Long genes and genes with multiple splice variants are enriched in pathways linked to cancer and other multigenic diseases

Aleksandr B. Sahakyan^{1,2} and Shankar Balasubramanian^{1,2,3,*}

Additional file 1: Supplementary Notes, Tables and Figures

Contents

Note S1	 2
Note S2	 5
Table S1	 8
Table S2	 9
Table S3	 10
Table S4	 11
Figure S1	 12
Figure S2	 13
Figure S3	 14
Figure S4	 15
Figure S5	 16
Figure S6	 17
Figure S7	 18

¹ Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.

² Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK.
³ School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK.

^{*} Correspondence: sb10031@cam.ac.uk

Note S1 The list of KEGG pathway names, in the same order as in Figure 2A

- OLFACTORY_TRANSDUCTION 1 - TASTE TRANSDUCTION - SYSTEMIC LUPUS ERYTHEMATOSUS 3 - RIBOSOME - AUTOIMMUNE THYROID DISEASE - ASTHMA 6 - ALLOGRAFT_REJECTION - MATURITY ONSET DIABETES OF THE YOUNG - GRAFT_VERSUS_HOST_DISEASE 9 - ANTIGEN PROCESSING AND PRESENTATION 10 - CYTOSOLIC DNA SENSING PATHWAY 11 - TYPE_I_DIABETES_MELLITUS - REGULATION_OF_AUTOPHAGY 12 13 - OXIDATIVE PHOSPHORYLATION 14 15 - PARKINSONS_DISEASE FOLATE BIOSYNTHESIS 16 - INTESTINAL_IMMUNE_NETWORK_FOR_IGA_PRODUCTION 17 CYTOKINE CYTOKINE RECEPTOR INTERACTION 18 19 BASE_EXCISION_REPAIR - GLUTATHIONE METABOLISM 20 - PRIMARY IMMUNODEFICIENCY 21 22 LEISHMANIA_INFECTION - RIG I LIKE RECEPTOR_SIGNALING_PATHWAY 23 - PROTEASOME 24 25 ARACHIDONIC ACID METABOLISM - ALZHEIMERS DISEASE 26 - HUNTINGTONS_DISEASE 27 28 SPLICEOSOME - RNA POLYMERASE 29 - GLYCOSYLPHOSPHATIDYLINOSITOL_GPI_ANCHOR_BIOSYNTHESIS 30 TOLL LIKE RECEPTOR SIGNALING PATHWAY 31 - PATHOGENIC ESCHERICHIA COLI INFECTION 32 NATURAL_KILLER_CELL_MEDIATED_CYTOTOXICITY 33 34 METABOLISM_OF_XENOBIOTICS_BY_CYTOCHROME_P450 - OTHER GLYCAN DEGRADATION 35 - HEMATOPOIETIC_CELL_LINEAGE 36 VALINE_LEUCINE_AND_ISOLEUCINE_BIOSYNTHESIS 37 - PROXIMAL TUBULE BICARBONATE RECLAMATION 38 CARDIAC_MUSCLE_CONTRACTION 39 40 - SULFUR METABOLISM - GLYCOLYSIS GLUCONEOGENESIS 41 42 GLYCOSPHINGOLIPID_BIOSYNTHESIS_LACTO_AND_NEOLACTO_SERIES 43 PRION DISEASES - NEUROACTIVE_LIGAND_RECEPTOR_INTERACTION 44 45 - ALPHA_LINOLENIC_ACID_METABOLISM LINOLEIC ACID METABOLISM 46 TYROSINE_METABOLISM 47 - DRUG_METABOLISM_CYTOCHROME_P450 48 PPAR SIGNALING PATHWAY 49 RNA DEGRADATION 50 TERPENOID_BACKBONE_BIOSYNTHESIS 51 - GLYCINE_SERINE_AND_THREONINE_METABOLISM - NOD_LIKE_RECEPTOR_SIGNALING_PATHWAY 52 53 GLYCOSAMINOGLYCAN_BIOSYNTHESIS_KERATAN_SULFATE 55 BLADDER CANCER - PEROXISOME 56 - ETHER LIPID METABOLISM 57 58 RETINOL METABOLISM STEROID BIOSYNTHESIS 59 JAK STAT SIGNALING PATHWAY 60 PYRIMIDINE METABOLISM 61 CHEMOKINE_SIGNALING_PATHWAY 62 63 GLYOXYLATE AND DICARBOXYLATE METABOLISM DNA REPLICATION 64 PORPHYRIN_AND_CHLOROPHYLL_METABOLISM 65 66 - NITROGEN METABOLISM - PYRUVATE_METABOLISM 67 - ARGININE AND PROLINE METABOLISM 68 69 - PHENYLALANINE METABOLISM - COMPLEMENT_AND_COAGULATION_CASCADES 70 71 - VIRAL MYOCARDITIS 72 - BASAL CELL CARCINOMA - CELL_ADHESION_MOLECULES_CAMS

- FATTY ACID METABOLISM
- CITRATE_CYCLE_TCA_CYCLE 75
- 76 - P53 SIGNALING PATHWAY
- TAURINE_AND_HYPOTAURINE_METABOLISM 77
- 78 - LYSOSOME

83

- 79 - HISTIDINE METABOLISM
- 80 - SNARE_INTERACTIONS_IN_VESICULAR_TRANSPORT
- 81 - N GLYCAN BIOSYNTHESIS
- 82 - SELENOAMINO_ACID_METABOLISM
 - FRUCTOSE AND MANNOSE METABOLISM
- AMINO_SUGAR_AND_NUCLEOTIDE_SUGAR_METABOLISM 84
- 85 CYSTEINE_AND_METHIONINE_METABOLISM
- RENIN ANGIOTENSIN_SYSTEM 86
- STEROID_HORMONE_BIOSYNTHESIS 87
- PRIMARY BILE ACID BIOSYNTHESIS 88
- PENTOSE AND GLUCURONATE INTERCONVERSIONS 89
- VASOPRESSIN_REGULATED_WATER_REABSORPTION 90
- 91 AMYOTROPHIC LATERAL SCLEROSIS ALS
- PROTEIN EXPORT 92
- 93 - DRUG METABOLISM OTHER ENZYMES
- 94 GLYCOSPHINGOLIPID_BIOSYNTHESIS_GLOBO_SERIES
- 95 - HEDGEHOG_SIGNALING_PATHWAY
- 96 - CELL CYCLE
- ASCORBATE AND ALDARATE METABOLISM 97
- NUCLEOTIDE EXCISION_REPAIR 98
- PENTOSE_PHOSPHATE_PATHWAY 99
- PANTOTHENATE AND COA BIOSYNTHESIS 100
- 101 - BUTANOATE METABOLISM
- 102 - RIBOFLAVIN_METABOLISM
- BASAL TRANSCRIPTION FACTORS 103
- ALANINE_ASPARTATE_AND_GLUTAMATE_METABOLISM 104
- 105 - LIMONENE_AND_PINENE_DEGRADATION
- GLYCEROLIPID METABOLISM 106
- VIBRIO_CHOLERAE_INFECTION 107
- 108 - VEGF_SIGNALING_PATHWAY
- 109 - GNRH SIGNALING PATHWAY
- 110 - MELANOGENESIS
- 111 - AMINOACYL TRNA BIOSYNTHESIS
- NOTCH SIGNALING PATHWAY 112
- PURINE_METABOLISM 113
- 114 - HOMOLOGOUS RECOMBINATION
- HYPERTROPHIC CARDIOMYOPATHY HCM 115
- GLYCEROPHOSPHOLIPID METABOLISM 116
- ONE_CARBON_POOL_BY_FOLATE 117
- 118 - MISMATCH REPAIR
- GLYCOSAMINOGLYCAN DEGRADATION 119
- SPHINGOLIPID METABOLISM 120
- 121 - TRYPTOPHAN METABOLISM
- TGF_BETA_SIGNALING_PATHWAY 122
- OOCYTE MEIOSIS 123
- MAPK SIGNALING PATHWAY 124
- 125 - VALINE_LEUCINE_AND_ISOLEUCINE_DEGRADATION
- 126 - GALACTOSE METABOLISM
- LEUKOCYTE_TRANSENDOTHELIAL_MIGRATION 127
- ADIPOCYTOKINE SIGNALING PATHWAY 128
- 129 - PROPANOATE METABOLISM
- ALDOSTERONE_REGULATED_SODIUM_REABSORPTION 130
- 131 - LYSINE DEGRADATION
- 132 - GLYCOSAMINOGLYCAN_BIOSYNTHESIS_CHONDROITIN_SULFATE
- APOPTOSIS 133
- ENDOCYTOSIS 134
- 135 - BIOSYNTHESIS OF UNSATURATED FATTY ACIDS
- EPITHELIAL_CELL_SIGNALING_IN_HELICOBACTER_PYLORI_INFECTION 136
- FC EPSILON RI SIGNALING PATHWAY 137
- 138 - STARCH AND SUCROSE METABOLISM
- INSULIN_SIGNALING_PATHWAY 139
- 140 - WNT_SIGNALING_PATHWAY
- NICOTINATE AND NICOTINAMIDE METABOLISM 141
- PATHWAYS IN CANCER 142
- 143 - UBIQUITIN_MEDIATED_PROTEOLYSIS
- BETA ALANINE METABOLISM 144
- CIRCADIAN_RHYTHM_MAMMAL 145
- PROGESTERONE MEDIATED OOCYTE MATURATION
- 147 - VASCULAR_SMOOTH_MUSCLE_CONTRACTION
- 148 - TIGHT_JUNCTION
- GAP JUNCTION 149

- THYROID CANCER
- 151 - MELANOMA
- CALCIUM SIGNALING PATHWAY 152
- 153 - NEUROTROPHIN_SIGNALING_PATHWAY
- NON_HOMOLOGOUS_END_JOINING 154
- GLYCOSPHINGOLIPID_BIOSYNTHESIS_GANGLIO_SERIES 155
- 156 - GLYCOSAMINOGLYCAN BIOSYNTHESIS HEPARAN SULFATE
- T_CELL_RECEPTOR_SIGNALING_PATHWAY 157
- MTOR_SIGNALING_PATHWAY 158
- 159 - COLORECTAL CANCER
- REGULATION_OF_ACTIN_CYTOSKELETON 160
- 161 - CHRONIC_MYELOID_LEUKEMIA
- INOSITOL PHOSPHATE METABOLISM 162
- PROSTATE_CANCER 163
- FC GAMMA R MEDIATED PHAGOCYTOSIS 164
- DILATED CARDIOMYOPATHY 165
- 166 - PANCREATIC_CANCER
- 167 - B CELL RECEPTOR SIGNALING PATHWAY
- ACUTE_MYELOID_LEUKEMIA 168
- SMALL_CELL_LUNG_CANCER 169
- RENAL_CELL_CARCINOMA 170
- 171 - TYPE_II_DIABETES_MELLITUS
- ECM_RECEPTOR_INTERACTION 172
- O_GLYCAN_BIOSYNTHESIS FOCAL_ADHESION 173
- 174
- 175 - GLIOMA
- 176 - LONG_TERM_DEPRESSION
- PHOSPHATIDYLINOSITOL_SIGNALING_SYSTEM 177
- ABC_TRANSPORTERS 178
- 179 - LONG TERM POTENTIATION
- ARRHYTHMOGENIC_RIGHT_VENTRICULAR_CARDIOMYOPATHY_ARVC 180
- ENDOMETRIAL_CANCER 181
- 182
- ERBB_SIGNALING_PATHWAY
 NON_SMALL_CELL_LUNG_CANCER 183
- 184 - DORSO_VENTRAL_AXIS_FORMATION
- ADHERENS_JUNCTION
 AXON_GUIDANCE 185
- 186

Note S2 The list of KEGG pathway names, in the same order as in Figure 2B

- LIMONENE_AND_PINENE_DEGRADATION 1 - ASTHMA 3 - OLFACTORY TRANSDUCTION - ALLOGRAFT_REJECTION - BUTANOATE METABOLISM - REGULATION_OF_AUTOPHAGY 6 - HISTIDINE METABOLISM - O GLYCAN BIOSYNTHESIS - GLYCOSAMINOGLYCAN_BIOSYNTHESIS_HEPARAN_SULFATE 9 - ASCORBATE_AND_ALDARATE_METABOLISM 10 - AUTOIMMUNE THYROID DISEASE 11 - BETA_ALANINE_METABOLISM 12 - GLYCOSAMINOGLYCAN BIOSYNTHESIS CHONDROITIN SULFATE 13 - TYPE I DIABETES MELLITUS 14 - ALPHA_LINOLENIC_ACID_METABOLISM 15 - RNA DEGRADATION 16 - GRAFT VERSUS HOST DISEASE 17 - BASAL_TRANSCRIPTION_FACTORS 18 19 - ETHER_LIPID_METABOLISM - PRIMARY BILE_ACID_BIOSYNTHESIS 20 - GLYOXYLATE AND DICARBOXYLATE METABOLISM 21 22 - GLYCOSAMINOGLYCAN_BIOSYNTHESIS_KERATAN_SULFATE - GLYCOSPHINGOLIPID_BIOSYNTHESIS_GANGLIO_SERIES 23 - SYSTEMIC_LUPUS_ERYTHEMATOSUS 24 - RIBOSOME - SPLICEOSOME 26 - STEROID_HORMONE_BIOSYNTHESIS 27 28 - PATHOGENIC ESCHERICHIA COLI INFECTION - PORPHYRIN_AND_CHLOROPHYLL_METABOLISM 29 30 - AMINOACYL_TRNA_BIOSYNTHESIS - PENTOSE AND GLUCURONATE INTERCONVERSIONS - VIBRIO CHOLERAE INFECTION 32 - CIRCADIAN_RHYTHM_MAMMAL 33 34 - OXIDATIVE_PHOSPHORYLATION 35 - GLYCOSYLPHOSPHATIDYLINOSITOL GPI ANCHOR BIOSYNTHESIS - MATURITY_ONSET_DIABETES_OF_THE_YOUNG 36 - DNA_REPLICATION 37 - N_GLYCAN_BIOSYNTHESIS 38 - PROTEIN_EXPORT 39 - COMPLEMENT_AND_COAGULATION_CASCADES
- PROXIMAL_TUBULE_BICARBONATE_RECLAMATION 40 41 - HEDGEHOG_SIGNALING_PATHWAY 42 - VALINE LEUCINE AND ISOLEUCINE DEGRADATION 43 - LYSINE DEGRADATION 44 45 - NICOTINATE AND NICOTINAMIDE METABOLISM - FOLATE BIOSYNTHESIS 46 - BIOSYNTHESIS_OF_UNSATURATED_FATTY_ACIDS 47 48 - PROTEASOME 49 - NUCLEOTIDE_EXCISION_REPAIR - BASAL_CELL_CARCINOMA 50 - TYROSINE METABOLISM 51 - STARCH_AND_SUCROSE_METABOLISM - GLYCINE_SERINE_AND_THREONINE_METABOLISM 52 53 - METABOLISM_OF_XENOBIOTICS_BY_CYTOCHROME_P450 - ANTIGEN_PROCESSING_AND_PRESENTATION 55 - EPITHELIAL_CELL_SIGNALING_IN_HELICOBACTER_PYLORI_INFECTION 56 - LINOLEIC ACID METABOLISM 57 58 - SNARE INTERACTIONS IN VESICULAR TRANSPORT - PARKINSONS_DISEASE 59 - HOMOLOGOUS RECOMBINATION 60 - INTESTINAL IMMUNE_NETWORK_FOR_IGA_PRODUCTION
- RETINOL_METABOLISM 61 62 63 - CARDIAC MUSCLE CONTRACTION - PHENYLALANINE_METABOLISM 64 - DRUG_METABOLISM_CYTOCHROME_P450 65 - ABC TRANSPORTERS 66 - FC_EPSILON_RI_SIGNALING_PATHWAY
- PRION_DISEASES 67 68 69 - LEISHMANIA INFECTION - GALACTOSE_METABOLISM 70 71 - CHEMOKINE_SIGNALING_PATHWAY 72 - LYSOSOME - TGF_BETA_SIGNALING_PATHWAY

```
- RENIN ANGIOTENSIN SYSTEM
```

- TASTE TRANSDUCTION 75
- ARACHIDONIC ACID METABOLISM 76
- GLYCEROLIPID METABOLISM 77
- GAP_JUNCTION 78
- 79 - INSULIN_SIGNALING_PATHWAY
- STEROID BIOSYNTHESIS 80
- ALANINE_ASPARTATE_AND_GLUTAMATE_METABOLISM 81
- 82 - PROPANOATE METABOLISM
- PANTOTHENATE AND COA BIOSYNTHESIS 83
- DORSO_VENTRAL_AXIS_FORMATION 84
- 85 - CYTOSOLIC_DNA_SENSING_PATHWAY
- NOTCH SIGNALING PATHWAY 86
- HUNTINGTONS_DISEASE 87
- 88 - TRYPTOPHAN METABOLISM
- SPHINGOLIPID METABOLISM 89
- PYRUVATE_METABOLISM 90
- PEROXISOME 91
- 92 - ENDOCYTOSIS
- INOSITOL_PHOSPHATE_METABOLISM 93
- 94 - NON_SMALL_CELL_LUNG_CANCER
- GLYCEROPHOSPHOLIPID METABOLISM 95
- CITRATE_CYCLE_TCA_CYCLE 96
- TERPENOID BACKBONE BIOSYNTHESIS 97
- CYTOKINE CYTOKINE RECEPTOR INTERACTION 98
- CELL_ADHESION_MOLECULES_CAMS 99
- TIGHT JUNCTION 100
- 101 - RNA POLYMERASE
- LEUKOCYTE_TRANSENDOTHELIAL_MIGRATION 102
- MELANOGENESIS 103
- 104 - FATTY_ACID_METABOLISM
- SMALL_CELL_LUNG_CANCER 105
- GNRH SIGNALING PATHWAY 106
- NEUROACTIVE_LIGAND_RECEPTOR_INTERACTION 107
- 108 - PENTOSE_PHOSPHATE_PATHWAY
- SELENOAMINO ACID METABOLISM 109
- SULFUR_METABOLISM 110
- 111 - NON HOMOLOGOUS END JOINING
- 112
- ECM_RECEPTOR_INTERACTION
 REGULATION_OF_ACTIN_CYTOSKELETON 113
- 114 - PYRIMIDINE METABOLISM
- 115 - VASCULAR SMOOTH MUSCLE CONTRACTION
- DRUG METABOLISM OTHER ENZYMES 116
- 117 - RENAL_CELL_CARCINOMA
- 118 - PHOSPHATIDYLINOSITOL SIGNALING SYSTEM
- CELL CYCLE 119
- VIRAL MYOCARDITIS 120
- 121 - GLYCOLYSIS GLUCONEOGENESIS
- 122 - AXON_GUIDANCE
- CHRONIC MYELOID LEUKEMIA 123
- ALDOSTERONE REGULATED SODIUM REABSORPTION 124
- ALZHEIMERS DISEASE 125
- NATURAL KILLER CELL MEDIATED CYTOTOXICITY
- HYPERTROPHIC_CARDIOMYOPATHY_HCM 127
- 128 - PRIMARY_IMMUNODEFICIENCY
- 129 - JAK STAT SIGNALING PATHWAY
- MTOR_SIGNALING_PATHWAY 130
- 131 - LONG TERM POTENTIATION
- 132 - B CELL RECEPTOR SIGNALING PATHWAY
- ARRHYTHMOGENIC_RIGHT_VENTRICULAR_CARDIOMYOPATHY_ARVC 133
- 134 - FOCAL ADHESION
- 135 - FRUCTOSE AND MANNOSE METABOLISM
- FC_GAMMA_R_MEDIATED_PHAGOCYTOSIS 136
- 137 - DILATED CARDIOMYOPATHY
- 138 - GLUTATHIONE METABOLISM
- PURINE METABOLISM 139
- 140 - VALINE_LEUCINE_AND_ISOLEUCINE_BIOSYNTHESIS
- BASE EXCISION REPAIR 141
- VASOPRESSIN REGULATED WATER REABSORPTION 142
- 143 - GLIOMA
- LONG_TERM DEPRESSION 144
- TOLL_LIKE_RECEPTOR_SIGNALING_PATHWAY 145
- 146 - UBIQUITIN MEDIATED PROTEOLYSIS
- T CELL RECEPTOR_SIGNALING_PATHWAY 147
- OTHER_GLYCAN_DEGRADATION 148
- MAPK SIGNALING PATHWAY 149

- ARGININE_AND_PROLINE_METABOLISM
- 151 - OOCYTE MEIOSIS
- GLYCOSPHINGOLIPID BIOSYNTHESIS LACTO AND NEOLACTO SERIES 152
- 153 - PATHWAYS_IN_CANCER
- ADIPOCYTOKINE_SIGNALING_PATHWAY 154
- WNT_SIGNALING_PATHWAY
 MELANOMA 155
- 156
- NEUROTROPHIN_SIGNALING_PATHWAY 157
- 158
- 159
- TAURINE_AND_HYPOTAURINE_METABOLISM
 VEGF_SIGNALING_PATHWAY
 AMINO_SUGAR_AND_NUCLEOTIDE_SUGAR_METABOLISM 160
- 161 - CYSTEINE_AND_METHIONINE_METABOLISM
- RIG I LIKE RECEPTOR SIGNALING PATHWAY 162
- AMYOTROPHIC_LATERAL_SCLEROSIS_ALS 163
- 164 - ENDOMETRIAL CANCER
- 165
- PROSTATE_CANCER
 GLYCOSPHINGOLIPID_BIOSYNTHESIS_GLOBO_SERIES 166
- 167 - PANCREATIC_CANCER
- NITROGEN_METABOLISM 168
- PPAR_SIGNALING_PATHWAY 169
- MISMATCH_REPAIR 170
- 171 - ADHERENS JUNCTION
- HEMATOPOIETIC_CELL_LINEAGE 172
- PROGESTERONE MEDIATED OOCYTE MATURATION COLORECTAL CANCER 173
- 174
- CALCIUM_SIGNALING_PATHWAY 175
- 176
- ERBB_SIGNALING_PATHWAY
 ONE_CARBON_POOL_BY_FOLATE 177
- GLYCOSAMINOGLYCAN_DEGRADATION 178
- 179 - BLADDER_CANCER
- 180
- TYPE_II_DIABETES_MELLITUS
 NOD_LIKE_RECEPTOR_SIGNALING_PATHWAY 181
- 182 - APOPTOSIS
- 183
- RIBOFLAVIN_METABOLISM
 ACUTE_MYELOID_LEUKEMIA 184
- P53_SIGNALING_PATHWAY THYROID_CANCER 185
- 186

Table S1 The distribution metrics for the pathway-averaged $L^{\rm tr}$ and $N^{\rm tr}$ values among the cancer and other pathways, corresponding to the boxplots in Figure 1A,B

measures	pathway-averaged L ^{tr} boxplots (Fig. 1A)		pathway-averaged N ^{tr} boxplots (Fig. 1B)	
	other	cancer	other	cancer
minimum	6250	50610	1.142	2.073
1st quartile	37140	75730	1.827	2.371
median	52630	82750	2.069	2.535
mean	61420	86250	2.079	2.597
3 rd quartile	80480	95260	2.307	2.791
maximum	203600	136100	3.413	3.345

Table S2 The KEGG pathway enrichment analysis for the genes significantly associated with autism spectrum disorder (ASD)

Genes significantly associated with ASD [FDR<0.05]					
KEGG pathway	Number	p ^{EASE} score			
	of genes				
Cell adhesion molecules, CAMs	5	1.84 10 ⁻³			
Neuroactive ligand-receptor interaction	6	3.25 10-3			
Long-term potentiation	3	3.14 10-2			
Long-term depression	3	3.23 10-2			
Calcium signaling pathway	4	3.43 10-2			

The significantly enriched KEGG pathways are revealed via DAVID gene functional annotation server, taking *Homo* sapiens as a correction background. The p^{EASE} significance scores for the enrichment are shown along with the number of hit genes. The full list of genes that appear in each enriched pathway can be found in Additional file 3. The gene set is taken from *King et al*, *Nature*, 501:58-62, 2013.

Table S3 The KEGG pathway enrichment analysis for the top genes by summed exon length

Genes with longest total exon KEGG pathway p^{EASE} score Number of genes 6.69 10-8 Focal adhesion 30 ECM-receptor interaction 18 $3.28\ 10^{-7}$ 25 $2.77\ 10^{-6}$ Calcium signaling pathway (*,#) 12 3.46 10-4 Long-term potentiation (*) $3.94\ 10^{-4}$ 12 Long-term depression (*) Pathways in cancer (+) 31 $4.26\ 10^{-4}$ 9.37 10-4 MAPK signaling pathway (+) 26 $2.33\ 10^{-3}$ Hypertrophic cardiomyopathy, HCM (#) 12 Arrhythmogenic right ventricular cardiomyopathy (#) 11 $3.23\ 10^{-3}$ 4.37 10-3 Dilated cardiomyopathy (#) 12 $6.67\ 10^{-3}$ Small cell lung cancer (+) 11 Type II diabetes mellitus (**) $6.67\ 10^{-3}$ 8 Vascular smooth muscle contraction 13 $7.23\ 10^{-3}$ $9.95\ 10^{-3}$ Gap junction 11 Wnt signaling pathway 15 $1.34\ 10^{-2}$ Axon guidance (*) 13 $2.08\ 10^{-2}$ Phosphatidylinositol signaling system 9 $2.50\ 10^{-2}$ 3 3.05 10-2 Fatty acid biosynthesis 9 4.81 10-2 Colorectal cancer (+)

The genes with summed exon length greater than the all-data median by twice the standard deviation are used. The significantly enriched KEGG pathways are revealed via DAVID gene functional annotation server, taking *Homo sapiens* as a correction background. The p^{EASE} significance scores for the enrichment are shown along with the number of hit genes. The notations in the brackets mark the pathways linked to cancer (+), neurological (*), cardiological (#) and other (**) multigenic pathological conditions. The full list of genes that appear in each enriched pathway can be found in Additional file 3.

Table S4 The KEGG pathway enrichment analysis for the top genes by transcript length

Genes with longest transcript p^{EASE} score KEGG pathway Number of genes 5.61 10-9 Calcium signaling pathway (*,#) 27 $6.09\ 10^{-9}$ Axon guidance (*) 23 $5.18 \cdot 10^{-8}$ Long-term potentiation (*) 16 6.39 10-8 Long-term depression (*) 16 $3.76\ 10^{-5}$ Vascular smooth muscle contraction 16 Arrhythmogenic right ventricular cardiomyopathy (#) 13 $4.46\ 10^{-5}$ Hypertrophic cardiomyopathy, HCM (#) 13 1.37 10-4 $1.63\ 10^{-4}$ Phosphatidylinositol signaling system 12 Gap junction 13 $2.15\ 10^{-4}$ Dilated cardiomyopathy (#) 13 $2.95 \cdot 10^{-4}$ $5.90\ 10^{-4}$ Neuroactive ligand-receptor interaction (*) 23 $6.90\ 10^{-4}$ ErbB signaling pathway 12 GnRH signaling pathway 12 $1.87\ 10^{-3}$ Cell adhesion molecules, CAMs $2.46\ 10^{-3}$ 14 14 $2.82\ 10^{-3}$ Tight junction Purine metabolism 15 $3.38\ 10^{-3}$ MAPK signaling pathway (+) 21 $5.34\ 10^{-3}$ $7.03\ 10^{-3}$ Focal adhesion 17 Chondroitin sulfate biosynthesis 5 $1.08\ 10^{-2}$ 17 1.30 10-2 Regulation of actin cytoskeleton 10 1.42 10-2 Fc gamma R-mediated phagocytosis Heparan sulfate biosynthesis 1.94 10-2 5 Alzheimer's disease (**) 13 $3.19\ 10^{-2}$ Type II diabetes mellitus (**) $4.01\ 10^{-2}$

The genes with longest transcript length greater than the all-data median by twice the standard deviation are used. The significantly enriched KEGG pathways are revealed via DAVID gene functional annotation server, taking *Homo sapiens* as a correction background. The p^{EASE} significance scores for the enrichment are shown along with the number of hit genes. The notations in the brackets mark the pathways linked to cancer (+), neurological (*), cardiological (#) and other (**) multigenic pathological conditions. The full list of genes that appear in each enriched pathway can be found in Additional file 3.

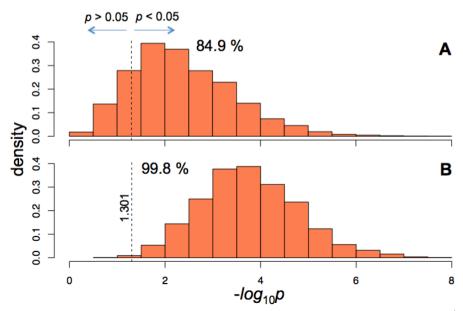


Figure S1 Further assessment of the shift significance while comparing pathway-averaged L^{tr} and N^{tr} values in cancer versus other pathways. The histograms present the distributions of the *p*-values while comparing the pathway-averaged L^{tr} (A) and N^{tr} (B) of the 15 cancer pathways with 15 (equal number) other pathways randomly selected from the available 171. The random selection was done 100000 times, resulting in the above *p*-value distributions brought in $-log_{10}$ scale, where, for instance, the value 4 means $p=10^{-4}$. The dotted vertical lines outline p=0.05 ($-log_{10}p=1.301$), used as a significance threshold. As can be inferred from the figure, such analysis resulted in significant *p*-values for L^{tr} and N^{tr} 84.9% and 99.8% of times respectively. Please note, that this test is done as a direct demonstration of the absence of the size difference bias in the significance of the shifts between the cancer vs. other distributions. However, the size difference is reflected in the used *p*-value analyses without the enforced size equalisation, due to the negative (*p*-value increase) effect of the low data numbers in either of the distributions, reducing the confidence on the corresponding mean value.

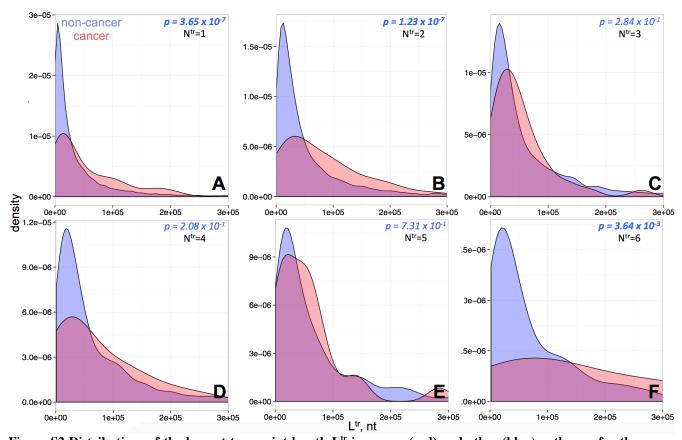


Figure S2 Distributions of the longest transcript length L^{tr} in cancer (red) and other (blue) pathways for the genes with different N^{tr} number of transcripts. The plots A-F are for the N^{tr} of 1 to 6. The *p*-values reflecting on the significance of a positive shift in the distributions for the cancer pathways are shown on top of each plot. The number of genes in both distribution are $\{170, 10795\}$, $\{91, 3841\}$, $\{41, 1964\}$, $\{27, 991\}$, $\{24, 515\}$ and $\{9, 313\}$ for the plots A-F correspondingly, brought in the $\{cancer/red, other/blue\}$ format.

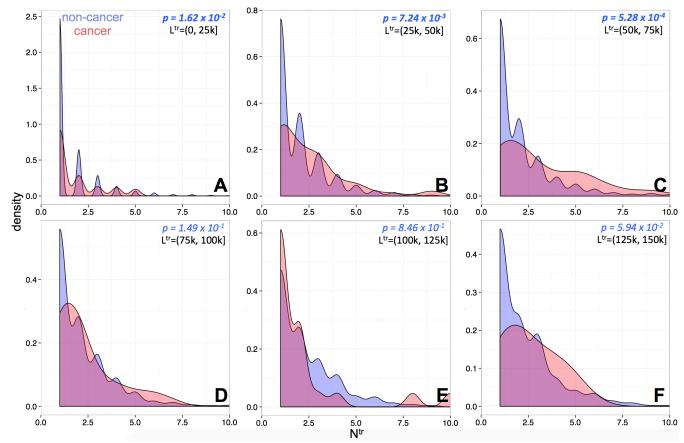


Figure S3 Distributions of the N^{tr} number of transcripts in cancer (red) and other (blue) pathways for the genes with different intervals of L^{tr} longest transcript length. The p-values reflecting on the significance of a positive shift in the distributions for the cancer pathways, along with the L^{tr} interval are shown on top of each plot. The density values (y-axes) peak at discrete integer N^{tr} (x-axes), with the intermediate values filled due to the smoothening at the density calculation procedure. The latter has no effect on the p-values that were estimated based on the actual N^{tr} values, independent from the density calculations. The number of genes in both distribution are {133, 9920}, {64, 3383}, {43, 1662}, {40, 954}, {24, 687} and {18, 478} for the plots **A-F** correspondingly, brought in the {cancer/red, other/blue} format.

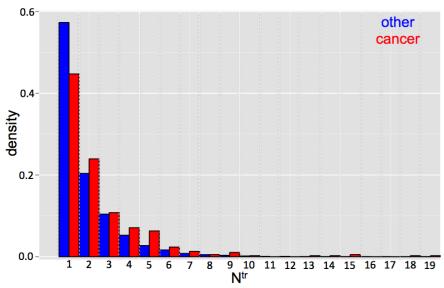


Figure S4 Distributions of the N^{tr} number of transcripts in cancer (red) and other (blue) pathways for all the genes. The plot is the combined and discrete version of Figure S3A-F.

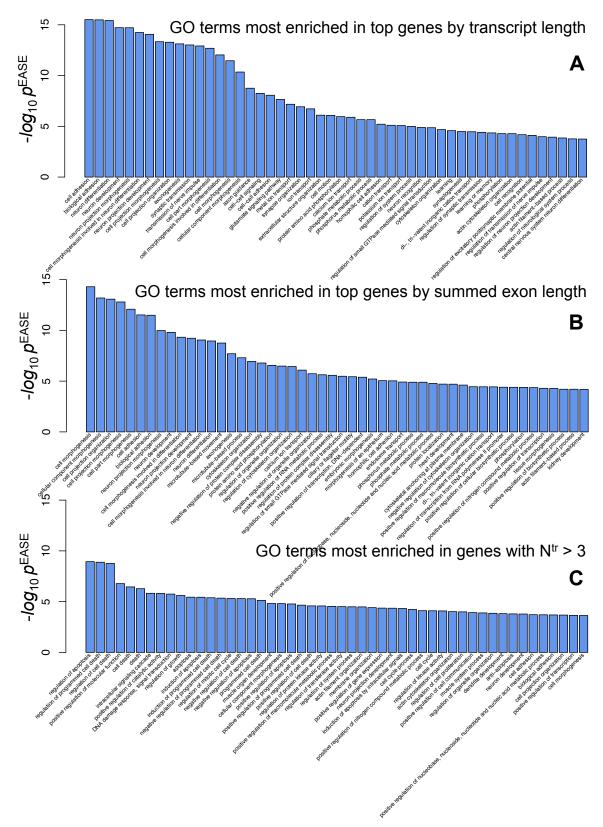


Figure S5 Gene ontology (GO) analyses for the genes special in length and splicing complexity. The 50 most enriched GO terms (BP set) are shown for the top genes by longest transcript length (A), top genes by summed exon length (B), and genes with greater than 3 transcript variants (C). The y-axis shows the p^{EASE} score for the enrichment significance in a $-log_{10}$ scale ($-log_{10}p^{EASE} > 1.301$ means $p^{EASE} < 0.05$). The full set of significant GO terms and gene lists is presented in Additional file 3.

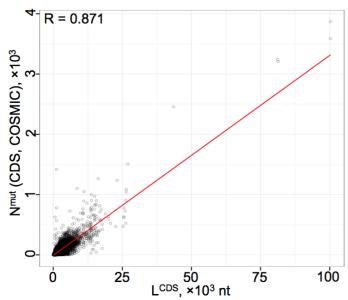


Figure S6 Correlation between the overall number of cancer-linked mutations in the coding sequences (CDS) of different genes and their CDS length. The cancer-linked mutations (as deposited in the COSMIC database) are counted from only the coding regions. The correlation coefficient (top-left corner) and the linear mode fit (red line) are shown.

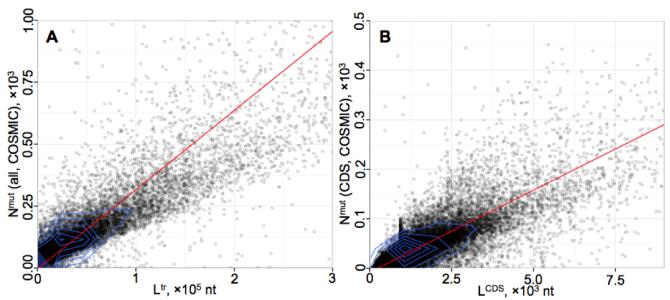


Figure S7 Plots representing the zoomed versions of Figure 5A (A) and Figure S6 (B). Both A and B graphs detail the lower-left corner of the corresponding original plots, with additional contour lines (blue) added to illustrate the distribution of data points in the crowded region.