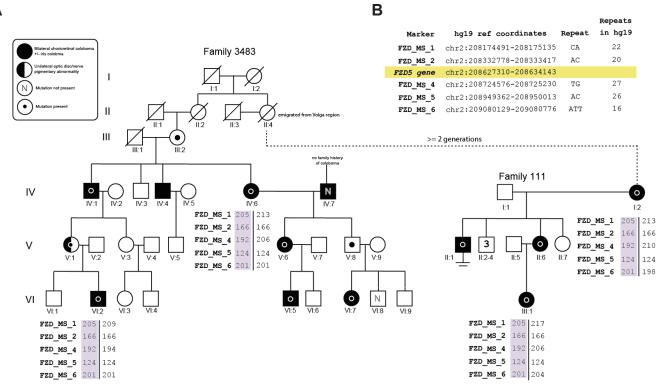
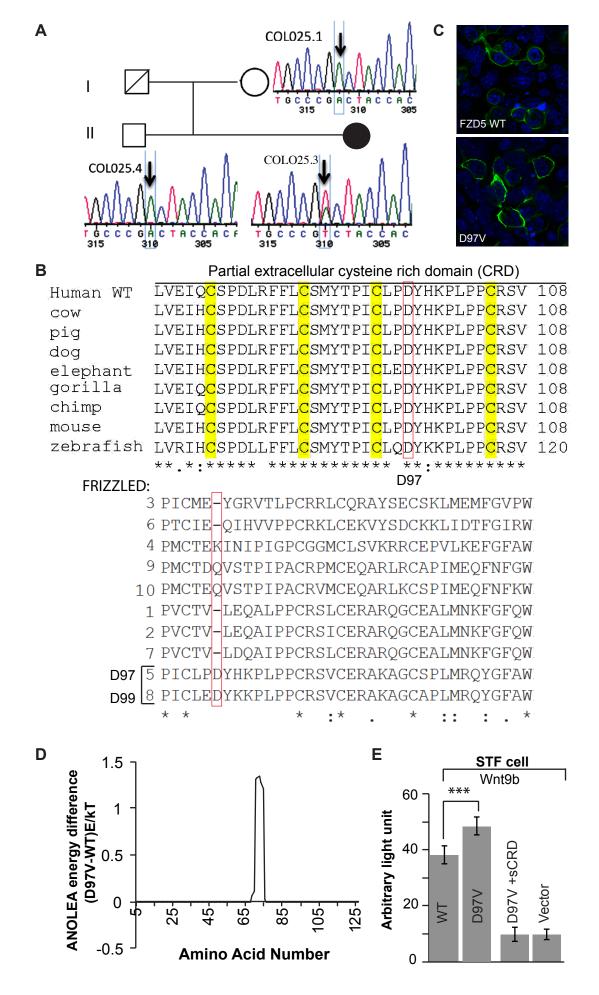

Patient	cDNA	Protein	dbSNP	1000G/EVS	Polyphen	SIFT
id	change	change	id	MAF	prediction	prediction
49	c.A290T	*D97V	NA	NA	Possibly damaging	Damaging

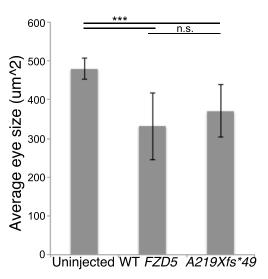

* D97V variant has not been detected in control genomes, SNP database and 1000 Genome Project. Primary tests show that this variant increases FZD5-mediated canonical Wnt activity.

Supplementary table 2: *FZD5* gene amplification primers (5'>3')

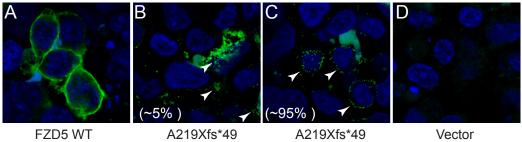
	4
FZD5 Primer1F	tgccaggcgcgctcgccctcc
FZD5 Primer2F	taaccgtctctccccagccctatc
FZD5 Primer3F	cgcgacgccgaggtcctctgcatg
FZD5 Primer4F	gcagtacttccacctggctgcgt
FZD5 Primer5R	cacccactacctctcaggcac
FZD5 Primer6R	agaaacgcaaaatagaatacac
FZD5 Primer7R	cgtcttggtgccgccctgcttg
FZD5 Primer8R	ggtagcagggtaccgcgcag
FZD5Primer9R	gatgggtcaggccgagccatc
FZD5_ex2_1F	gtagcgcgacggccagtgagatttggagacagctcgc
FZD5_ex2_2F	gtagcgcgacggccagtctggaggtgcaccagttct
FZD5_ex2_3F	gtagcgcgacggccagtgtccttcagtgccgacgag
FZD5_ex2_4F	gtagcgcgacggccagtgcaaccagaacctgaactcg
FZD5_ex2_1R	cagggcgcagcgatgacgcagacagatgggcgtgta
FZD5_ex2_2R	cagggcgcagcgatgactccatgtcgatgaggaaggt
FZD5_ex2_3R	cagggcgcagcgatgacgaagagcgacacgaagcc
FZD5_ex2_4R	cagggcgcagcgatgactaaacggaagtgaccttggc

Supplementary Figure 1



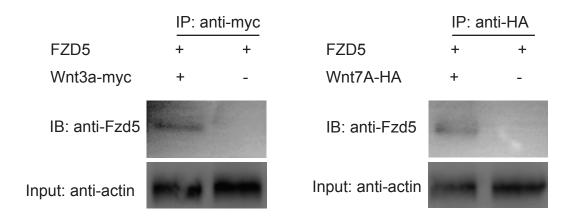


Α

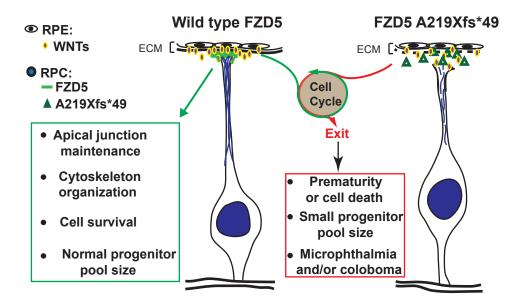

Frizzled 5 protein N-terminal alignment across species

	Protein Domains [signal peptide(aa1-26)]							
Human WT	MARPDPSAPPSLLLLLLAQLVGRAAAASKAPVCQEITVPMCRGIGYNL 48							
COW	MARPDPSAPPSLLLLLLAOLAGRAAAASKAPACOEITVPMCRGIGYNL 48							
pig	MARPDPSAPPSLLLLLLAQLAGRATAASKAPVCQEITVPMCRGIGYNL 48							
doq	MARPDPCAPPSLLLLLLAQLLGRAAAASKAPVCQEITVPMCRGIGYNL 48							
elephant	MARLDPSAPPPLLLLLLAQLVGRAAAASKAPVCQEITVPMCRGIGYNL 48							
gorilla	MARDPSAPPSLLLLLLAQLVGRAAAASKAPVQQEIIVPMQRGIGINL 40 MARPDPSAPPSLLLLLLAQLVGRAAAASKAPVQQEIIVPMQRGIGYNL 48							
	MARPDPSAPPSLLLLLLAQLVGRAAAASKAPVQQLIIVPMQRGIGINL 40 MARPDPSAPPSLLLLLLLAQLVGRAAAASKAPVQQLIIVPMQRGIGYNL 48							
chimp	MARPDPSAPPSLLLLLLAQLVGRAAAASKAPVOQEITVPMORGIGINL 48 MARPDPSAPPSLLLLLLAOLVGRAAAASKAPVOQEITVPMORGIGYNL 48							
mouse								
zebrafish	MRKPADEHHFTMETSGMHLVGFWLHVLLLFQLSGLGDSASKDIV <mark>C</mark> EPITVPM <mark>C</mark> KGIGYNH 60							
	* * * * * * * * * * * * * * * * * * * *							
frizzled domain(~aa30-152)(aka cysteine rich domain)								
Human WT	THMPNQFNHDTQDEAGLEVHQFWPLVEIQ <mark>C</mark> SPDLRFFL <mark>C</mark> SMYTPI <mark>C</mark> LPDYHKPLPP <mark>C</mark> RSV 108							
COW	THMPNQFNHDTQDEAGLEVHQFWPLVEIH <mark>C</mark> SPDLRFFL <mark>C</mark> SMYTPI <mark>C</mark> LPDYHKPLPP <mark>C</mark> RSV 108							
pig	THMPNQFNHDTQDEAGLEVHQFWPLVEIH <mark>C</mark> SPDLRFFL <mark>C</mark> SMYTPI <mark>C</mark> LPDYHKPLPP <mark>C</mark> RSV 108							
dog	THMPNQFNHDTQDEAGLEVHQFWPLVEIH <mark>C</mark> SPDLRFFL <mark>C</mark> SMYTPI <mark>C</mark> LPDYHKPLPP <mark>C</mark> RSV 108							
elephant	THMPNQFNHDTQDEAGLEVHQFWPLVEIH <mark>C</mark> SPDLRFFL <mark>C</mark> SMYTPICLEDYHKPLPP <mark>C</mark> RSV 108							
qorilla	THMPNQFNHDTQDEAGLEVHQFWPLVEIQ <mark>C</mark> SPDLRFFL <mark>C</mark> SMYTPICLPDYHKPLPP <mark>C</mark> RSV 108							
chimp	THMPNQFNHDTQDEAGLEVHQFWPLVEIQCSPDLRFFLCSMYTPICLPDYHKPLPPCRSV 108							
mouse	THMPNQFNHDTQDEAGLEVHQFWPLVEIH <mark>C</mark> SPDLRFFL <mark>C</mark> SMYTPI <mark>C</mark> LPDYHKPLPP <mark>C</mark> RSV 108							
zebrafish	TYMPNQFNHDNQDEVGLEVHQFWPLVRIH <mark>C</mark> SPDLLFFL <mark>C</mark> SMYTPI <mark>C</mark> LQDYKKPLPP <mark>C</mark> RSV 120							
LOWLOLLOW	* • * * * * * * * * * * * * * * * * * *							
Human WT	CERAKAGCSPLMRQYGFAWPERMSCORLPVLGRDAEVLCMDYNRSEATTAPPRPFPAKPT 168							
COW	CERAKAG <mark>C</mark> SPLMRQYGFAWPERMS <mark>C</mark> DRLPVLGRDAEVL <mark>C</mark> MDYNRSEATTAPPRPFPVKPT 168							
pig	CERAKAG <mark>C</mark> SPLMRQYGFAWPERMS <mark>C</mark> DRLPVLGRDAEVL <mark>C</mark> MDYNRSEATTAPPRPFPAKPT 168							
dog	CERAKAG <mark>C</mark> SPLMRQYGFAWPERMS <mark>C</mark> DRLPVLGRDAEVL <mark>C</mark> MDYNRSEATTAPPRPFPAKPT 168							
elephant	CERAKAGCSPLMRQYGFAWPERMSCORLPVLGRDAEVLCMDYNRSEATTAPPRPFTAKPT 168							
gorilla	CERAKAGCSPLMRQYGFAWPERMSCORLPVLGRDAEVLCMDYNRSEATTAPPRPFPAKPT 168							
chimp	CERAKAGCSPLMRQYGFAWPERMSCORLPVLGRDAEVLCMDYNRSEATTAPPRPFPAKPT 168							
mouse	CERAKAGCSPLMRQYGFAWPERMSCORLPVLGGDAEVLCMDYNRSEATTASPKSFPAKPT 168							
zebrafish	<mark>C</mark> ERAKRG <mark>C</mark> SPLMIQYGFEWPERMS <mark>C</mark> EQLPMLG-DTDRL <mark>C</mark> MDRNSSETTTLSP-PFP-KPT 177 ***** ****** **** ****							
	***** ****** **** *********************							
	First altered aa (A219X) in frameshift							
Human WT	LPGPPGAPASGGECPAG-GPFVCKCREPFVPILKESHPLYNKVRTGQVPNC <mark>A</mark> VPCYQP 227							
COW	LSGLPGSPASGNDCAAG-GPSVCKCREPFVPILKESHPLYNKVRTGQVPNC <mark>A</mark> VPCYQP 227							
pig	LSGPPGAPASGSDCVAG-GPSVCKCREPFVPILKESHPLYNKVRTGQVPNC <mark>A</mark> VPCYQP 227							
dog	LPGPAGGPASGAECAAG-APSVCKCREPFVPILKESHPLYNKVRTGQVPNC <mark>A</mark> VPCYQP 227							
elephant	HPGLPGAPASGVECAAG-GPSVCKCREPFVPILKESHPLYNKVRTGQVPNC <mark>A</mark> VPCYQP 227							
gorilla	LPGPPGAPASGGECPAG-GPFVCKCREPFVPILKESHPLYNKVRTGQVPNC <mark>A</mark> VPCYQP 227							
chimp	LPGPPGAPASGGECPAG-GPFVCKCREPFVPILKESHPLYNKVRTGQVPNCAVPCYQP 227							
mouse	LPGPPGAPSSGGECPSG-GPSVCTCREPFVPILKESHPLYNKVRTGQVPNCAVPCYQP 227							
zebrafish	PKGTPRHRATAKSAPPQKCDRECHCRGPLVPIKKEAHPLHNRVNTGSLPNCALPCHQP 237							
	* • • • • • * * * * * * * * * * • * • *							

Anti-Fzd5 antibody live cell surface staining



FZD5 WT


A219Xfs*49

Vector

В

С D IP: anti-HA FZD5 fs219Xfs*49 FZD5 fs219Xfs*49 + + ÷ Wnt7a-HA -+ _ -50kD IB: anti-Fzd5 IP: anti-FZD5 -21kD IB: anti-HA Input: anti-actin

Supplementary Figure Legends

Supplementary Figure 1. Microphthalmia and retinal coloboma manifested in the compound mutants of homozygous *Fzd5* conditional knockout (*Fzd5*⁻ ^{/-}) with one allele of *Fzd8* mutation (*Fzd8*^{+/-}). Lower panels are larger views of developing eyes corresponding to upper panels. Arrowheads indicate open optic fissure/coloboma. Transgenic *Sox2*-Cre was used to excise loxP sites. A, A1, A2, E13.5; B, B1, B2, E14.5; C, C1, C2, E15.5.

Supplementary Figure 2. Microsatellite markers and Haplotype analysis of Families 3484 and 111. A. Shows the same pedigree as Figure 1. **B**. Gives the absolute genomic coordinates of the five microsatellite markers used in this analysis and shows their position relative to the *FZD5* gene (yellow highlight). Under four affected individuals (Family 3483 IV:6 & VI:2 and Family 111 1:2 & III:1) are shown the most plausible locus haplotypes for each individual. The purple highlight indicates the identical haplotype shared by each of the affected individual suggesting recent common ancestry. It should be noted that markers FZD MS 2 and FZD MS 5 are not informative for haplotype construction.

Supplementary Figure 3. Conservation of FZD5 Wnt-binding cysteine rich domain (CRD) across species. Yellow bars highlighted 10 conserved cystines in FZD5 CRD. The purple bar indicates mutant protein insertion/deletion point (p219A).

Supplementary Figure 4. Identification of a novel missense mutation -FZD5

D97V. A. Sequences of a two-generation family with the daughter OC patient carrying D97V mutation. **B.** Upper panel: Alignment of Frizzled 5 CRD region from multiple species showing the conservation of D97. Lower panel: Alignment of ten FZD CRDs shows that D97 is variable except for FZD8 and FZD5. **C**. FZD5 D97V protein is correctly localized in transfected cells. **D.** Atomic non-local environment assessment (ANOLEA) predicted that the D97V variant perturbs local interactions. **E.** Slightly increase in Wnt9b induced canonical Wnt activity by D97V can be abolished by FZD5 sCRD. Student t-test was used for statistical analysis. ***, P<0.0001.

Supplementary Figure 5. Eye size analysis of zebrafish embryos injected with *FZD5* mRNA. Zebrafish embryos were injected at the 1-cell stage with 200 pg of either WT *FZD5* or *A219Xfs*49 FZD5* mRNA and imaged at 3 dpf. Ocular area measurements were taken 3 times with ImageJ and averaged for each eye. Measurements for eyes in each injection group were then averaged (Un-injected, N=12 embryos; WT *FZD5*, N=20 embryos; *A219Xfs*49 FZD5*, N=30 embryos). ****, p<0.0003; n.s.=not significant; t-test with Bonferroni correction for multiple comparisons.

Supplementary Figure 6. Cellular localization of wild type and mutant FZD5 protein. Immunofluorescence detection of FZD5 proteins (green) on cell surface. Images were merged with DAPI indicating the nucleus. **A**, Wild type FZD5 was localized on the cell membrane. **B-C**, A majority of A219Xfs*49 mutant protein was present in extracellular space, presumptively, ECM (arrowheads). The distribution of the mutant proteins appeared to be uneven with about 5% cells showing locally heavy and/or dispersed deposition (**B**, arrowhead), whilst the rest (~95% **C**, arrowhead) showing local (near-membrane) FZD5 distribution. **D**, Negative control with vector transfection was shown in right panel. To avoid the cytoplasm staining, live cells were first incubated with anti-FZD5 antibody in cultured medium, washed with PBS, and then post-fixed with PFA for further immunohistochemistry.

Supplementary Figure 7. FZD5 A219Xfs*49 binds to Wnt. A, FZD5 binds to myc-tagged Wnt3a. HEK293T cells co-transfected with *Wnt3a-myc* and *FZD5*. Cell extracts were immunoprecipitated (IP) with anti-myc antibody, and immunoblotted (IB) with anti-FZD5 antibody. **B**, FZD5 binds to HA-tagged WNT7A. HEK293T cells co-transfected with *WNT7A-HA* and *FZD5*. Cell extracts were immunoprecipitated with anti-HA antibody, and the immunoblot was probed with anti-FZD5 antibody. **C**, FZD5219Xfs*49 protein binds to HA-tagged WNT7A. HEK293 cells were co-transfected with *WNT7A-HA* and *FZD5219Xfs*49* constructs. Cell extracts were immunoprecipitated with anti-FZD5 antibody. Reverse IP was conducted with anti-FZD5 antibody and the blot was probed with anti-HA antibody. **D**, Multiple bands of FZD5219Xfs*49 were detected under reducing conditions using anti-

FZD5 antibody.

Supplementary Figure 8. A model of coloboma disease mechanism caused by *FZD5 A219Xfs*49*. During development, WNT signaling is crucial for maintenance of neuroblast apical junction, cell polarity, cell survival and proliferation. By competing for Wnt ligands, A219Xfs*49 mutant protein (dark green triangles) may intercept WNTs (yellow circles), which are secreted from RPE at the apical extracellular matrices during development (brackets), preventing FZD5 (from RPC apical membrane, bright green lines) - evoked WNT signaling in the neuroblasts (blue nuclear cells). Consequently, insufficient WNT-FZD5 signaling leads to early cell cycle exit, prematurity and cell death, and reduced progenitor pool size, resulting in microphthalmia and/or coloboma. The model is modified from Liu et al., 2012 (32).