Web appendix B Footnote to table 5

Assuming median survival time of 10 years, ^{19,30} and Weibull survival distribution with index 2 (widely used model for survival after HIV infection before introduction of antiretroviral drugs), survival function $S(t)=\exp(-(t/12)^2)$. If the number of incident infections increase with an annual rate of γ (e.g. if one assumes that the prevalence remains constant, then γ would equal the adult population growth rate, i.e. approximately 0.02). Then one can show (using simple calculus) that the ratio of deaths (D) to HIV infections (I) is D/I =1/{exp(36 γ^2) $\sqrt{(144\pi)\Phi(-\gamma\sqrt{72})}$ - γ , where $\Phi()$ denotes the standard normal distribution function. For γ =-0.05, -0.02, 0, 0.02, 0.05 D/I would equal 0.1147, 0.1017, 0.0940 (i.e. 1/life expectancy), 0.0871, 0.0780 respectively.