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A test for seasonality of events with a variable
population at risk*
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Walter, S. D. and Elwood, J. M. (1975). British Journal of Preventive and Social Medicine, 29,
18-21. A test for seasonality of events with a variable population at risk. A statistical
significance test to detect seasonality of epidemiological events is described. The method
is similar to that of Edwards, but makes it possible to allow for an arbitrary pattern of vari-
ation in the population at risk, and also for the unequal lengths of time sectors of a cycle of
seasons (e.g., months of a year). From the test it is possible to estimate the amplitude of
seasonal variation and the time at which the maximum occurs in a postulated simple harmonic
fluctuation; the adequacy of the description of the data by a curve of this kind may be evaluated
using a goodness-of-fit test. A numerical example of the calculations is given using some
anencephalus data, and the results are compared with those of alternative tests.

The description of incidence rates in terms of
seasonal variation or cyclic trends is an important
objective in many epidemiological problems, and
the use of statistical tests to detect such variation
is widespread; in particular, the test proposed by
Edwards (1961) has occupied a central place
in analyses of this kind, having been applied to a
wide variety of epidemiological data, and also in
other disciplines. The test has been criticized by
Wehrung and Hay (1970) for being sensitive to
occasional extreme values in the data, and a
non-parametric alternative test has been suggested
(Hewitt et al., 1971) when the sample size is small.
A further limitation of Edwards' test is that it
does not take account of the size of the population
at risk, when it is usually seasonality of rates
rather than pure numbers which is of interest to
epidemiologists. Examples of problems where the
variable population at risk is a consideration are
provided by the analysis ofcongenital malformations
with a seasonably variable number of total births,
or the incidence of postoperative deaths for an
elective surgical procedure demonstrating seasonal
variation because of hospital administrative arrange-
ments. Making allowances for this factor is impor-
tant in a statistical evaluation of seasonality as may
be seen by two extreme examples: first, supposing

that a cyclic trend of disease events was in phase
with the trend for the population at risk (i.e., the
maxima occur at approximately the same time),
then a significant cyclic trend estimated solely
from the numbers of events might have been
spuriously caused by the variation in population;
second, if the two trends were completely out of
phase, a true cyclic variation in rates may be
masked by the cancelling effect of population.
Although Edwards suggests the use of correction

factors to adjust his test for variable populations
at risk, it is proposed here to extend the method
somewhat more rigorously. A further generalization
will be in the use of time sectors (e.g., months of
the year) which are not necessarily equal, as is
required by Edwards' formulation. An illustrative
example is given using some data on anencephalus.

METHODOLOGY
We suppose that within a certain time span

(e.g., a year) there are k sectors (e.g., 12 months),
and that in sector i there are ni events (e.g.,
congenital malformations) from a population at risk
of size ml (e.g., total births); the total number of
events is N = En, and the total population at risk
is M = Imi. Following Edwards, we represent
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If we further suppose that the variance of
Vn, is approximately i, and again replace ni by its
expected value in W, we obtain from (1) that the
variances of the coordinates of the sample centre
of gravity are

Var (x) = a2 = I i COS2 01/[E V(Nm/M)]2
x i

and

Var () = a2 = *i Sin2 0,/[Z i/(Nmi/M)Y2

On the assumption that x and y are normally
distributed, we may take as a test statistic the
quantity

(/x-Rt;j2
xax /

+ (i;- )2 (2)

FIGUE. Typical components of moments about orthogonal axes
OA and OB.

the data by weights i/ni placed around a unit
circle at points corresponding to the sector mid-
points at angles Oi to an arbitrary diameter (e.g.,
OA, the diameter through 1 January; see Figure).
The moment about this diameter of all the weights
is si/n, Sin Oi, and also considering the moment

i
about the orthogonal diameter, the sample centre
of gravity of the system may be seen to be (x, y)
where

k
x = I Vin, Cos 0O/W;

i=1

k (1)
y= Vi/n Sin Oi/W

i=1

and where W = ; i/n:, the total weight. On the
null hypothesis, the expected number of events in a
sector is proportional to the population at risk
in that sector, i.e., E(n,) = Nmi/M. We will
suppose that the sample is large enough that to
calculate the expected values of x and y, we may
replace ni by its expectation everywhere in (1)
and obtain
E (x) =" =L: i/(Nm,/M) Cos 0,/L V(Nmrn/M)

x i i

=1 iVmj Cos Oi/i/rvm
i i

and similarly
E (y)= = i/Vmj Sin 01/s Vmi

y i i

which on the null hypothesis is distributed as x2
with 2 d.f. The distance d of the sample centre of
gravity from its null expectation is given by

d2 = ( - j)2 + (y-,)2 (3)

If it is required to fit a simple harmonic trend
to the data, we may suppose that the expected
frequency in sector i is proportional to

ci = ml[1 + a Cos (0, - 0*)];

a is a measure of the amplitude of the cyclic
variation, and 0* gives the direction of the maxi-
mum rate, which may be estimated as

0* = Tan-1y - Ay
\ x 11x/

(4)

If we place equal weights of wlk (where w is a
constant) at angles 0 and radii

ri - v/ mik [I + a Cos (0i - 0*)]/M }
we may derive

wd = F ri Cos (0i- 0*) wlk
i

(5)

If the ri's are expanded as far as terms in a (which is
presumed small), and equation (5) is rearranged,
we may estimate a as

a = 2(dV (kM)-E i/m Cos (01 - 0*)] (6)a~~%
E MI Cos2 (o -0*)(6
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In the case of = 2xi/k, mi Mlk, i = 1, 2, . . . k,
it may be shown that j-x p= = 0, and that
(2), (4) and (6) reduce to the corresponding
statistics of Edwards' test, which is a special
case of this more general formulation. The
argument of Smith (1961) concerning the
non-independence of the ni in Edwards' test may be
extended to this new method. When the sample
size is small, the test of Hewitt et al. may be a
preferable alternative, using ranked rates rather
than numbers of observations to take account
of population size seasonality, subject to the
requirement that at least six months have a non-zero
number of observations. However, if the popu-
lations at risk vary substantially, the implied
heteroscedasticity of the associated rates may affect
the null distribution of the statistic used in Hewitt's
test; further simulation to establish the null
distribution would be required for specific problems
of this type.
The adequacy of the description of the data

afforded by a simple harmonic curve may be
evaluated by a goodness-of-fit test using a further
X2 statistic. If expected frequencies ni, are calculated
by

ni, = Ncill ci,

then under the usual assumptions, the statistic

7- (ni -ni,)2 Ini, (7)

has a x2 distribution with (k - 1) d.f. Wehrungand
Hay (1970) describe a hypothetical example where
the event frequency is constant over all months
except one, where a threefold increase is observed,
and Edwards' test shows a significant departure

from the null hypothesis; a x2 test using (7)
shows that these data are quite inappropriately
described by a simple harmonic curve, and we
therefore do not feel that counter-examples of this
kind constitute a substantial objection to the use
of this test.

NULMERICAL EXAMPLE
In Table I are given monthly frequencies of

cases of anencephalus and total births for Canada
in the period 1954-62 (Elwood, 1975). A cursory
inspection of the data reveals a distinct general
excess of total births during the summer months,
whereas the anencephalus cases demonstrate no
consistent seasonal pattern.
The various statistical tests discussed in the

previous section were applied to these data, and the
results are given in Table II. Edwards' method pro-
duces a test statistic of 0-80, which is certainly not
significant assuming a x2 distribution on 2 d.f.; the
estimated maximum incidence rate occurs at
0* =-18-8°, i.e., in mid-December. Results
from the test proposed above are given as tests
B and C of Table II, the former assuming months
to be of equal length, and the latter using exact
month lengths; the parameters d, 0* and a of the
simple harmonic curve were estimated from
equations (3), (4), and (6) respectively. The use of
exact Oi values made very little difference to the
conclusions as compared with test B with equally
spaced Oi values; the X2 statistic of test B was
12-48, indicating a deviation from the null hypo-
thesis of constant rates significant at the 0-5%
level, with an estimated maximum occurring at
0* = -7 40, i.e., in late December. For simplicity,
in test C the length of February was taken as

TABLE I
ANENCEPHALUS AND TOTAL BIRTH FREQUENCIES BY MONTH, CANADA, 1954-62

Total Births Anencephalus Expected Frequencies
(mi) Cases (n.) Monthly Ranking

Month (i) (ii) of Rates

January 340,797 468 430*9 434-6 12
February .. .. 318,319 399 427*9 398*7 8
March .. .. 363,626 471 423-9 443-2 10
April .. .. 359,689 437 420-3 424-9 6
May .. .. 373,878 376 418-0 430-4 1
June .. 361,290 410 417-5 410-6 3
July .. .. 368,867 399 419-1 420-9 2
August .. .. 358,531 472 422-2 417*4 11
September .. 363,551 418 426*1 436-0 4
October .. 352,173 448 429*8 435S5 9
Noyember .. 331,964 409 432*1 420e4 7
December .. 336,894 397 432-5 431*4 5
Total .. 4,229,579 5,104 5,103*9 5,104-0

(i) Frequencies proportional to I + a Cos (ei - 0*), with a 0-01766, 0* = - 18 8°, Oi + n/12 = 2ni/12 (Table II, test A)
X2 Goodness-of-fit statistic (7) = 27 -24 (P < 0-005)

(ii) Frequencies proportional to m,[l + a Cos (Oi - 0*)1, with a = 0-06014, 0* = - 81°, Oi's exact (Table II, test C)
X2 Goodness-of-fit statistic (7) = 23-97 (P < 0 -05)
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RESULTS OF VARIOUS SIGNIFICANCES TESTS
TALE II

FOR SIMPLE HARMONIC TREND IN ANENCEPHALUS INCIDENCE

Estimated Parameters Value of

Test d a Test Statistic Significance

A Edwards (1961), using case
frequencies .. 0O0004415 0*01766 -18*8° 0O801 P < 0*7

B Walter and Elwood (1975),
with Oi + 2n/24 = 2ni/12 0-01748 0-07048 -7-40 12.482 P < 0-005

C Walter and Elwood (1975),
with exact .. .. 0O01746 0*06014 _ 8*1° 12.472 P < 0*005

D Edwards (1961), using adjusted
frequencies .. 0-01733 0-06933 -6-90 12-271 P < 0 005

E Hewitt et al.(1971) .. .. | _ - 513 P < 0 3

Statistic==a2N
Whaving null distribution of x2 with 2 d.f.

2 Statistic given by equation (2) J
3 Largest rank sum of rates for any six-month segment of year; value 51 corresponds to period October-March.

28j days and a total year length of 3651 days.
To be even more correct we should have taken
February to have a length of 28 + 2/9 days with
a similar adjustment to the year length to take
account of the exact number of leap years occurring
in the time period under study; in practice, this
refinement makes so little difference to the con-
clusions that it was decided not to incorporate this
additional complexity into the general computer
program used for these analyses.

Expected frequencies were calculated for the
best simple harmonic curves given by tests A and C
(see Table I), and these were then compared with the
observed frequencies using the x2 goodness-of-fit
test given by equation (7). Although both X2
statistics indicate significant departures from the
fitted curves, that for Edwards' curve is somewhat
larger, showing a rather poorer description of
the data than that given by the test proposed here. A
decomposition of the statistic corresponding to
test C shows that over half the total of 23-97
comes from a large deficit of anencephalics in
May and a large excess in August, but that
otherwise the observed and expected frequencies
are reasonably close.

Several previous authors have employed correc-
tion factors when using Edwards' test. One such
possibility in the present example would be to
replace the ni by nij - c ni M/kmi, where c is a
scale factor such that £ni' = N; the results of such a
test are given as test D in Table II. Although the
results are very similar to those of tests B and C,
we feel that the latter are preferable as they have a
less heuristic or empirical basis; it is quite possible
that with smaller samples, the differences between
the results of tests C and D would be somewhat
greater than in the present example.

The non-parametric test of Hewitt et al. (1971)
applied to these data gives a maximum rank sum
for the monthly rates as 51 for the six-month
period October to March; this value is not significant
(test E, Table II). With a substantial amount of
data, such as is available here, this test will
probably have low power to detect a seasonal
trend, unless it is fairly marked (i.e., has a large
amplitude) and consistent. Further, this test does
not allow one to estimate parameters of the simple
harmonic curve even if a significant departure from
the null hypothesis is indicated. On the other
hand, the argument concerning the differences
between the distributions of x2 and the Edwards'
test statistic may also apply to the test proposed
here; thus when the sample size is small (say
N < 50), caution should be exercised in the
interpretation of the test results, and a non-
parametric approach may be a preferable alterna-
tive.
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