candidate gene pairs with R>0 and
p-adjusted<0.05 were identified as ceRNA-ceRNA interactions. After assembling all
significant ceRNA pairs, we generated the ceRNA network for each cancer type. A
node represents a gene, and two nodes are connected if they were coregulated by

miRNAs and co-expressed in this cancer.
Table S7. Summary of analyzed TCGA cancer types and data sets.

Cancer mMiRNA MRNA Methylation CNA
GBM 380 380 211 380
oV 509 509 509 509
COAD 181 181 181 181
KIRC 368 368 223 368
LUSC 195 195 106 195
BRCA 671 671 415 671
UCEC 332 332 234 332
BLCA 94 94 94 94

HNSC 298 298 298 298
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LUAD 347 347 283 347

mMiRNA-mediated ceRNA interactions in pan-cancer

The multivariate linear model could measure the expression association between a
miRNA and a mRNA, that also factors in variation (noise) in mRNA expression
induced by changes in DNA copy number and promoter methylation at the mRNA
gene locus. The association of miRNA and mRNA were obtained in ten types of
cancers and a miRNA-mRNA pair was considered as associated if the FDR is under
0.05. And then we measured the coexpression of mRNAs and reconstructed the
ceRNA networks in ten cancers (Figure S32). As a result, we found that the ceRNA
networks are smaller than those of in the main text. This result suggests that
integration of more types of genomic datasets, the noise in the datasets may be filtered.
In addition, we found that the majority of these ceRNA networks were also included
in our original analysis (Simpson index ranged from 0.25 to 0.53), indicating the

results obtained in our main text are robust.

GBM . BLCA LUSC

n=908

BRCA

In total, ten major types of cancer with

®
; : the number of samples >3000.
n=1,096 % n=537 o
. e=1,952 L e=698 periphery

Figure S32. The mRNA-related ceRNA networks in ten types of cancer. Its
graphic visualization uses nodes to represent individual ceRNAs and edges to
represent miRNA-mediated RNA-RNA interactions. Nodes near the center of the
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graph are contained within more tightly regulated, dense subnetworks. The color
bands which include nodes with similar connectivity, have a size increases with the
distance from the center. The networks are visualized with the Lanet plugin in the
network workbench.

Common features of ceRNA interactomes

Analysis of the topological features of the ceRNA networks across cancers, we found
that the results obtained in the main text were robust in these newly constructed
ceRNA networks. Firstly, the examination of the degree distributions of these ceRNA
networks reveals a power law distribution, showing that the ceRNA networks are
scale free (Figure S33). Secondly, analysis of the ceRNA networks show that highly
connected ceRNAs are more coexpressed with their neighbors than others (Figure
S34). In addition, coexpression of ceRNAs in the network increases with the number
of common miRNAs (Figure S35). Next, we analyzed the modular structure of the
ceRNA networks. All modules in the ceRNA networks are also identified using
cFinder. As a result, we found that with an increase in the value of k, there is a sharp
decrease in the number of modules. In total, about 25%-48% ceRNAs are involved in
at least one module (Figure S36). Analysis of the Dicer/Drosha expression, we found
that ceRNA pairs were strongly coexpressed in Dicer/Drosha-low expressed groups
(Figure S37). All these results suggest that the topological features of these ceRNA

networks were robust.
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Figure S33. The degree distributions of the ceRNA networks across cancers.
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regulators and are significantly correlated with their total expression.
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Figure S36. Number of cliques at different k-values and cumulative ratios of
ceRNAs in cliques with k-values are not bigger than k. The left y-axis represents
number of cliques under different k-values, corresponding to the triangle line. The
right y-axis represents cumulative ratios of ceRNAs in cliques, corresponding to the
circle line.
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Figure S37. ceRNAs were strongly coexpressed in Dicer- and Drosha-low
expressed groups. The solid lines represent the distribution of correlation coefficient
of ceRNA pairs in the top 30% samples that are low expressed of Dicer and Drosha;
and the dash lines represent the distribution of correlation coefficient of ceRNA pairs
in the top 30% samples that are high expressed of Dicer and Drosha. The differences
of the two distributions were tested by ranksum test.

Network level analysis across cancers

Viewing the ceRNA network across cancers, our study highlights a marked rewiring
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in the ceRNA program between different cancers. We found that only 0.035%
ceRNA-ceRNA interactions were conserved in more than five cancers. The low
conservation of ceRNA regulations may be explained in part by the cancer-specific
expression of genes. Although most of the ceRNA regulations were cancer-specific,
the cancers with similar tissue-of-origin also share common ceRNAs (Figure S38a).
For instance, as expected, LUAD and lung squamous cell carcinoma (LUSC) are two
types of lung cancers, we found that the similarity of their ceRNA networks were
higher than those with other cancers. Approximately 11.69% ceRNA interactions in
LUSC also worked LUAD, which was significantly higher than expected (p<1.73E-3).
In addition, we found that the ceRNA-ceRNA interactions observed in more than two
cancers form a large component (Figure S38b). And functional enrichment analysis
indicates that these ceRNAs play key roles in pathways involved in cancers (Figure

S38c).
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Figure S38. The comparison of ceRNA networks across cancers. a, The network
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similarity matrix between two ceRNA networks. b, The ceRNA interactions observed
in more than two cancers. ¢, The functions of ceRNA enriched.

Differential network analysis

Comparing the degree distribution across cancers, we found that most of the ceRNA
networks were characterized by nodes with highly variable degrees, from genes with a
few connections to ‘hubs’ with hundreds of links. Especially, the ceRNA network of
glioblastoma multiforme (GBM) presents an increased connectivity with respect to
other cancers (Figure S39a). Since hub nodes have been found to play important roles
in many networks, we also identified hub ceRNAs in each network. Generally, these
ceRNA hubs retained their high degree across other cancers (Figure S39b).
Approximately 20% hubs retained high connectivity in other cancers. In addition, we
also identified the common hubs, differential hubs and cancer-specific hubs. When we
defined hubs as the top 20% genes with high connectivity, we found that the 62.5%
common hubs, 19.2% differential hubs and 22.9% cancer specific hubs were retained
in the newly constructed networks. These results suggest that the network structures
of the ceRNA networks were robust, these retained hubs may be more important in
the development and progression of cancers. Using the more strict roles to filter the

candidate ceRNA interactions, we may obtain more confident ceRNAs in cancers.
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Figure S39. The conserved and rewired network hubs in each cancer type. a,
Cumulative distribution functions of the ceRNA degree in each cancer. b, The
ceRNAs ranked in top 20% were likely to present in top 30-50% in other cancers.

mMiRNA-mediated ceRNA regulations control broad cancer-related hallmarks
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Next, we also performed the functional enrichment analysis of the ceRNA networks
across cancers. Functional enrichment analysis reveals that the cancer-related ceRNA
networks enriched at least one hallmark of cancers. About 20% hallmark genes were
involved in ceRNA regulations, which was significantly larger than randomly chosen
genes (Figure S40a, right panel, p<1.0E-3). On the other hand, the ceRNA networks
cover most genes of the hallmark-related functions (range from 13.54% to 54.54%,
Figure S40a, top panel). Another interesting observation is that all the ten ceRNA
networks are enriched in the function of ‘regulation of cell proliferation’, highlighting
its roles in the development of pan-cancers. Next, we also examined whether the
genes enriched in the same hallmarks exhibit different connectivity patterns. The
connections number of each ceRNA (node degree) was scaled to a value between 0
and 1 by dividing each node degree by the largest degree in a ceRNAnetwork. We
found that the ceRNAs enriched in the same hallmarks show vary degree across
cancers (Figure S40b and S40c). In addition, by peeling each ceRNA network, we
found that the ceRNAs with similar functions localized in different layers of the

networks (S40d and S40Qg).
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Figure S40. The ceRNA networks control broad cancer associated hallmarks. a,
The summary bubble-bar plot show the functional enrichment results of the ceRNA
networks across the cancers. b and ¢, The normalized degree of ceRNAs annotated in
the two hallmarks. d and e, Relationships between ceRNA layers and frequency of
ceRNAs implicated in two hallmarks identified in each layer.
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