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Detailed description of the mathematical model  

Model Assumptions 
Consider neutral insertions of retroelements in generation t = s (t = time measured in generations). 

We take into account three different events: 

⋅ ω1 - an orthologous retroelement is present in a genomic locus of A and B but absent in C;  

⋅ ω2 - an orthologous retroelement is present in a genomic locus of A and C but absent in B; 

⋅ ω3 - an orthologous retroelement is present in a genomic locus of B and C but absent in A. 

We denote: )(),(),( 321 sqsqsq  as the probabilities of these events, 

)(),(),( 321 sss µµµ   as the numbers of these events, 

)(sν  as the number of all insertions of retroelements in generation s. 

Then, when we assume that all insertions are independent events, we have a scheme of independent 

trials with four outcomes distributed multinomially: 
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For a shorter form of the equations, the dependence of probabilities on s is omitted. Hence, 

according to the total probability formula: 
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If the probability of new insertions of retroelements in the genome of each particular 

member of the population )(sα  is small, then we can assume that )(sν  is a Poisson distributed 

random variable with a mean n0 = n0(s), proportional to the effective population size )(sN , that is: 
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where      )()(0 ssNn α= . 
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therefore, denoting: 

)()()( 0 sqsnsbb jjj ==      (S1.5) 

we will get: 
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It follows that )(),(),( 321 sss µµµ  represent independent, random, Poisson distributed variables with 

the parameters )(),(),( 321 sbsbsb  , respectively. 

Now we consider all possible generations with potential retroposon insertions that later 

become phylogenetically informative. The set of corresponding values of time s we have denoted 

by S. Then the total numbers of retroposon insertions with properties jω : 
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We consider the random variable ηj as the number of events ωj observed in our experiment. 

If their total number: 

 n=++ 321 ηηη       (S1.7) 

is fixed, then, in compliance with the proposed model, the random variables η1, η2, η3  are 

distributed according a polynomial distribution: 
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1. Binary tree 
Under the term C-tree we consider a scenario where at time t0 a common ancestral population 

separated into two isolated branches that no longer interbreed (Fig. 2a). The first branch, at some 

time T1 (t1 = t0 + T1), also separated into two lineages A and B. The second branch forms lineage C. 

We take one certain marker locus (a locus in genomes containing an insertion of a 

retroelement). Denoting with Х(t) its frequency in the population at the time t, using the standard 

Wright-Fisher coalescent model ((Fisher 1922); (Wright 1931)), we can consider Х(t) as a Markov 

process with the transition function ),,,( xtpsu , reflecting the conditional probability density of X(t) 
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for condition X(s) = p. Under diffusion approximation, ),,,( xtpsu  obeys the forward Kolmogorov’s 

equation: 

[ ]uxx
xtNt

u )1(
)(4

1
2

2

−
∂
∂

=
∂
∂

 ,           (S1.10) 

where the initial condition )(),,,( pxxspsu −= δ  is a Dirac delta function, and ( ) 1N t >>  denotes 

the effective population size ((Kimura 1955a)). 

The solution of this equation was first proposed by Kimura and afterwards in a global 

explanation by Tran et al. ((Tran, Hofrichter, and Jost 2013)) (for the case: N(t) = const), and is 

represented in the form of a series including Gegenbauer polynomials. We do not use this solution 

because, for our purposes, it is sufficient to know some moments of distribution of X(t). 

We denote 

∫=
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k     (S1.11) 

as the k-th (conditional) moment of distribution of X(t) about 0. 

Following Kimura (Kimura 1955b) we can write 

ptpsm =),,(1      (S1.12) 

and ),,( tpsmk  is a solution of the next differential equation:  
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Instead of t we introduce the new independent variable  
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),(ττ , as the “drift time”, according to Waxman (Waxman 2011). (S1.14) 

 

Then we can write equation (S1.13) in the form: 
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with an initial condition of: k
k pm =

=0τ . 

We also need the second and third moments. Solving the equation (S1.15) for k = 2 and 

k = 3, and taking into account (S1.12), we obtain: 
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(The same result may be obtained from the work of Kimura (Kimura 1955b) cited above, and also 

by using the solution of the diffusion equation proposed by Tran et al. ((Tran, Hofrichter, and Jost 

2013)) if instead of t, we take the “drift time” τ). 

As it follows from the Kimura notation, the conditional probability that the retroposon 

insertion, with a frequency at generation s equal to p, will be fixed in the population, tends to p with 

∞→t  (the probability of loss approaches 1 – p). 

Consider some retroposon insertions into some loci in generation s < t0. We introduce the 

random vector ( )0 1 0 0 1 1, , where ( ), ( )X X X X t X X t= = . With the fixed arbitrary 

values ( )10, 1,010 ≤≤ xxx , we can evaluate the conditional probabilities of 321 ,, ωωω  accordingly: 
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Then, denoting ( )10 , xxf  as the probability density of the random vector ( )10 , XX , the total 

probability formula will be: 
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and 0 1( , )f x x  transfers to: 

( ) ),,,(),,,(, 11000010 xtxtuxtpsuxxf = ,    (S1.20) 

where  
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Then we obtain: 
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Now, according to (S1.16-S1.17) with p defined by (S1.21) and neglecting the terms of order р2 and 

higher (assuming that 1)( >>tN ) we can write: 
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Recall that 0ts ≤ . Suppose now that 0 1t s t< ≤  (a retroposon insertion occurs on branch 1). 

This marker will not appear in lineage С, hence 0)()( 32 == sqsq . Let us evaluate ( )11 )( ωΡ=sq . 

Noting that ( ) 2
1111 xxX ==Ρ ω , according to the total probability formula we get: 
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Hence we finally can write: 
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(here 10 tst ≤< ). 

To find the parameters, 321 ,, aaa , according to (S1.9): 
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Assuming that the corresponding functions, as s increases by 1 (the transition to the next 

generation), are slowly changing, we replace the summation by an integration over the appropriate 

intervals. Then:  
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which, introducing the notation:  
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can be written: 
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and now, similarly to Kimura (Kimura 1955b; Kimura 1955a), we assume for the all intervals α(t) a 

constant effective population size. Then, with 0ts ≤ : 
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where 000 2 αNn =  is the average number of insertions per generation at the ancestral branch and N0 

is the effective population size. 

Next, with 10 tst ≤< : 
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where 111 2 αNn =  is the average number of insertions per generation at the branch 0-1 and N1 the 

effective population size of this branch. Thus, introducing the function:  
τττ −+−=Φ e1)( ,      (S1.35) 

according to (S1.32), we obtain: 
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Now, following (S1.9): 
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or, denoting 
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2. Ancestral hybridization   
Let us now consider a model that includes ancestral hybridization (Fig. 2e). As in the previous case 

we assume that at time t=t0 the common ancestral population (branch 0) separated into two isolated 

branches. Later, after T1 and T2 generations, subpopulations of each of the two branches separated 

from their parent branches and reproduced with one another by fusion, forming a new branch B. 

The original two separating branches represent lineages A and C. 

The proportions of the two subpopulations in the newly joined population are denoted by γ1 

and γ2 (γ1 + γ2 =1). Then: 
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Consider a retroposon insertion at a specific locus at s < t0. We introduce the random 

vector ( )0 1 2 0 0 1 01 1 2 02 2, , , where ( ), ( ), ( )X X X X X t X X t X X t= = = . Fixing the arbitrary 

values ( )10,, 2,1,0210 ≤≤ xxxx , we can write the conditional probabilities of the events 321 ,, ωωω  
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Then, denoting ( )210 ,, xxxf  as the probability density of the random vector ( )210 ,, XXX , according 

to the total probability formula we get: 
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  0 1 2( , , )f x x x  transfers to: 

( )0 1 2 0 0 0 1 0 0 1 1 2 0 0 2 2, , ( , , , ) ( , , , ) ( , , , ),f x x x u s p t x u t x t x u t x t x=    (S1.43) 

where ),,,(),,,,(),,,,( 2200211001000 xtxtuxtxtuxtpsu  are transitional functions for the respective 

branches. 
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Note that using the relations (S1.12) and (S1.16) we can write:  
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wherein, using (S1.16)-( S1.17) and neglecting the terms of order р2 and higher: 
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(here 0ts ≤ ). 
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Note that when 0,1 21 == γγ  (C-tree (see equation 6 in the Manuscript), Fig 2a) this result 

coincides with (S1.29), and for 1,0 21 == γγ  (A-tree (see equation 8 in the Manuscript), Fig 2b) we 

obtain similar formulas, where )(1 sq  is replaced by )(3 sq , and τ1 is replaced by τ2.  

Suppose now that a retroposon insertion occurs on the branch 0-1 at ),( 10 tts∈ . Then, it will 

not appear in the lineage С, and hence 0)()( 32 == sqsq . We evaluate ( )11 )( ωΡ=sq . Noticing that 

( ) 2
11111 xxX γω ==Ρ , the corresponding result obtained by multiplying the right side of equation 

(S1.28) by γ1. Thus:  
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Processing similarly with the retroposon inserted on branch 0-2, we obtain: 
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Next proceeding as in (S1.29 - S1.36), we can write: 
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Now, according to (S1.9): 
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When either γ1 or γ2 are equal to 0, we obtain an A-tree ((see equation 8 in the Manuscript), Fig 2b) 

or a C-tree ((see equation 6 in the Manuscript), Fig 2a), respectively. 

Note that: 
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If γ1,2 are not equal to 0, 1 2 3 2 and a a a a> >  (accordingly: 1 2 3 2 and  p p p p> > ). In the case of C-

fusion (splits from A and B fuse), р1 will exchange places with р2, and in the case of A-fusion (splits 

from B and C fuse), р3 will exchange places with р2. 

Consider the case:  

( ) ( ) )(1)(1 220110
21 ττ ττ Φ+−=Φ+− −− nnenne     (S1.58) 

(this holds in particular if 21021 , ττ === nnn ). Then: 

( )

( )

( )

( )

( )

1 2

1

2

1 2

3

2 11
3 3 ,

1

1
3 1

1 21
3 3

1

e e
p

p

e e
p

e

τ τ

τ

τ τ

τ γ γ

τ

τ

γ τ γ

τ

− −

−

− −

 − +Φ + 
 =

+Φ

=
+Φ

 + − +Φ 
 =

+Φ

     (S1.59) 
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These equations can also be written as: 

( )

1 2 1 2 2

2

3 2 1 2 2

(1 2 ) ,

1 ,
3 1

(1 2 ) .

p p p

p

p p p

e τ

γ γ

τ

γ γ

−

= − +

=
+Φ

= + −

     (S1.60) 

3. One-directional search 

Now we consider the case when only two events, ω1 and ω2, can be observed. Thus there are only 

two random variables:  η1 and η2. If their total number 

 n=+ 21 ηη                          (S1.61) 

is fixed, then we have a binomial distribution: 

( ) )(,
!!

!, 2121
21

2211
21 nyypp

yy
nyy yy =+===Ρ ηη ,   (S1.62) 

where 

( ).1, 21
21

2
2

21

1
1 =+

+
=

+
= pp

aa
ap

aa
ap     (S1.63) 

In the case of a C-tree, according to (S1.36, 6) 21 aa > , hence 
2
1

1 >p .  

 Similarly for a B-tree (see equation 7 in the Manuscript, Fig. 2b) 21 aa < , therefore 
2
1

1 <p . 

The case of the A-tree (see equation 8 in Manuscript) leads to 
2
1

1 =p , but it is necessary to note 

that the same situation occurs when we have an ABC-tree (see equation10 in the Manuscript, Fig. 

2d) (polytomy). In the case of B-fusion, in accordance with the remark following (S1.57), we also 

have 
2
1

1 >p  and in the case of C-fusion 
2
1

1 <p . However, for A-fusion, the relationship between p1 

and p2 may be arbitrary.   
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