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Web Appendix A: Proofs

Proof of Lemma 1

We first write a telescoping sum of the conditional mean of Y (A1, A2). Since A1|H1 = h1

has a conditional distribution given by p1(·|h1) (*) and A2|H2(A1) = h2 has a conditional

distribution given by p2(·|h2) (**), we have E[Y (A1, 0)|H2(A1), A2] = E[Y (A1, 0)|H2(A1)]

and E[Y (0, 0)|H1, A1] = E[Y (0, 0)|H1]. Thus we have:

E[Y (A1, A2)|H2(A1), A2] = E[Y (A1, A2)|H2(A1), A2]− E[Y (A1, 0)|H2(A1), A2]

+ E[Y (A1, 0)|H2(A1)]− E[E[Y (A1, 0)|H2(A1)]|H1, A1]

+ E[Y (A1, 0)|H1, A1]− E[Y (0, 0)|H1, A1]

+ E[Y (0, 0)|H1]

Note that the first line on the right hand side is equal to µ2(H2(A1), A2) due to (**) and

the third line is equal to µ1(H1, A1) due to (*); the second line has a conditional mean zero,

conditional on (H1, A1). Thus we conclude that E[Y (A1, A2)−µ2(H2(A1), A2)−µ1(H1, A1)] =

E[Y (0, 0)].

For a fixed policy d, the associated potential outcomes are {X1, X2(d1), Y (d1, d2)}. Now

let us focus on the telescoping sum of the conditional mean of Y (d1, d2). Due to (*),

we have E[Y (A1, a2)|X1, A1, X2(A1)]1A1=a1 = E[Y (a1, a2)|X1, X2(a1)]1A1=a1 ; this implies

E[Y (A1, a2)|X1, A1, X2(A1)]1A1=d1(H1) = E[Y (d1, a2)|X1, X2(d1)]1A1=d1(H1) because d1(H1)

is known given X1. Moreover, since d2(H2(A1)) = d2(H2(d1)) on event {A1 = d1(H1)},

we have E[Y (A1, d2)|X1, A1, X2(A1)]1A1=d1(H1) = E[Y (d1, d2)|X1, X2(d1)]1A1=d1(H1). Now let

p1(·|h1) be a degenerate distribution, that concentrates on d1(h1), we then conclude that

E[Y (d1, d2)|X1, X2(d1)]−E[Y (d1, 0)|X1, X2(d1)] = µ2(H2(a1), a2)|a2=d2(H2(a1)),a1=d1(H1). Sim-

ilarly one can show E[Y (d1, 0)|X1]− E[Y (0, 0)|X1] = µ1(H1, a1)|a1=d1(H1)
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Based on the arguments above, we can write:

E[Y (d1, d2)|X1, X2(d1)] = E[Y (d1, d2)|X1, X2(d1)]− E[Y (d1, 0)|X1, X2(d1)]

+ E[Y (d1, 0)|X1, X2(d1)]− E [E[Y (d1, 0)|X1, X2(d1)]|X1]

+ E[Y (d1, 0)|X1]− E[Y (0, 0)|X1]

+ E[Y (0, 0)|X1]

and conclude thatE[Y (d1, d2)] = E[µ1(H1, a1)|a1=d1(H1)+µ2(H2(a1), a2)|a2=d2(H2(a1)),a1=d1(H1)+

Y (0, 0)]. Thus Vd = E
[
Y (A1, A2)− µ2(H2(A1), A2)− µ1(H1, A1) + µ1(H1, d1(H1))

+ µ2(H2(a1), a2)|a2=d2(H2(a1)),a1=d1(H1)

]
. Finally, consider the transition from the degenerate

distribution of A1 that concentrates on d1(H1) to the distribution of A1 given by p1(·|H1),

we then can rewrite E[µ2(H2(a1), a2)|a2=d2(H2(a1)),a1=d1(H1)] as

E
[
I{A1=d1(H1)}
p1(A1|H1)

µ2(H2(A1), d2(H2(A1)))
]
. This completes the proof of Lemma 1.

Proof of Lemma 2

First we prove the equality for the second-stage treatment effect. By sequential randomization

of A1, E[Y (a1, a2)|H2(a1) = h2] = E[Y (A1, a2)|H2(A1) = h2] (note that a1 is also part of h2),

which is then equal to E[Y (A1, A2)|H2(A1) = h2, A2 = a2] due to sequential randomization

of A2. Finally by consistency assumption, we conclude that E[Y (a1, a2)|H2(a1) = h2] =

E[Y |H2 = h2, A2 = a2], thus the first equalilty for µ2(h2, a2) holds.

Next we prove the equality for the first-stage treatment effect. By sequential randomization

of A1, E[Y (a1, 0)|H1 = h1] = E[Y (a1, 0)|H1 = h1, A1 = a1], which is then equal to

E[E[Y (a1, 0)|H2(a1), A2 = 0]|H1 = h1, A1 = a1] due to sequential randomization of A2.

Re-using sequential randomization of A1 for the inner conditional mean, this quantity can

be written as E[E[Y (A1, A2)|H2(A1), A2 = 0]|H1 = h1, A1 = a1]. Finally by consistency

assumption, we conclude that E[Y (a1, 0)|H1 = h1] = E[E[Y |H2, A2 = 0]|H1 = h1, A1 = a1],

thus the equality for µ1(h1, a1) holds.
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The equality of expressing the policy value Vd with the observed data directly follows from

Lemma 1, due to the consistency assumption.

Proof of Lemma 3

(a) We know from Lemma 2 that Vd = E
[
Y − µ2(H2, A2) − µ1(H1, A1) + µ1(H1, d1(H1)) +

I{A1=d1(H1)}
p1(A1|H1)

µ2(H2, d2(H2))
]
. Again using the transition from the degenerate distribution of

A1 that concentrates on d1(H1) to the distribution of A1 given by p1(·|H1), it is obvious to

see that that E[m(H1, d1(H1))− I{A1=d1(H1)}
p1(A1|H1)

m(H1, A1)] = 0, ∀m that satisfies the integrable

condition.

(b) The asymptotic variance of V̂0(d; β̂) is equal to V ar(fβ0 + CT
ϕϕ), and the asymptotic

variance of V̂m(d; β̂) is equal to V ar(fβ0 + CT
ϕϕ+ gm), where the term CT

ϕϕ comes from the

estimation of paramter β in the SNMM (ϕ is the influence function for β); fβ(h2, a2, y) = y−

µ1(h1, a1; β1)−µ2(h2, a2; β2)+µ1(h1, d1(h1); β1)+ωd1(h1, a1)µ2(h2, d2(h2); β2), and gm(h1, a1) =

m(h1, d1(h1)) − ωd1(h1, a1)m(h1, a1). Then the difference in asymptotic variance between

V̂m(d; β̂) and V̂0(d; β̂) is equal to 2Cov(fβ0 + CT
ϕϕ, gm) + V ar(gm).

We note that for β̂ in subclass B defined in the appendix, Cov(CT
ϕϕ, gm) = 0. More

specifically, when β̂ belongs to the subclass B, it is the solution to an estimating equation

with the nuisance function q1(h1; ξ) chosen optimally (see the review of g-estimators in the

appendix), and one can show that E[ϕ · gm] = 0. Thus for those β̂’s, Cov(CT
ϕϕ, gm) = 0,

and we only need to focus on 2Cov(fβ0 , gm) + V ar(gm); i.e., the derivation of the optimal m

function is the same as the arguments under a known β. For more general β̂’s, Cov(CT
ϕϕ, gm)

would depend on the estimating equation that produces β̂ as well as the policy d in a

complicated way, thus affecting the choice of optimal m function; for simplicity, in this

lemma we assume that β̂ belongs to B.

In addition, note that E[(Y −µ1(H1, A1)−µ2(H2, A2)) · gm] = 0 by taking the conditional

mean with respect to (H1, A1). As a result, the optimal choice of m remains the same whether
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the estimator is for the value Vd, or for the contrast between policy d and a static policy

that always assigns treatment 0.

Denote m∗(h1, a1) ≡ E[µ2(H2, d2(H2))|H1 = h1, A1 = a1]; for simplicity, we write ωd1 ,m

and m∗ in short for ωd1(H1, A1),m(H1, A1) and m∗(H1, A1), and write m ◦ d1 and m∗ ◦ d1

in short for m(H1, d1(H1)) and m∗(H1, d1(H1)). Then, since E[gm(H1, A1)|H1 = h1] ≡ 0,

we could derive that 2Cov(fβ0 , gm) + V ar(gm) = E[ωd1 (2m∗ −m) (m ◦ d1 − ωd1m)]. Re-

using the fact that E[m ◦ d1 − ωd1m|H1 = h1] ≡ 0 for arbitrary function m, we have

2Cov(fβ0 , gm) + V ar(gm) = E[{(m−m∗) ◦ d1 − ωd1(m−m∗)}
2] − E[(m∗ ◦ d1 − ωd1m

∗)2].

Thus the use of function m in the assisted estimator leads to efficiency improvement when

E[{(m − m∗) ◦ d1 − ωd1(m − m∗)}2] < E[(m∗ ◦ d1 − ωd1m
∗)2]; in particular, the largest

efficiency improvement is achieved when m(h1, d1(h1)) ≡ m∗(h1, d1(h1)). Note that, the

values of function m at only (h1, d1(h1)) have an impact on V̂m(d; β̂).

Remark : To get more intuition about when the efficiency improvement that is achieved

by using function m can be large, consider a simple scenario where treatments are binary

and equally randomized in the data. Then E[(m∗ ◦ d1 − ωd1m∗)2], the maximal amount of

variance reduction, is equal to E[m∗(H1, d1(H1))2]. This quantity can be large if, under the

circumstance that d1 is followed in stage one, on average the treatment recommended by d2

at stage two has a large treatment effect.

Proof of Theorem 1

Under regularity conditions, the following class of functions is Glivenko-Cantelli:

{y − µ2(h2, a2; β2)− µ1(h1, a1; β1) + µ1(h1, d1(h1); β1)

+
I{a1 = d1(h1)}

p1(a1|h1)
(µ2(h2, d2(h2); β2)−m(h1, a1;αm)) +m(h1, d1(h1);αm) :

‖β1 − β10‖ 6 δ, ‖β2 − β20‖ 6 δ, ‖αm − α+
m‖ 6 δ}
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The theorem then follows from Lemma 2 and Lemma 3 by applying Glivenko-Cantelli

Theorem to this function class.

Proof of Theorem 2

Since V̂0(d; β̂) is a special case of V̂m̂(d; β̂), we only prove the asymptotic normality of the

latter one. We write V̂d in short for V̂m̂(d; β̂) and Vd in short for the true policy value of d.

For ease of notation, define ωd1(H1, A1) = I{A1=d1(H1)}
p1(A1|H1)

. Then

√
n(V̂d − Vd) =

√
nPn

{
Y − µ2(H2, A2; β̂2)− µ1(H1, A1; β̂1) + µ1(H1, d1(H1); β̂1)

+ ωd1(H1, A1)µ2(H2, d2(H2); β̂2)
}

−
√
nP
{
Y − µ2(H2, A2; β20)− µ1(H1, A1; β10) + µ1(H1, d1(H1); β10)

+ ωd1(H1, A1)µ2(H2, d2(H2); β20)
}

+
√
nPn

{
m(H1, d1(H1); α̂m)− ωd1(H1, A1)m(H1, A1; α̂m)

}
−
√
nP
{
m(H1, d1(H1);α+

m)− ωd1(H1, A1)m(H1, A1;α+
m)
}
.

Under the regularity conditions specified in the theorem, Pµ1(H1, A1; β1), as a function of β1,

is differentiable, and the order of differentiation and integration can be interchanged; more-

over Pµ̇1(H1, A1; β1) is continuous in β1 in a neighborhood of β10. Combined with the fact

that β̂1 converges in probability to β10, we have:
√
nPµ1(H1, A1; β̂1)−

√
nPµ1(H1, A1; β10) =

(Pµ̇1(H1, A1; β10) + op(1))
√
n(β̂1 − β10). By similar arguments and the assumptions that
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√
n(β̂1 − β10) = Op(1),

√
n(β̂2 − β20) = Op(1), we can get:

√
n(V̂d − Vd) =

√
n(Pn − P )

{
Y − µ2(H2, A2; β̂2)− µ1(H1, A1; β̂1) + µ1(H1, d1(H1); β̂1)

+ ωd1(H1, A1)µ2(H2, d2(H2); β̂2)
}

+ P
[
ωd1(H1, A1)µ̇2(H2, d2(H2); β20)− µ̇2(H2, A2; β20)

]√
n(β̂2 − β20)

+ P
[
µ̇1(H1, d1(H1); β10)− µ̇1(H1, A1; β10)

]√
n(β̂1 − β10)

+
√
nPn

{
m(H1, d1(H1); α̂m)− ωd1(H1, A1)m(H1, A1; α̂m)

}
−
√
nP
{
m(H1, d1(H1);α+

m)− ωd1(H1, A1)m(H1, A1;α+
m)
}

+ op(1).

Under regularity conditions on m(h1, a1;αm), we can derive

√
nP (m(H1, d1(H1); α̂m)− ωd1(H1, A1)m(H1, A1; α̂m))

−
√
nP
(
m(H1, d1(H1);α+

m)− ωd1(H1, A1)m(H1, A1;α+
m)
)

=
(
Pṁ(H1, d1(H1);α+

m)− Pωd1(H1, A1)ṁ(H1, A1;α+
m) + op(1)

)√
n(α̂m − α+

m).

Since P [m(H1, d1(H1);αm)− ωd1(H1, A1)m(H1, A1;αm)] ≡ 0, for all αm, we derive the fol-

lowing equality, as long as
√
n(α̂m − α+

m) = Op(1):

√
n(V̂d − Vd) =

√
n(Pn − P )

{
Y − µ2(H2, A2; β̂2)− µ1(H1, A1; β̂1) + µ1(H1, d1(H1); β̂1)

+ ωd1(H1, A1)µ2(H2, d2(H2); β̂2)
}

+ P [ωd1(H1, A1)µ̇2(H2, d2(H2); β20)− µ̇2(H2, A2; β20)]
√
n(β̂2 − β20)

+ P [µ̇1(H1, d1(H1); β10)− µ̇1(H1, A1; β10)]
√
n(β̂1 − β10)

+
√
n(Pn − P ) {m(H1, d1(H1); α̂m)− ωd1(H1, A1)m(H1, A1; α̂m)}+ op(1)

Define functions indexed by β1, β2, αm as fβ1,β2,αm(x1, a1, x2, a2, y) = y − µ2(h2, a2; β2) −

µ1(h1, a1; β1) + µ1(h1, d1(h1); β1) + ωd1(h1, a1)µ2(h2, d2(h2); β2) +m(h1, d1(h1);αm)

− ωd1(h1, a1)m(h1, a1;αm) and function class

Fδ =
{
f̃β1,β2,αm := 1‖β1−β10‖6δ,‖β2−β20‖6δ,‖αm−α+

m‖6δfβ1,β2,αm

}
. Since β̂

p−→ β0 and α̂m
p−→ α+

m,

√
n(Pn−P )fβ̂1,β̂2,α̂m

=
√
n(Pn−P )f̃β̂1,β̂2,α̂m

+op(1). Under regularity conditions, P sup |f̃β1,β2,αm|2 <
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∞, thus P [f̃β̂1,β̂2,α̂m
− f̃β10,β20,α+

m
]2

p−→ 0. By assuming
∑

a1
P sup‖β1−β10‖6δ |µ̇1(H1, a1; β1)|2 +

|µ1(H1, a1; β1)|2 <∞,
∑

a2
P sup‖β2−β20‖6δ |µ̇2(H2, a2; β2)|2 + |µ2(H2, a2; β2)|2 <∞ and∑

a1
P sup‖αm−α+

m‖6δ |ṁ1(H1, a1;αm)|2 + |m1(H1, a1;αm)|2 < ∞, it can be shown that Fδ

is a P−Donsker class. By Lemma 19.24 in Van der Vaart (2000),
√
n(Pn − P )f̃β̂1,β̂2,α̂m

=

√
n(Pn − P )fβ10,β20,α+

m
+ op(1). Hence we have shown that

√
n(V̂d − Vd) =

√
n(Pn − P )fβ10,β20,α+

m

+ P [ωd1(H1, A1)µ̇2(H2, d2(H2); β20)− µ̇2(H2, A2; β20)]
√
n(β̂2 − β20)

+ P [µ̇1(H1, d1(H1); β10)− µ̇1(H1, A1; β10)]
√
n(β̂1 − β10) + op(1).

This combined with the assumption that β̂ is an asymptotically normal estimator for the

parameter β in the SNMM, yields that V̂d is an asymptotically normal estimator for Vd.

Therefore, the asymptotic variance of
√
n
(
V̂d − Vd

)
is equal to E

(
fβ10,β20,α+

m
(X1, A1, X2, A2, Y )+

P [µ̇1(H1, d1(H1); β10)− µ̇1(H1, A1; β10)]ϕ1+P [ωd1(H1, A1)µ̇2(H2, d2(H2); β20)− µ̇2(H2, A2; β20)]ϕ2

)2
,

where ϕ1, ϕ2 are the influence functions for β̂1 and β̂2.

Proof of Lemma 4

With arguments similar to part (b) in Lemma 3, under the assumption that β̂ belongs to

the subclass B of g-estimators, the difference in asymptotic variance between the estima-

tors with function m and without function m is equal to 2Cov(fd̃,β0 − fd,β0 , gmd̃
− gmd

) +

V ar(gmd̃
−gmd

), where fd,β(x1, a1, x2, a2, y) = µ1(h1, d1(h1); β1)+ωd1(h1, a1)µ2(h2, d2(h2); β2),

and gmd
(x1, a1) = md(h1, d1(h1))− ωd1(h1, a1)md(h1, a1).

Define m∗d(h1, a1) ≡ E[µ2(H2, d2(H2))|H1 = h1, A1 = a1] and further define ∆d = md−m∗d.

It can be derived that 2Cov(fd̃,β0 − fd,β0 , gmd̃
− gmd

) + V ar(gmd̃
− gmd

) = E
[
{(∆d̃ ◦ d̃1 −

ωd̃1∆d̃)− (∆d ◦ d1 − ωd1∆d)}2
]
−E

[
{(m∗

d̃
◦ d̃1 − ωd̃1m

∗
d̃
)− (m∗d ◦ d1 − ωd1m∗d)}2

]
. The second

term in the previous formula is not dependent on md or md̃, and thus the lowest asymptotic
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variance is obtained when (∆d̃ ◦ d̃1 − ωd̃1∆d̃) = (∆d ◦ d1 − ωd1∆d), a.s.. The conclusions of

the lemma are implied by this equality.

Proof of Lemma 5

Define ∆̂(d, d̃) := V̂m̂d̃
(d̃; β̂)− V̂m̂d

(d; β̂); since each assisted estimator for the value is asymp-

totically normal, ∆̂(d, d̃) is also asymptotically normal. For notational simplicity, assume

that the treatment effect functions can be modeled as linear in unknown parameters, i.e.,

µ1(h1, a1; β1) = φ1(h1, a1)Tβ1 and µ2(h2, a2; β2) = φ2(h2, a2)Tβ2, where φt is some feature of

(ht, at). Denote ∆(d, d̃) := Vd̃ − Vd.

We first write the estimated value of m functions for each individual explicitly, assuming

that m is a working estimate of E[µ2(H2, d2(H2))|H1 = h1, A1 = a1] obtained from least-

squares. This assumption is made only for notational simplicity; in practice, more compli-

cated approach can be taken to estimate m if considered necessary. Denote the predictors

that are used to estimate m as Dm = Dm(H1, A1), then the fitted value of m function for an

individual with (H1, A1) = (h1, a1) would be equal to:

m(h1, a1; α̂m) = Dm(h1, a1)T
(
PnDmD

T
m

)−1 PnDmφ2(H2, d2(H2))T β̂2.

To simplify the notation, define D̂ := PnDmD
T
m, Ẑd := PnDmφ2(H2, d2(H2)), then under

the specified regularity conditions, we have:

√
n(∆̂(d, d̃)−∆(d, d̃))

=
√
n(Pn − P )fd,d̃,β10,β20

+ P
[
φ1(H1, d̃1(H1))− φ1(H1, d1(H1))

]T √
n(β̂1 − β10)

+ P
[
ωd̃1(H1, A1)φ2(H2, d̃2(H2))− ωd1(H1, A1)φ2(H2, d2(H2))

]T √
n(β̂2 − β20)

+
√
nPngTd̃1P [DmD

T
m]−1P [Dmφ2(H2, d̃2(H2))Tβ20]

−
√
nPngTd1P [DmD

T
m]−1P [Dmφ2(H2, d2(H2))Tβ20] + op(1),
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in which fd,d̃,β1,β2(h2, a2) =
(
φ1(h1, d̃1(h1))− φ1(h1, d1(h1))

)T
β1+ωd̃1(h1, a1)φ2(h2, d̃2(h2))Tβ2−

ωd1(h1, a1)φ2(h2, d2(h2))Tβ2, and gd1(h1, a1) = Dm(h1, d1(h1))− ωd1(h1, a1)Dm(h1, a1).

Thus if we denote the influence function of the estimator for parameters in the SNMM by

(ϕ1, ϕ2), namely if
√
n(β̂1 − β10) =

√
nPnϕ1 + op(1), and

√
n(β̂2 − β20) =

√
nPnϕ2 + op(1),

then the asymptotic variance of ∆̂(d, d̃) is equal to

Σ∆ = V ar
(
fd,d̃,β10,β20 + P

[
φ1(H1, d̃1(H1))− φ1(H1, d1(H1))

]T
ϕ1

+ P
[
ωd̃1(H1, A1)φ2(H2, d̃2(H2))− ωd1(H1, A1)φ2(H2, d2(H2))

]T
ϕ2

+ P [Dmφ2(H2, d̃2(H2))Tβ20]TP [DmD
T
m]−1gd̃1

− P [Dmφ2(H2, d2(H2))Tβ20]TP [DmD
T
m]−1gd1

)
.

Next we provide the form of the plug-in estimator Σ̂∆ for Σ∆. Suppose we are able to estimate

the influence function of (β̂1, β̂2) evaluated at each data point by (ϕ̂1, ϕ̂2) = (ϕ1(Z; β̂, ξ̂), ϕ2(Z; β̂, ξ̂))

(Z includes all the observables from one individual; ξ is the nuisance parameter in estimating

SNMM). Define Σ̂∆ =

Pn
(
fd,d̃,β̂1,β̂2 + Pn

[
φ1(H1, d̃1(H1))− φ1(H1, d1(H1))

]T
ϕ̂1 (1)

+ Pn
[
ωd̃1(H1, A1)φ2(H2, d̃2(H2))− ωd1(H1, A1)φ2(H2, d2(H2))

]T
ϕ̂2

+ Pn[Dmφ2(H2, d̃2(H2))T β̂2]TPn[DmD
T
m]−1gd̃1

− Pn[Dmφ2(H2, d2(H2))T β̂2]TPn[DmD
T
m]−1gd1

)2

.

To show that Σ̂∆ converges in probability to Σ∆, we may use the result that the class

of functions involved is a Glivenko-Cantelli class using arguments similar to the proof of

Theorem 1.
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Web Appendix B: Technical Details

Review: Robins’ G-Estimators for SNMM

Here we give a brief review of Robins’ class of g-estimating equations (Robins, 1994) and the

semiparametric locally efficient g-estimator. Assume that the SNMM is correctly specified.

A class of estimating equations which can be used to solve for consistent estimators for β is:

Pn {r1(H1, A1) (Y − µ2(H2, A2; β2)− µ1(H1, A1; β1)− q1(H1)) + r2(H2, A2) (Y − µ2(H2, A2; β2)− q2(H2))}

= 0, where r1, r2 are arbitrary functions, both of the same dimension as the length of (βT1 , β
T
2 ),

that satisfy E[r1(H1, A1)|H1] ≡ 0, E[r2(H2, A2)|H2] ≡ 0; q1, q2 are arbitrary functions.

Assume that V ar(Y−µ2(H2, A2)−µ1(H1, A1)|H1, A1) ≡ V ar(Y−µ2(H2, A2)−µ1(H1, A1)|H1),

which we will denote as σ2
1(H1), and that V ar(Y−µ2(H2, A2)|H2, A2) ≡ V ar(Y−µ2(H2, A2)|H2),

which we will denote as σ2
2(H2). Robins provides r1, r2, q1, q2 functions that make the estimat-

ing equation semiparametric locally efficient; in particular the semiparametric locally efficient

estimating equation is obtained by setting q∗1(h1) = E[Y−µ2(H2, A2; β20)−µ1(H1, A1; β10)|H1 =

h1], q∗2(h2) = E[Y − µ2(H2, A2; β20)|H2 = h2],

r∗1(h1, a1) = σ−2
1 (h1)

 µ̇1(h1, a1; β10)− E[µ̇1(H1, A1; β10)|H1 = h1]

E[µ̇2(H2, A2; β20)|H1 = h1, A1 = a1]− E[µ̇2(H2, A2; β20)|H1 = h1]


and

r∗2(h2, a2) = σ−2
2 (h2)

 0

µ̇2(h2, a2; β20)− E[µ̇2(H2, A2; β20)|H2 = h2]

 .

Consider models for r1(·), r2(·), q1(·), q2(·), namely r1(·; η), r2(·; η), q1(·; ξ), q2(·; ξ). If the para-

metric models specified for r1, r2, q1, q2 contain the truth (i.e., r∗1, r
∗
2, q
∗
1, q
∗
2), the estimator for

β is then semiparametric efficient.

Definition of B: The subclass B of g-estimators is defined as the collection of g-estimators

in which q1(h1; ξ) is a correctly specified model for q∗1(h1). In Lemma 3 in Section 2.1, we

show that the optimal m function in the assisted estimator can be identified if β̂ belongs to

this subclass. Note that the semiparametric efficient estimator belongs to this subclass.
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Regression-Type Implementation of the G-Estimator

It turns out that for particular models of the nuisance functions (i.e., r1, r2, q1, q2) in the g-

estimating equation, one can estimate both the nuisance functions and the β’s simultaneously

via least-squares. We use this approach to estimate the β parameters in the intermediate

treatment effects in our simulations. We assume that the treatment effect functions are linear

in the unknown parameters: µ1(h1, a1; β1) = φ1(h1, a1)Tβ1 and µ2(h2, a2; β2) = φ2(h2, a2)Tβ2,

where φt is some feature of (ht, at). The estimation is as follows:

(1) First solve a linear regression of Y on (φ2(H2, A2)− E[φ2(H2, A2)|H2],M2), in which

M2 is a summary of the history H2. Note that in the setting of a randomized trial, the

distribution of A2 is known; thus E[φ2(H2, A2)|H2] can be calculated. Put β̂2 equal to

the vector of the estimated coefficients for φ2(H2, A2)− E[φ2(H2, A2)|H2].

(2) Second solve a linear regression of Y−φ2(H2, A2)T β̂2 on (φ1(H1, A1)− E[φ1(H1, A1)|H1],M1),

in which M1 is a summary of the history H1. Again since the distribution of A1 is

known, E[φ1(H1, A1)|H1] can be calculated. Put β̂1 equal to the vector of the estimated

coefficients for φ1(H1, A1)− E[φ1(H1, A1)|H1].

β̂ obtained from this least-squares implementation is equivalent to an estimating equation

with the following choice of nuisance functions: r1(H1, A1) = φ̃1(H1, A1), r2(H2, A2) =

φ̃2(H2, A2), q1(H1) = MT
1 κ

+
1 −E[φ1(H1, A1)|H1]Tβ10, q2(H2) = MT

2 κ
+
2 −E[φ2(H2, A2)|H2]Tβ20,

where φ̃1 ≡ φ̃1(H1, A1) = φ1(H1, A1)−E[φ1(H1, A1)|H1] and φ̃2 ≡ φ̃2(H2, A2) = φ2(H2, A2)−

E[φ2(H2, A2)|H2]; κ+
1 and κ+

2 denote the probabilistic limits of the estimated coefficients of

M1 and M2 in the least-squares procedure.

Each member of the class of g-estimators is consistent and asymptotically normal. In

particular, the asymptotic distribution of
√
n(β̂ − β0) is a multivariate normal with mean
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zero and var-covariance matrix B−1ΣB−1,T where

B =

 E[φ̃1φ̃
T
1 ] E[φ̃1φ

T
2 ]

0 E[φ̃2φ̃
T
2 ]


and Σ = E

((
(Y − φT2 β20 − φ̃T1 β10 −MT

1 κ
+
1 )φ̃T1 , (Y − φ̃T2 β20 −MT

2 κ
+
2 )φ̃T2

)T)⊗2

, where V ⊗2 =

V V T . Plug-in estimates B̂ and Σ̂ can be obtained by replacing population expectation in B

and Σ with sample mean, and replacing β, κ by the estimates from the series of least squares.

Remark: β̂ obtained from this least-squares implementation belongs to the subclass B

defined previously, provided that MT
1 κ1 is a correct model for q∗1(H1)+E[φ1(H1, A1)|H1]Tβ10.

Estimator Arising from the Marginal Mean Models

Here we briefly review the estimator of the policy value, based on the marginal mean models

(Murphy et al., 2001); we implement this estimator in both simulation studies and data

analysis.

Assume that the data take the format of (X1, A1, X2, A2, Y ) and the two-stage policy to

be evaluated is d = (d1, d2). The marginal-mean-model-based estimator for the policy value

requires for modeling and estimating gt(x̄t, āt;αg) (Z̄t denotes the history of a covariate Z

up to time t; z̄t denotes its realization), where g2(x̄2, ā2;αg) models E[Y |X̄2 = x̄2, Ā2 = ā2]

and g1(x1, a1;αg) models E[g2(X1, A1, X2, d2(X1, A1, X2))|X1 = x1, A1 = a1].

With an estimator for αg, the estimator for a two-stage policy, d, arising from the marginal

mean model, is written as

V̂MM(d; α̂g) =Pn
{I{A1 = d1(X1)}

p1(A1|H1)
· I{A2 = d2(X1, A1, X2)}

p2(A2|H2)
(Y − g2(X1, A1, X2, A2; α̂g))

+
I{A1 = d1(X1)}

p1(A1|H1)
(g2(X1, A1, X2, d2(X1, A1, X2); α̂g)− g1(X1, A1; α̂g))

+ g1(X1, d1(X1); α̂g)
}

The model specification for gt(·) does not have an impact on the consistency of the

estimator V̂MM(d; α̂g). According to Murphy et al. (2001), to guarantee that the models for
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gt are consistent with each other under the null, we model gt as linear in x̄t and independent

of āt. In particular, we estimate g2(X1, A1, X2, A2; α̂g) by regressing Y on intercept and X̄2,

then regress the fitted values on intercept and X1 to obtain g1(X1, A1; α̂g).

Equivalence between Estimators in Zhang et al. (2013) and Murphy et al.

(2001)

Zhang et al. (2013) presents a robust augmented inverse probability weighted estimator for

the values of a restricted class of treatment policies. In their paper the problem of policy

value estimation is cast as one of monotone coarsening. With some calculation one can show

that the general class of estimators proposed in this paper are equivalent to the estimators

arising from the marginal mean model in Murphy et al. (2001). Here we briefly present the

equivalence in the case of a two-stage problem (i.e., the data is (X1, A1, X2, A2, Y ), and we

are interested in evaluating a two-stage policy d = (d1, d2)).

For each two-stage policy d = (d1, d2), conceptualize the complete data to be the potential

outcomes associated with d: (X1, X2(d1), Y (d1, d2)). Then a coarsening variable Cd can be

defined for the complete data as below: If A1 6= d1(H1), then Cd = 1. If A1 = d1(H1) and

A2 6= d2(H2), then Cd = 2. If A1 = d1(H1) and A2 = d2(H2), then Cd =∞. Then define the

hazard functions for this coarsening variable Cd as follows (coarsening at random is assumed,

and in the scenario of sequential randomized trials this assumption is naturally satisfied):

λd,1(X1) = Pr(Cd = 1|X1), and λd,2(X1, X2) = Pr(Cd = 2|Cd > 2, X1, X2). Then the class

of estimators (indexed by the functions L1(x1) and L2(x1, a1, x2)) proposed in Zhang et al.

(2013) can be written as:

Pn{
I{Cd =∞}

(1− λd,1)(1− λd,2)
Y+

I{Cd = 1} − λd,1
1− λd,1

L1(X1)+
I{Cd = 2} − λd,2I{Cd > 2}

(1− λd,1)(1− λd,2)
L2(X1, A1, X2)},

in which λd,1 = λd,1(X1), λd,2 = λd,2(X1, X2). The consistency of any estimator in this class

is guaranteed, regardless of the choices of L1, L2.



14 Biometrics, 000 0000

On the other hand, the class of estimators (indexed by the functions g1(x1, a1) and g2(x1, a1, x2, a2))

arising from the marginal mean model can be written in the following form:

Pn
{I{A1 = d1(X1)}

p1(A1|H1)
· I{A2 = d2(X1, A1, X2)}

p2(A2|H2)
(Y − g2(X1, A1, X2, A2))

+
I{A1 = d1(X1)}

p1(A1|H1)
(g2(X1, A1, X2, d2(X1, A1, X2))− g1(X1, A1))

+ g1(X1, d1(X1))
}
.

Equivalency can be established by setting L1(X1) = g1(X1, d1(X1)) and L2(X1, A1, X2) =

g2(X̄2, A1, d2(X̄2, A1)). Moreover, in Zhang et al. (2013), a practical choice for the functions

L1, L2 is proposed to be obtained from Q-learning.

Assisted Estimator with Missingness in the Outcome

Real data arising from SMART studies normally contains some missing data, due to par-

ticipants’ dropouts or missing some intermediate treatment sessions or research outcome

measurement sesssions for various reasons. In this section we describe an approach to the

adjustment of the proposed assisted estimator, in the simplified scenario where only the

primary outcome variable Y contains missing values. In particular, this requires that patients

do not leave the study before the second randomization.

First we denote our data from each participant as (X1, A1, X2, A2, Rπ, RπY ), where Rπ is

an indicator of whether (Rπ = 1) or not (Rπ = 0) the outcome variable Y is observed for this

participant. Let π(h2, a2) = Pr[Rπ = 1|H2 = h2, A2 = a2] be the conditional probability of

observing Y given history (h2, a2). Estimator for the parameters in SNMM can be obtained

following a similar least-squares procedure as the one introduced in the paper:

(1) Generalized linear regression to obtain π(H2, A2; α̂π) as an estimator for π(H2, A2).

(2) Weighted linear regression of Y on (φ2(H2, A2) − E[φ2(H2, A2)|H2],M2) with weights

Rπ/π(H2, A2; α̂π) (note that only those observations with non-missing Y get non-zero
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weights); this regression outputs β̂2, which is the vector of the estimated coefficients for

φ2(H2, A2)− E[φ2(H2, A2)|H2].

(3) Weighted linear regression of Y −φ2(H2, A2)T β̂2 on (φ1(H1, A1)−E[φ1(H1, A1)|H1],M1)

with weights Rπ/π(H2, A2; α̂π) (again only those observations with non-missing Y get

non-zero weights); this regression outputs β̂1, which is the vector of the estimated

coefficients for φ1(H1, A1)− E[φ1(H1, A1)|H1].

Then one can use the following assisted estimator for the policy value:

V̂m(d;β̂) = Pn
{ Rπ

π(H2, A2; α̂π)
Y − µ2(H2, A2; β̂2)− µ1(H1, A1; β̂1) + µ1(H1, d1(H1); β̂1)

+
I{A1 = d1(H1)}

p1(A1|H1)

(
µ2(H2, d2(H2); β̂2)−m(H1, A1; α̂m)

)
+m(H1, d1(H1); α̂m)

}
.
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Web Appendix C: Details on Simulation Studies

Further Details about the Generative Model in Simulation

Here we provide more details about the generative model used in the simulation experiments.

η0(·), η1(·) and the variance of ε that we use are all based on the by-products of estimating the

SNMM with the ExTENd data, using PACS as the primary outcome. More specifically, η0(·)

is the main effect of X1, and it is set to η0(X1) = (1, X11, X12, X13, X11X12, X11X13, X12X13,

X2
11, X

2
12, X

2
13)α0 where α0 = (11.23, 0.3, 2.28,−0.25, 0.24, 0.73, 0.3,−0.74,−0.53,−0.47). η1(·)

is the main effect of X2 conditional on (X1, A1), and it is set to η1(X1, A1, X2) = 2(X21 −

E[X21|X1, A1])− 2(X22 − E[X22|X1, A1]). The standard deviation of ε is set to be 5.54.

Additional Results from Simulation 1

Here we present the simulation results for Simulation 1 (concerning the basic statistical

properties of the assisted estimators) in the manuscript, when N = 250 (Table 1). Recall

that these experiments are conducted using an estimator β̂ that belongs to the subclass B.

We found that, in general, the oracle estimator and the two assisted estimators have similar

MSE; when the treatment effect at stage two is at medium level, the assisted estimator with

a working estimate for the optimal md has slightly lower MSE than the assisted estimator

with md = 0. Also similar to the N = 100 experiments, the confidence intervals based on

the asymptotic standard error show good coverage.

[Table 1 about here.]

Moreover, we conduct the same set of simulation experiments using an estimator for β that

does not belong to the subclass B (simulation 1*); that is, the particular nuisance function

referred to in the definition of B is not correctly modeled (in fact, the true nuisance function

includes linear terms and second-order terms of X1; in this simulation, in the estimation

of β we only model the nuisance function by the linear terms). Our conjecture is that the



Comparing Treatment Policies Assisted by SNMM 17

assisted estimator V̂m̂d
(d; β̂) with m̂d is still slightly more efficient than the assisted estimator

with md ≡ 0. Since β̂ no longer belongs to B, we do not compare the assisted estimators

with an “oracle” estimator. Results are shown in Table 2. We found that, as expected, the

resulting assisted estimators are unbiased. The MSEs of the two different assisted estimators

are similar; yet the one using a good working estimate m̂d seems to be slightly more efficient

in some cases. In general, the results are very similar to the results from the experiments

using a β̂ that belongs to the subclass B.

[Table 2 about here.]

Simulation of the Relative Efficiency of Assisted Estimators

In this section we further investigate the extent to which the assisted estimator with a

working estimate of the optimal md improves efficiency over the assisted estimator with

md = 0. We apply the two types of assisted estimators to estimate each of the two policy

contrasts: (1) contrast between embedded policies (1, 1, 1) and (0, 0, 0); (2) contrast between

embedded policies (1, 1, 0) and (0, 0, 0). Motivated by the remark in the proof of Lemma

3 about the magnitude of the achievable variance reduction by adopting a good choice of

md, the experiments are conducted with data from a series of generative models, in which

the standardized effect size (SES) of the coordinate in β2 that corresponds to the A2 main

effect varies from 0.0 to 3.0, and all the other coordinates in β1 and β2 have an SES equal to

0.2. We focus on the relative mean squared errors of the assisted estimator with a working

estimate of the optimal md as compared to that with md = 0, and for both estimands we

plot the trend of the relative mean squared error as the A2 main effect grows.

[Figure 1 about here.]

The simulation results are shown in Figure 1. As expected, the benefit of using a working

estimate md in the assisted estimator increases when the stage two treatment effect amplifies.
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However, under the generative model we consider, the A2 main effect needs to be as large

as having an effect size of 1.5 so that the efficiency improvement is about 20%. In practice,

we suspect whether such a huge treatment effect would ever be present in a SMART; thus

in general using md = 0 in the assisted estimator may perform just as well as the assisted

estimator with a working estimate of md. We also notice that, the extent to which using a

working estimate of md is more efficient than using md = 0 varies with the estimand.

Additional Results from Simulation 2

Here we present the simulation results for Simulation 2 (concerning the efficiency gain of

using the assisted estimator compared with the marginal mean model) in the manuscript,

when N = 250 (Table 3). We found that with a larger sample size (N = 250 as compared

to N = 100), the advantage of the assisted estimators in terms of having a lower MSE

than the marginal-mean-model-based estimators is more evident. Similar to the N = 100

experiments, mis-specifying the SNMM introduces bias in some scenarios, but even in those

scenarios the performance of the assisted estimators in terms of the MSE does not worsen,

because reduction in the variance dominates the bias-variance tradeoff. We notice that under

the most severe mis-specification of SNMM (Assist3), the confidence interval of the contrast

between the tailored policy and the policy (0, 0, 0) has noticeable under-coverage. However,

we expect that in practice, such severe mis-specification, which fails to use any variable

correlated with the variables in the true SNMM, might be unlikely to happen.

[Table 3 about here.]
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Table 1
Simulation 1: Statistical properties of the assisted estimators of the contrast between values of policies (1,1,1) and

(0,0,0). Oracle = contrast estimator based on V̂md(d; β̂) with the true optimal md. Assist = contrast estimator based

on V̂m̂d(d; β̂) with a working estimate of the optimal md. Assist (md = 0) = contrast estimator based on V̂0(d; β̂).
The displayed numbers for confidence interval coverage are the coverage proportion × 100. An Asterisk indicates

that the MSE of Oracle or Assist (md = 0) is significantly different from MSE of Assist (at 0.05 level).

N = 250

Scenario
Bias / SD MSE ASE Coverage

Oracle Assist Assist
(md = 0)

Oracle Assist Assist
(md = 0)

Assist Assist
(md = 0)

(none,none) 0 0 0 1.3 1.31 1.3 95 95
(none,low) 0.03 0.03 0.03 1.44 1.45 1.47∗ 95.1 95.1
(none,med) 0.03 0.02 0.02 1.4 1.4 1.48∗ 94.6 95.6
(low,none) -0.01 -0.01 -0.01 1.31 1.32 1.31 95.7 95.6
(low,low) -0.02 -0.02 -0.02 1.69 1.71 1.71 93.2 93.6
(low,med) 0 -0.01 0 1.42 1.42 1.54∗ 95.3 95.2
(med,none) -0.03 -0.03 -0.03 1.38 1.38 1.38 95.2 95.1
(med,low) 0 0 0.01 1.64 1.64 1.67 94.8 95
(med,med) -0.02 -0.02 -0.01 1.55 1.55 1.63∗ 94.8 94.7
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Table 2
Simulation 1*: Statistical properties of the assisted estimators of the contrast between values of policies (1,1,1) and

(0,0,0), when β̂ does not belong to B. Assist = contrast estimator based on V̂m̂d(d; β̂) with a working estimate of the

optimal md. Assist (md = 0) = contrast estimator based on V̂0(d; β̂). The displayed numbers for confidence interval
coverage are the coverage proportion × 100. An Asterisk indicates that the MSE of Assist (md = 0) is significantly

different from MSE of Assist (at 0.05 level).

N = 100

Scenario
Bias / SD MSE ASE Coverage

Assist Assist
(md = 0)

Assist Assist
(md = 0)

Assist Assist
(md = 0)

(none,none) 0.04 0.04 3.48 3.54∗ 95.1 95.2
(none,low) 0.02 0.01 4.33 4.41 94.3 94.6
(none,med) 0.03 0.01 3.89 4.28∗ 95.6 95.5
(low,none) -0.02 -0.02 3.38 3.39 95 95.4
(low,low) 0.01 0.01 4.15 4.14 95 95.6
(low,med) 0.03 0.02 3.97 4.13∗ 95.3 95.6
(med,none) 0.05 0.05 3.93 3.98 95.2 95
(med,low) -0.02 -0.02 4.42 4.43 94.9 94.7
(med,med) 0 0 4.04 4.25∗ 94.8 95.5

N = 250

Scenario
Bias / SD MSE ASE Coverage

Assist Assist
(md = 0)

Assist Assist
(md = 0)

Assist Assist
(md = 0)

(none,none) 0.01 0.01 1.36 1.36 93.8 94
(none,low) 0.01 0.02 1.51 1.53∗ 95.4 95.6
(none,med) 0.03 0.03 1.44 1.53∗ 94.7 95.2
(low,none) -0.01 -0.01 1.35 1.35 95.9 95.9
(low,low) -0.01 -0.01 1.73 1.73 94 94.1
(low,med) -0.01 -0.01 1.45 1.57∗ 95.4 94.8
(med,none) -0.03 -0.03 1.47 1.47 94.9 94.8
(med,low) 0 0.01 1.66 1.68 94.8 95.3
(med,med) -0.02 -0.01 1.53 1.61∗ 94.7 95.1
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Table 3
Simulation 2: Comparison between the marginal-mean-model-based estimators and the assisted estimators, with

respect to the performance in estimating the policy contrasts. β̂ used in the assisted estimators belongs to the
subclass B. MM = Marginal-mean-model-based estimator. Assist1 = Assisted estimator with correctly specified

SNMM. Assist2 = Assisted estimator with mis-specified SNMM that excludes X11, X21, RX21. Assist3 = Assisted
estimator with mis-specified SNMM that excludes all the covariates interacting with treatments. Bias significantly
different from 0, and coverage proportion significantly different from 95%, are marked with an asterisk. Relative

MSE is calculated as the ratio of MSE with that of MM.

N = 250

Estimation of the first contrast,(1, 1, 1) vs (0,0,0)

Scenario
Bias x 100 Coverage of 95% CI x 100 Relative MSE

MM Assist1 Assist2 Assist3 MM Assist1 Assist2 Assist3 Assist1 Assist2 Assist3

(none,none) 2.6 4.7 4.4 4.8 93.5∗ 94.6 94.4 94.4 0.87 0.86 0.89
(none,low) 2 1.5 1.6 2.5 93.8 94.7 94.5 94.6 0.82 0.81 0.87
(none,med) 7.2 -1.2 -1.4 0.3 94.6 94.7 94.9 94.9 0.82 0.83 0.85
(low,none) -4.6 -2.4 -3.3 -3.8 95.2 95.1 95 95.3 0.83 0.83 0.86
(low,low) -5.1 -6 -5.8 -6.4 94.5 93.9 93.6∗ 93.8 0.87 0.87 0.89
(low,med) 6 -0.3 -0.5 1.3 96 95.4 95.4 95.8 0.79 0.8 0.84
(med,none) -2.3 -1.3 -1.8 -1.1 94.5 94.3 94.3 95.9 0.75 0.76 0.78
(med,low) 9.3∗ 7.6 7.9 8.1 94.4 94.5 94.3 94.1 0.79 0.79 0.8
(med,med) 20.6∗ 11.2∗ 10.6∗ 14.3∗ 94.5 94.5 93.7 94.2 0.73 0.74 0.78

Estimation of the second contrast, the tailored policy vs (0,0,0)

Scenario
Bias x 100 Coverage of 95% CI x 100 Relative MSE

MM Assist1 Assist2 Assist3 MM Assist1 Assist2 Assist3 Assist1 Assist2 Assist3

(none,none) -0.8 0.2 -0.2 2.3 95.1 93.6∗ 93.3∗ 95.4 0.69 0.67 0.48
(none,low) 0.2 0.5 -7.3∗ 13.2∗ 93.6∗ 94.7 94.3 94.9 0.65 0.64 0.46
(none,med) 6.7 0.9 -20∗ -39.5∗ 93.8 94.6 93.7 92.8∗ 0.69 0.71 0.58
(low,none) -1.6 0.1 -1 38.5∗ 95.1 95.1 95.1 92.4∗ 0.67 0.66 0.6
(low,low) -3.8 -1.5 -9.2∗ 49.1∗ 95.5 94.8 94.9 91.5∗ 0.68 0.68 0.62
(low,med) 0.7 -0.5 -21.9∗ -0.7 95.1 95.2 94.7 96 0.68 0.7 0.45
(med,none) 2 3.6 2.4 46.9∗ 95.3 94.9 95.4 91.1∗ 0.6 0.59 0.55
(med,low) 10.4∗ 7.3∗ -0.5 63.7∗ 94.4 94.6 94.8 88.8∗ 0.62 0.6 0.65
(med,med) 8.7∗ 6.7 -15∗ 15.3∗ 94.7 95.4 94.9 94.1 0.64 0.62 0.46


