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Web appendix 1 

 

Methods: 

Derivation of models of mortality rates as a function of age 

Model 1: This model assumes a linear relationship of mortality rates with age. Indeed, this model 

is implicit in the statement of the current hypothesis that “the increase in absolute heart disease 

mortality accelerates at menopause”. Such a model would suggest the picture that the upward 

slope of absolute mortality versus age is approximately constant before menopause, and would 

change to a different slope about the time of menopause in women. 

 

Mortality Rate = β0 + β1*age + β2*(time since menopause)   1 

 

If there is no change in slope at menopause, the estimate of β2 will be zero. 

 

Model 2: Survival of the organism results from an ongoing repair of tissue injury that is 

dependent on a pool of repair mechanisms (e.g., regenerative repair cells). Aging is hypothesized 

to be a result of loss of this pool. If the probability of removal of reparative cells due to cell 

division is constant over time, the reserve is lost at a constant proportion with age. Thus, we 

modeled the mechanism underlying aging as having a constant probability of loss of reparative 

reserve. In this model, fatal disease events are the result of faulty repair that is linearly related to 

the inverse of remaining reserve.  

Surviving reparative reserve = A×e
-B×age

   2a 

which is a monotonically decreasing function where A and B are some positive constants. Thus 

Mortality Rate = A’×e
B×age

     2b 

which is a monotonically increasing function where A’ is some other constant. Thus 
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log(Mortality Rate) =log(A’)+ B×age = β0 + β1×age  2c 

Any changes occurring at menopause can be modeled similarly as in model 1: 

log(Mortality Rate) = β0 + β1*age + β2*(time since menopause) 2d 

 

Thus modeling changes in proportional mortality in Model 2, rather than absolute mortality as in 

Model 1, can be interpreted as changes in reparative demands on an inexorably decreasing 

reserve of repair mechanisms (e.g., stem cells). 

 

Spline models: The longitudinal death rates in the cohorts were evaluated using generalized 

mixed models. For comparability of model fit between the linear age dependence and the log-

linear age dependence, the explained variance in the death rate data was calculated on the 

original scale (Gaussian residual errors). The cohort-mid-age variable was centered to facilitate 

computational convergence of the model.  

 

Yij = β0 + βage×(mid-decadal age) + βspline×(age-spline) + γj + εij 

log(Yij) = β0 + βage×(mid-decadal age) + βspline×(age-spline) + γj + εij 

 

where Yij is the ith observation of rate in the jth cohort; γj, εij are the cohort-specific and 

observation-specific error terms; and β represent the fixed effect coefficients. For likelihood 

calculations to be comparable, the residuals from the models were specified in the same manner, 

i.e., on the absolute mortality rate scale. The variable “age-spline” was equal to 0 if mid-decadal 

age was<50 (i.e., younger than the 45-54 year-old cohort age, i.e., age<45), and equal to the mid-

decadal age for older ages. 
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Sensitivity analysis included models with polynomial fit (i.e., quadratic and cubic fit). These 

models fit the data better than the linear models, but much worse than the log-linear and log-

linear with spline models. 

The cohort-mid-age variable was centered to facilitate computational convergence of the model. 

For most models computational convergence of models was achieved without centering the 

cohort-mid-age variable. The regression coefficient estimates were identical for centered and 

non-centered models. 

 


