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S1. Model Details

The membrane and cortex are represented by continuous one-dimensional curves immersed in
a two-dimensional fluid domain. The cytoskeleton is represented by a two-dimensional structure
immersed in the fluid. Our model is formulated using the immersed boundary (IB) method, where
structures are represented in a moving, Lagrangian coordinate system, while fluid variables are
located on a fixed, Eulerian coordinate system [1]. A surface force density on on an immersed
structure is communicated to the fluid coordinates as follows,

f = SF =

∫
Γ

F (s, t)δ(x−X(s, t)) ds, (S1.1)

where s ∈ Γ is the material coordinate and X(s, t) denotes the physical position of material point
s at time t. The interpolation operator is given by

U = S∗u =

∫
Ω

u(x, t)δ(x−X(s, t))dx, (S1.2)

where Ω represents the fluid domain.
The Lagrangian drag force density on the cortex due to the fluid is

F cortex
drag = ξ (S∗u−U cortex) , (S1.3)

where ξ is a drag coefficient inversely proportional to cortical permeability. Similarly, the drag force
density on the cytoskeleton is

F cyto
drag =

µ

κ
(S∗ u−U cyto) , (S1.4)

where κ is the permeability of the cytoskeleton.
The Lagrangian elastic force densities on the membrane and cortex are computed by

F i
elastic =

∂

∂s
(Ti τi) , (S1.5)

where Ti is tension and τi is the tangent vector to the curve Γi = Xi(s, t), i = mem, cortex. In
reference arc length coordinates, tension is given by

Ti = γi + ki

(∣∣∣∂Xi

∂s

∣∣∣− 1

)
, (S1.6)

which describes an elastic material with stiffness ki with an additional resting tension γi. Although
a pure bilipid membrane is inextensible, the cell membrane surface area can increase as a result
of unfurling and extocytosis. For simplicity, we include a stretching term in addition to a surface
tension term to take these effects into account and model the membrane as a linearly elastic material.

Membrane-cortex adhesion is modeled by elastic springs attaching the membrane to the cortex
with a force density given by

F
mem/cortex
adhesion = kadh

(
|Xmem −Xcortex|

) Xmem −Xcortex

|Xmem −Xcortex|
. (S1.7)

The adhesion force density on the membrane is the opposite of the corresponding force density on
the cortex, with the proper scaling to ensure that the two forces balance,∫

Ω

SF mem/cortex
adhesion dx+

∫
Ω

SF cortex/mem
adhesion dx = 0. (S1.8)

1



Given the stiffness coefficient k
mem/cortex
adh in Table S1, the corresponding stiffness coefficient for the

cortex is obtained by k
cortex/mem
adh = k

mem/cortex
adh dsmem/dscortex, where dsi represents the arc length

differential in reference coordinates. Similarly, for cortex-cytoskeleton adhesion, given the parameter

k
cortex/cyto
adh in Table S1, we have k

cyto/cortex
adh = k

cortex/cyto
adh dscortex/dAcyto, where dAcyto represents

the reference area differential of the cytoskeleton.
The cytoskeleton is modeled as a porous neo-Hookean elastic structure. Elastic forces are com-

puted using the energy functional-based version of the IB method proposed in [2]. The elastic
properties are characterized by a strain energy W = W (A), where A = ∂X/∂s is the network
deformation gradient tensor, and X(s, t) is the current location of the cytoskeleton as a function of
its Lagrangian coordinate s. The strain energy of a neo-Hookean elastic material is

W (A) =
µE

2

(
tr(AAT )

J2/n
− n

)
+
G

2
(J − 1)

2
, (S1.9)

where µE denotes the elastic shear modulus, G = 2µE/n + λE is the elastic bulk modulus, λE is
the second Lamé constant, J = detA is the determinant of the deformation gradient tensor, and n
represents the spatial dimension of the problem. We choose λE = µE so that G = 2µE in 2D.

The Lagrangian elastic force density is given by the variational derivative of the energy: F cyto
elastic =

−δE/δX, where E is the total energy of the system E =
∫

Γ
Wds. Our model formulation with this

approach for computing elastic forces was shown to match the classical equations of poroelasticity
in [3].

The membrane moves with the fluid velocity, and the velocities of the cortex and cytoskeleton
are given by Eqs. (7) and (8),

dXmem

dt
= S∗u = U , (S1.10)

dXcortex

dt
= U cortex =

1

ξ

(
F cortex

elastic + F
cortex/mem
adhesion + F

cortex/cyto
adhesion

)
+U , (S1.11)

dXcyto

dt
= U cyto =

κ

µ

(
F cyto

elastic + F
cyto/cortex
adhesion

)
+U . (S1.12)

Discussion of model parameters

In [4] we explored the effects of altering membrane and cortex stiffness. These mechanical pa-
rameters primarily affect the shape of the resulting bleb rather than the dynamics of bleb expansion.
Increasing (decreasing) membrane stiffness and tension will result in smaller (larger) blebs. Altering
membrane stiffness does not significantly affect bleb expansion dynamics, but has a mild effect on
the final bleb size, i.e. decreasing membrane stiffness results in slightly larger steady state bleb size.
Increasing (decreasing) cortical tension will result in higher (lower) intracellular pressure and larger
(smaller) blebs. Decreasing cortical stiffness will result in unphysical bleb shapes.

The stiffness coefficient for adhesion between the membrane and cortex must be sufficiently stiff to
obtain a realistic bleb morphology. Decreasing this value will results in a broader (and less circular)
bleb because of separation of the cortex and membrane near the edge of the bleb neck. Increasing
the value above that used in the model has a negligible effect on bleb morphology. Similarly, the
value of the stiffness coefficient for adhesion between the cortex and cytoskeleton was chosen to be
large enough so that steady state bleb size was independent of its value.

We follow the analysis in [4] to relate cortical drag in the model to both volume fraction and
average pore size of the cortex. In [4], we showed that the permeability (κ) and drag coefficient (ξ)
were related by κ = µa/ξ, where a is the thickness of the cortex and µ is the viscosity of the cytosol.
Using the values a = 0.1 µm, µ = 0.01 Pa·s, and ξ = 10 pN/µm3, the permeability of the cortex
is κ = 10−4 µm2, which is in line with the values of cytoplasmic permeability explored in the main
text. Following [4] and assuming the typical radius of an actin bundle in the cortex is λ = 10 nm,
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Symbol Quantity Value
rcortex Cortex radius 9.99 µm

k
mem/cortex
adh Membrane/cortex adhesion 4000 pN/µm3

stiffness coefficient

k
cortex/cyto
adh Cortex/cytoskeleton adhesion 2.5 · 103 pN/µm3

stiffness coefficient

Table S1: Additional model parameters.

we estimate that this permeability corresponds to a cortical volume fraction of φ = 0.164 and an
average pore size 20.6 nm.

An average pore size of 20.6 nm is in agreement with the low end of estimates of 20 − 200
nm taken from scanning electron micrographs of the cortex from [5]. If we decreased the value of
cortical drag (increased cortical permeability), we would obtain a value for cortical pore size that
would better agree with experimental data from [5]. However, we note that using this value of
cortical permeability (10−4 µm2) results in a bleb expansion time of less than 1 s in the viscous
fluid model of the cytoplasm from [4]. Therefore, decreasing cortical drag would not significantly
affect bleb expansion dynamics in the poroelastic model because the forces from cytoplasmic drag
and elasticity are the dominant forces that determine bleb expansion dynamics.

S2. Numerical Methods

We use a fractional stepping approach that allows for the fluid and structure updates to proceed
sequentially as described in [3]. Given the current position of the structure, the system is advanced
in time as follows:

1. Compute elastic forces based on the current membrane, cortex, and cytoskeleton configuration
(Xn

i = Xi(s, t
n), where i denotes the structure: membrane, cortex, or cytoskeleton) using the

constitutive laws described in Section S1.

2. Spread the force densities onto nearby Eulerian points using Eq. (S1.1).

3. Solve the forced Stokes equations to obtain the fluid velocity u.

4. Interpolate the fluid velocity to the structure using Eq. (S1.2) to obtain U .

5. Compute the porous structure velocities by Eqs. (7) and (8), and update the structure by

X n+1
i = X n

i + ∆t

(
1

ζ

∑
F i +U

)
, (S2.1)

where ζ indicates the drag coefficient of the cortex or cytoskeleton, and the forces acting on
the respective structure denoted by

∑
F i are in Eqs. (7) and (8). The membrane is updated

by the fluid velocity.

For the simulations presented in this manuscript, we use periodic boundary conditions on the Eule-
rian domain and a Fourier-spectral method to solve the Stokes equations.

Because of the large pressure drop across the cell membrane, unphysical spurious velocity is
introduced when using standard approximate δ functions, such as Peskin’s approximate δ function
[6]. Therefore, we construct a more accurate approximation to the δ function directly in Fourier
space which results in more accurate solutions. Note that in Fourier space, the operator in Eq.
(S1.1) can be written as

f̂k =

∫
Γ

F (X(s)) exp (ik ·X) ds. (S2.2)

Because evaluating the discretized version of this integral is computationally expensive, we use the
nonuniform fast Fourier transform (NUFFT) described in [7] to approximate the Fourier transform
(FT) of the spread force density. We also use the acceleration techniques described in [7] in our
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Symbol Quantity Value
L Fluid computational domain size 30 µm
M Mesh size 64
∆x Fluid grid step size L
∆s Initial structure grid step size ∆x/2 (boundary) and ∆x (interior)
∆t Time step size 1 · 10−5 − 7 · 10−5 s
Mr Oversampled mesh size for NUFFT 2M
Msp NUFFT spread width 8
τ NUFFT parameter 12/M2

Table S2: Computational parameters.

algorithms for the spreading and interpolation operators. The computational parameters Mr, Msp,
and τ are used in the algorithm described in [7].

Before solving Stokes equation, we filter the forces from Eq. (S2.2) using a second-order raised
cosine filter [8],

σ(k) =
1

2

(
1 + cos

(
2πk

N

))
. (S2.3)

Filtering is necessary to remove the Gibbs phenomenon that would otherwise occur in the pressure
field.

Important parameters for the computational methods are listed in Table S2. We used an adaptive
mesh to model the cytoskeleton. The unstructured mesh is more refined near the boundary with
approximately 2 Lagrangian points per Eulerian grid cell and 1 Lagrangian point per Eulerian grid
cell in the interior (Fig. S1). We used distmesh to generate the unstructured mesh [9].

Xcyto(s, t)

 

Figure S1: Schematic for the unstructured grid representing the cytoskeleton and the Eulerian grid. The unstructured
grid has a spacing of approximately ∆x/2 near the boundary and ∆x in the interior.

S3. Dynamics of cytoskeletal compression

The elastic forces of the cytoskeleton are computed from the variation of the total energy as
described in Section S1. The term G/2(J − 1)2 in the strain energy density function, Eq. (S1.9),
accounts for the energy of volumetric change from compression and expansion. Local volume changes
can be quantified by the strain (J −1), and they give rise to an isotropic stress of strength G(J −1).
During blebbing, the cytoskeleton is compressed (J < 1), and one can identify −G(J − 1) as a
cytoskeletal pressure acting against compressive stresses during bleb expansion.

Figure S2a shows snapshots of this cytoskeletal pressure for the same simulation presented in
Fig. 2b in the main text. Shortly after after bleb initiation, a localized compression develops near
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the nucleation site, and then on a longer time scale a compression propagates across the cell and
approaches a steady state spatial profile. These dynamics of elastic stress are like those of the
pressure (shown in Fig. 2b).

At steady state the compression is approximately spatially uniform throughout much of the
cell away from the nucleation site. This uniform compression results in a uniform cytoskeleton
pressure that relieves intracellular pressure. Figs. S2bc show slices of the cytoskeletal pressure and
the intracellular pressure along the middle of the cell, respectively. By t = 8 s, at the side of the cell
away from the bleb, we see that the pressure has dropped by about 15 Pa, while the cytoskeletal
pressure has risen by about 13.5 Pa. Thus most of the pressure dropped is being balanced by the
compression of the cytoskeleton. The difference of 1.5 Pa is comparable to the pressure drop we
observed in the fluid model; see Fig. 2c in the main text.
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Figure S2: Membrane position and elastic pressure in the cytoskeleton −G(J − 1) at several time values in the
bleb model (a) when permeability κ = 10−3 µm2 and G = 500 Pa. (b) The horizontal elastic pressure profile across
the center of the cell (when the vertical axis equals 15 µm in (a)) at several time values and (c) corresponding fluid
pressure profiles across the center of the cell.

S4. Two bleb simulations with a fluid cytoplasm

We simulate two bleb experiments where the cytoplasm is modeled as a viscous fluid (κ = ∞).
All parameters are the same as those given for the fluid model of the cytoplasm in the results section.
In particular, membrane stiffness was increased to 100 pN/µm to control bleb growth. Following the
computational setup for the two-bleb experiments in the results, the second bleb is initiated close
to the first bleb (at a 90◦ angle) and across the cell from the first bleb (at a 180◦ angle). Figure
S3 shows bleb size over time for both two bleb experiments. The first bleb expands, then shrinks
as pressure is relieved by the second bleb’s initiation and expansion. The first and second bleb size
time courses are very similar both configurations.

S5. Reduced model

Consider a cylindrical tube of length L filled with a low-volume-fraction, contractile poroelastic
network (see Fig. S4). At the bottom of the tube, the network is attached to an impermeable wall
where its velocity and displacement are zero. The top of the tube is free to deform, and its motion
is determined by a stress balance at the interface.
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Figure S3: Bleb size over time when the second bleb is initiated 5 seconds after the first one and the cytoplasm is
modeled as a viscous fluid. The second bleb is initiated close to the first bleb (at a 90◦ angle) and across the cell from
the first bleb (at a 180◦ angle)
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Figure S4: A cylindrical tube of length L filled with a low-volume-fraction, contractile poroelastic network fixed at
z = 0 and free to move at the other end.
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We assume that the deformation is only in the axial direction. Let q(z, t) denote the displacement
of the network. We assume small deformation so that the velocity of the network is qt and the elastic
stress is Gqz, where G is the bulk modulus. Because of incompressibility, the fluid velocity is zero,
and so the drag force on the network is simply −(µ/κ)qt. The displacement is zero at the attached
boundary (z = 0); on the free boundary (z = L) the elastic stress is balanced by the contractile
stress (σ). We assume that at time zero, the network is experiences no deformation. The system of
equations describing this problem is

−µ
κ
qt +Gqzz = 0 (S5.1)

q(0, t) = 0 (S5.2)

Gqz(L, t) + σ = 0 (S5.3)

q(z, 0) = 0. (S5.4)

The steady-state solution is qss = −(σ/G)z. At steady-state the network is compressed and the
elastic force balances the applied contraction; that is, and total stress (elastic plus contractile) is
uniformly zero.

We nondimensionalize the equations by scaling space by the tube size L, displacement by steady-
state value at the free end (Lσ/G), and time by the diffusion time scale (L2µ/(Gκ)). This gives the
parameter-free dimensionless system of equations

qt = qzz (S5.5)

q(0, t) = 0 (S5.6)

qz(1, t) = −1 (S5.7)

q(z, 0) = 0. (S5.8)

In dimensionless variables, the diffusion time scale is t = 1, which we interpret as the characteristic
timescale to approach equilibrium.

The steady-sate solution is qss(z) = −z. Let q(z, t) = w(z, t) + qss(z), and so w satisfies

wt = wzz (S5.9)

w(0, t) = 0 (S5.10)

wz(1, t) = 0 (S5.11)

w(z, 0) = z. (S5.12)

The solution can be written as

w(z, t) =

∞∑
k=0

Ak exp
(
−λ2

kt
)

sin (λkz) , (S5.13)

where

λk =
π(1 + 2k)

2
, (S5.14)

and

Ak = (−1)k
2

λ2
k

. (S5.15)

In the blebbing model, where the cortex and the membrane are attached, pressure balances the
cytoskeletal stresses placed on the membrane. Analogously we examine how the stresses of the free
boundary affect the stresses on the attached boundary in response to the displacement on the free
boundary. The stress applied to the wall at z = 0 is Fwall = qz(0, t) + 1 = wz(0, t). This function is
plotted in Fig. S5 (left). By time 1 (the diffusive time scale), the wall stress has dropped by almost
90% of its initial value. Figure S5 (right) shows the relative change of the wall stress over the first
0.1 time units. What is very interesting to note is that by time 0.1, the wall force has dropped
by about 5%. This means that, on a time scale which is an order of magnitude shorter than the
diffusive time scale, there is a significant change in stress on the opposite side of the tube.
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Figure S5: Left: Stress on the stationary wall over time. Right: Relative change of the wall stress over the first 0.1
of time.
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