# **Science** Advances

## AAAS

advances.sciencemag.org/cgi/content/full/2/2/e1500975/DC1

## Supplementary Materials for

### The pace of plant community change is accelerating in remnant prairies

Amy O. Alstad, Ellen I. Damschen, Thomas J. Givnish, John A. Harrington, Mark K. Leach, David A. Rogers, Donald M. Waller

> Published 19 February 2016, *Sci. Adv.* **2**, e1500975 (2016) DOI: 10.1126/sciadv.1500975

#### The PDF file includes:

Fig. S1. Changes in species composition.

Fig. S2. Effect of functional traits on species change.

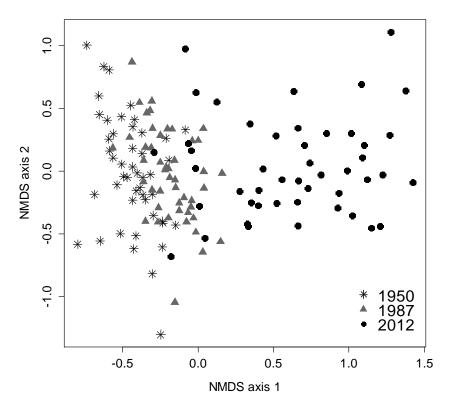

Fig. S3. Distribution of 47 prairie remnants in southern Wisconsin.

Table S1. Results from four generalized linear models examining the role of site characteristics in annual colonization and extinction rates.

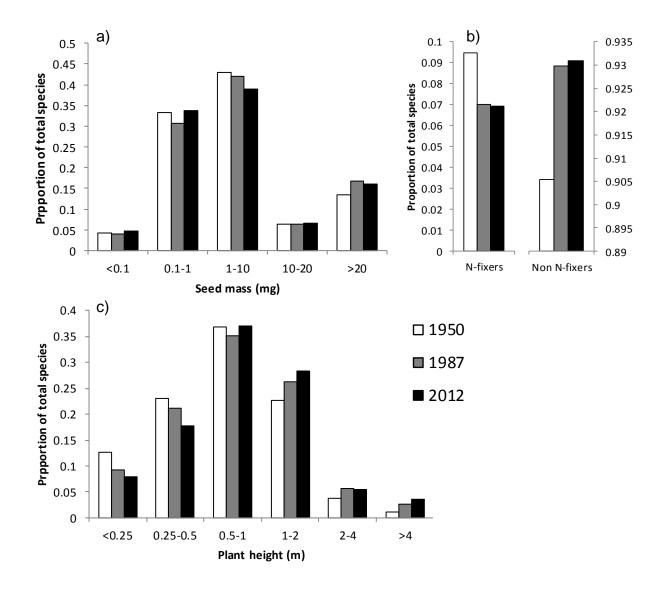
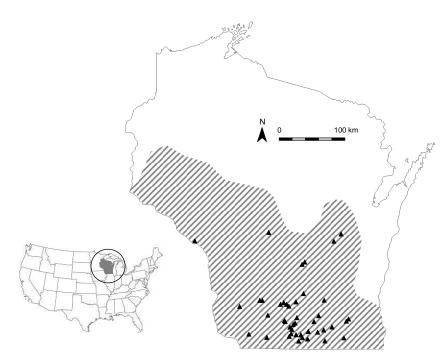

Table S2. Changes in site occupation and net change among surveys as a function of plant traits.

Table S3. Interannual variation in extinctions and colonizations since 1987 for 10 Wisconsin prairie remnants.


**Supplementary Materials** 



**Figure S1**. Changes in species composition. Nonmetric multidimensional scaling (NMDS) ordination of 47 Wisconsin prairie remnants sampled in the 1950s, 1987-88, and 2012. This ordination represents a two-dimensional solution with a final stress of 0.15.



**Figure S2**. Changes in proportion of total species as a function of (A) seed mass, (B) nitrogen fixing ability, and (C) plant height. Classes for plant height and seed size follow those used in the first survey (*4*). For the relevant statistics, see Table S2.



**Figure S3**. Distribution of 47 prairie remnants in southern Wisconsin. All 47 sites have occurrence data from three vegetation surveys in the 1950s, 1987-88, and 2012. The approximate historic extent of prairie habitat in Wisconsin is represented by the shaded area.

**Table S1**. Results from four generalized linear models examining the role of site characteristics in annual colonization and extinction rates. Parameter estimates are not included for the soil continuum index but see Fig. 3 for relationships. Factors that are significant at the p<0.05 level in the given model are in bold text.

|                     |                | 1950-1987                   |       |                 | 1987-2012                   |       |                 |
|---------------------|----------------|-----------------------------|-------|-----------------|-----------------------------|-------|-----------------|
| Response (# spp/yr) | Factor         | Parameter estimate $\pm$ SE | F     | <i>p</i> -value | Parameter estimate $\pm$ SE | F     | <i>p</i> -value |
| Extinction Rate     | Soil continuum | -                           | 2.69  | 0.044           | -                           | 0.91  | 0.47            |
|                     | index          |                             |       |                 |                             |       |                 |
|                     | Fire           | $0.0060 \pm 0.024$          | 0.060 | 0.80            | $-0.024 \pm 0.0084$         | 8.064 | 0.0076          |
|                     | Patch area     | $-0.077 \pm 0.096$          | 0.42  | 0.42            | $-0.20 \pm 0.062$           | 10.76 | 0.0022          |
| Colonization Rate   | Soil continuum | -                           | 2.80  | 0.038           | -                           | 3.61  | 0.013           |
|                     | index          |                             |       |                 |                             |       |                 |
|                     | Fire           | $-0.012 \pm 0.016$          | 0.56  | 0.46            | $0.012 \pm 0.0055$          | 5.11  | 0.029           |
|                     | Patch area     | $-0.016 \pm 0.063$          | 0.063 | 0.80            | $0.072 \pm 0.040$           | 3.16  | 0.083           |

**Table S2**. Changes in site occupation and net change among surveys as a function of plant traits. Our net change parameter, which included recruitment to be conservative, was calculated as follows: [(# original occurrences - (# persisting + # colonizations))/# original occurrences]. McNemar's change test was used to determine if changes in occurrence were significant for each functional trait class; bolded rows indicate changes that were significant at the *p*<0.05 level.

| 1950-1987    |           |       |            |                  | 1987-2012          |           |       |            |                  |                    |
|--------------|-----------|-------|------------|------------------|--------------------|-----------|-------|------------|------------------|--------------------|
| Trait        | #Original | #Lost | #Recruited | Net $\Delta$ (%) | $\chi^2$ , p-value | #Original | #Lost | #Recruited | Net $\Delta$ (%) | $\chi^2$ , p-value |
| N-fixing     | -         | -     | -          | -                | -                  |           | -     | -          | -                | -                  |
| Fixers       | 263       | 100   | 35         | -24.71           | 30.34, <0.001      | 198       | 152   | 119        | -16.67           | 3.78, 0.052        |
| Non-fixers   | 2519      | 745   | 847        | 4.05             | 6.41, 0.011        | 2621      | 1494  | 1096       | -15.19           | 60.85, <0.001      |
| Seed size (n | ng)       |       |            |                  |                    |           |       |            |                  |                    |
| < 0.1        | 104       | 58    | 43         | -14.42           | 1.94, 0.16         | 89        | 56    | 62         | 6.74             | 0.21, 0.65         |
| 0.1-1        | 861       | 315   | 248        | -7.78            | 7.74, 0.0054       | 794       | 484   | 413        | -8.94            | 5.46, 0.019        |
| 1-10         | 1112      | 275   | 255        | -1.80            | 0.68, 0.41         | 1092      | 619   | 346        | -28.30           | 76.67, <0.001      |
| 10-20        | 138       | 53    | 36         | -12.32           | 2.88, 0.089        | 121       | 77    | 67         | -8.26            | 0.56, 0.45         |
| >20          | 234       | 52    | 90         | 16.23            | 9.64, 0.002        | 272       | 145   | 85         | -22.06           | 15.13, <0.001      |
| Plant heigh  | t (m)     |       |            |                  |                    |           |       |            |                  |                    |
| < 0.25       | 351       | 175   | 83         | -26.21           | 32.10, <0.001      | 259       | 181   | 111        | -27.03           | 16.30, <0.001      |
| 0.25-0.5     | 638       | 233   | 187        | -7.21            | 4.82, 0.028        | 592       | 387   | 206        | -29.05           | 50.07, <0.001      |
| 0.5-1        | 1018      | 290   | 261        | -2.85            | 1.42, 0.23         | 989       | 572   | 461        | -11.22           | 24.31, <0.001      |
| 1-2          | 630       | 125   | 232        | 16.98            | 31.47, <0.001      | 737       | 382   | 316        | -8.96            | 6.05, 0.014        |
| 2-4          | 102       | 11    | 65         | 52.94            | 36.96, <0.001      | 156       | 88    | 60         | -17.95           | 4.93, 0.026        |
| >4           | 30        | 2     | 48         | 153.33           | 40.50, <0.001      | 76        | 35    | 42         | 9.21             | 0.47, 0.59         |

**Table S3**. Interannual variation in extinctions and colonizations since 1987 for 10 Wisconsin prairie remnants. Data for 2012 are those presented in the manuscript, and data for 2015 are those gathered to assess the magnitude of inter-annual variation. Each row represents a study site. Across all ten sites that we resurveyed, we documented a total of seven more extinctions and 23 fewer colonizations than we found with the original 2012 data. This represents a 1.75% decrease in the annual rate of extinctions, and a 8.95% increase in the annual rate of colonizations. This increase in colonization translates to annual gains of 1.02 species year with these new data compared to 0.93 species per year with the original data.

| Extin | ctions | Colonizations |      |  |  |
|-------|--------|---------------|------|--|--|
| 2012  | 2015   | 2012          | 2015 |  |  |
| 57    | 57     | 25            | 23   |  |  |
| 36    | 37     | 27            | 24   |  |  |
| 34    | 33     | 24            | 23   |  |  |
| 34    | 35     | 20            | 19   |  |  |
| 54    | 54     | 31            | 26   |  |  |
| 47    | 48     | 31            | 29   |  |  |
| 3     | 6      | 30            | 28   |  |  |
| 32    | 34     | 26            | 25   |  |  |
| 50    | 50     | 16            | 14   |  |  |
| 46    | 46     | 27            | 23   |  |  |