Supplemental Table 1: summary statistics of all aging experiments.

Mean lifespan, restricted mean survival time. SEM, standard error of the mean. N, total number of animals in the indicated experimental group. Censored, number of censored observations. *P* values determined with the log-rank test, adjusted with the Bonferroni-Holm method to control for multiple comparisons. "*P* vs. control" are comparisons with the indicated control group in each experiment. "*P* vs. 50 mM NaCl" are comparisons between groups which only differ by NaCl concentration (genotype, FUdR treatment, etc. are identical). "*P* vs. no FUdR" are comparisons between groups which only differ by FUdR concentration (genotype, NaCl concentration, etc. are identical).

		Mean	Lifesp	oan per	centiles	(days)					
	Experimental	lifespan (days)	CEM	25%	E0%	75%	05%	N (consored)	P vs.	P vs. 50	P vs. no
Experiment 1,	group	(uays)		10	15	10	10		control		FOUR
shown in Figure 1A	50 mivi	14.8	0.2	13	15	16	18	69(0)	control		
and Figure S1. 1	150 mM	17.7	0.4	16	19	20	21	69(0)	<0.0001		
replicate, 25° C, 400 uM FUdR	250 mM	20.8	0.5	19	21.5	23	26	50(0)	<0.0001		
μιτιοαια	350 mM	20.8	0.4	19	21	24	26	57(0)	<0.0001		
	450 mM	16.0	0.6	13	16	19	24	48(0)	0.0017		
Experiment 2,	50 mM NaCl	15.5	0.2	14	17	17	19	96(1)	control		
1 replicate, 25° C,	300 mM NaCl	20.5	0.4	18	20	23	27	104(1)	<0.0001		
400 μM FUdR.	250 mM KCl	19.1	0.5	16	20	23	25	60(0)	<0.0001		
	500 mM glycerol	20.7	0.4	18	20	23	25	67(0)	<0.0001		
	500 mM sorbitol	21.6	0.5	18	20	25	30	106(0)	<0.0001		
Experiment 3,	50 mM	16.6	0.4	11	16	20	25	193(60)	control		
2 pooled replicates,	100 mM	14.0	0.4	10	14	18	22	178(40)	0.0001		
20° C, 0 or 400 μM	200 mM	11.1	0.3	8	10	11	18	194(34)	<0.0001		
FUdR.	300 mM	10.0	0.2	8	10	11	16	194(24)	<0.0001		
	400 mM	9.5	0.2	8	10	11	14	193(23)	<0.0001		
	500 mM	2.7	0.1	2	2	2	6	202(2)	<0.0001		
	50 mM + FUdR	16.0	0.3	14	18	18	20	188(40)	0.2123		
	100 mM + FUdR	17.9	0.3	16	18	20	22	192(22)	1.0000	<0.0001	<0.0001
	200 mM + FUdR	19.9	0.3	18	20	22	27	197(5)	<0.0001	<0.0001	<0.0001
	300 mM + FUdR	19.2	0.2	18	20	22	25	192(4)	0.0082	<0.0001	<0.0001
	400 mM + FUdR	17.0	0.4	14	18	20	24	196(9)	1.0000	0.0046	<0.0001
	500 mM + FUdR	2.7	0.2	2	2	2	4	196(0)	<0.0001	<0.0001	1.0000

		Mean Lifespan percentiles (days)					(days)				
	Experimental	lifespan						Ν	P vs.	P vs. 50	P vs. no
	group	(days	SEM	25%	50%	75%	95%	(censored)	control	mM NaCl	FUdR
Experiment 4,	50 mM, 0 μM										
shown in Figure 2B.	FUdR	17.1	0.5	13	17	21	27	226(73)	control		
3 pooled replicates,	50 mM, 8 μM										
20° C, 0, 8, 40 or	FUdR	19.7	0.5	14	19	27	31	228(53)	0.0006		
400 μM FUdR.	50 mM, 40 μM										
Experiment 7,	FUdR	18.6	0.4	14	17	23	28	226(16)	0.1555		
snown in Figure 2B.	50 mM, 400 μM										
3 pooled replicates,	FUdR	18.6	0.3	17	17	21	24	232(88)	0.2186		
20 C, U, 8, 40 UI 400 uM ELIdR	300 mM, 0 μM	42.0	0.0			4 -	24	244(02)	0.0004		
400 µm 100n.		13.0	0.3	11	11	15	21	241(93)	<0.0001		
	300 mM, 8 μM	42.2	0.2		10	45	24	222(0)	-0.0001	-0.0001	4 0000
	FUUR	13.3	0.3	11	13	15	21	232(9)	<0.0001	<0.0001	1.0000
	300 mivi, 40 μivi	15.6	0.2	10	1 5	10	24	220/10)	0.0057	<0.0001	<0.0001
	200 mM 400 uM	15.0	0.3	13	15	19	24	239(18)	0.0057	<0.0001	<0.0001
	500 mivi, 400 μivi FLIdR	21 7	03	19	22	24	28	232(11)	<0.0001	<0.0001	<0.0001
	Tour	21.7	0.5	15	22	24	20	232(11)	NO.0001	<0.0001	\0.0001
Experiment 5, shown in Figure 2C	N2 50 mM	12.0	0.1	11	12	14	14	279(5)	control		
3 pooled replicates,	N2 300 mM	17.0	0.3	12	17	21	25	281(2)	<0.0001		
25° C, 400 μM FudB	<i>osm-11</i> 50 mM	13.6	0.2	11	14	17	20	348(7)	<0.0001		
	<i>osm-11</i> 300 mM	15.4	0.3	12	16	20	24	290(6)	<0.0001	<0.0001	
Experiment 6,	NO 50 NA	42.7	0.4	42	40		45	277(2)			
shown in Figure 2C.	N2 50 MIVI	12.7	0.1	12	13	14	15	277(3)	control		
3 pooled replicates,	N2 300 mM	16.2	0.3	12	17	21	24	296(0)	<0.0001		
25 C, 400 μΜ FUdR.	<i>osm-7</i> 50 mM	14.5	0.2	12	14	17	19	273(4)	<0.0001		
	<i>osm-7</i> 300 mM	16.9	0.4	11	16	23	30	278(0)	<0.0001	<0.0001	
Experiment 7,											
shown in Figure 2D.	N2 50 mM	17.1	0.4	14	16	21	25	149(26)	control		
2 pooled replicates,				-	-			()			
20° C, 0 or 400 μM	N2 300 mM	10.0	0.2	8	9	10	16	149(23)	< 0.0001		
FUAR.	N2 50 mM +	47.0	0.0	4.6	4.0	10	24	454(07)	0.0040		
		17.0	0.3	16	18	19	21	151(37)	0.3949		
	N2 300 mM +	10.0	0.2	10	10	22	25	150(1)	0.0010	-0.0001	10 0001
	FUOR	19.8	0.3	18	19	23	25	150(1)	0.0016	<0.0001	<0.0001
	05///-7; 05///-11 50 mM	127	0.4	10	12	1/	10	145(02)	<0.0001		
		12.7	0.4	10	12	14	18	145(92)	<0.0001		
	300 mM	95	0.2	8	10	10	1/	153(40)	<u><0 0001</u>	<u><0 0001</u>	
	05m-7. 05m-11 50	9.9	0.2	U	10	10	14	105(40)	<0.0001	~0.0001	
	mM + FUdR	22.3	0.5	18	23	27	32	147(12)	<0.0001		<0.0001
	osm-7; osm-11										
	300 mM + FUdR	21.0	0.6	16	21	25	32	140(5)	< 0.0001	0.4717	< 0.0001

		Mean	Lifesp	an per	entiles	(days)					
	Experimental	lifespan	CENA	259/	F.09/	750/	059/	N (concored)	P vs.	P vs. 50	P vs. no
Every ent 9	group	(days)	SEIVI	25%	50%	/5%	95%	(censored)	control		FUak
shown in Figure 34	<i>control(RNAI)</i> 50 mM	13 9	0.4	11	13	18	22	1/19(2)	control		
3 pooled replicates.	control(RNAi) 300	15.5	0.4	11	15	10	22	143(2)	control		
20° C, 0 or 400 μM	mM	8.3	0.3	6	8	11	13	151(6)	< 0.0001		
FUdR.	control(RNAi) 50							<i>、</i>			
	mM + FUdR	16.1	0.4	13	18	20	22	151(3)	0.0129		
	<i>control(RNAi)</i> 300										
	mM + FUdR	21.5	0.3	20	22	25	27	150(6)	<0.0001	<0.0001	<0.0001
	tyms-1(RNAi) 50					•••	~~				
	mM	15.7	0.4	13	16.5	20	22	148(10)	0.0521		
	tyms-1(KNAI) 300 mM	21.2	0.4	20	22	25	27	150(0)	<0.0001	<0.0001	
	tyms-1(RNAi) 50	21.2	0.4	20	22	25	27	130(0)	<0.0001	<0.0001	
	mM + FUdR	17.6	0.4	13	18	20	25	151(0)	<0.0001		0.0070
	tyms-1(RNAi) 300	-	-	-	-		-	- (-)			
	mM + FUdR	24.6	0.3	22	25	27	29	150(0)	<0.0001	<0.0001	< 0.0001
Experiment 9,											
shown in Figure 3B.	N2 50 mM	17.4	0.3	12	18	22	26	314(41)	control		
3 pooled replicates,											
20° C, 0 or 400 μM	N2 300	8.9	0.2	8	8	10	14	322(80)	<0.0001		
FUdR.	N2 50 mM +	10.1	0.2	10	10	20	24	210/27)	0.0000		
	FUOR N2 300 mM +	16.1	0.3	12	10	20	24	318(27)	0.0003		
	FUdR	24.0	0.3	20	24	28	32	322(14)	<0.0001	<0.0001	<0.0001
								()			
	<i>nth-1</i> 50 mM	18.6	0.4	14	20	22	28	315(34)	0.0405		
								0.4.0(=0)			
	nth-1 300 mM	8.6	0.1	8	8	10	14	313(50)	<0.0001	<0.0001	
	ntn-1 50 mivi + Flidb	17.0	03	1/	18	22	24	316(36)	0.0612		<0.0001
	<i>nth-1</i> 300 mM +	17.0	0.3	14	10	22	24	310(30)	0.0012		<0.0001
	FUdR	17.7	0.3	14	18	20	24	313(4)	0.2443	0.2443	<0.0001
								. ,			
Experiment 10,		12.4	0.2	11	10	14	16	270/2)	control		
shown in Figure 5C.		12.4	0.2	11	13	14	10	279(2)	CONTROL		
3 pooled replicates,	N2 300 mM	18.0	0.4	13	19	22	26	253(0)	<0.0001		
25° C, 400 μM Fude	<i>sir-2.1</i> 50 mM	14.0	0.1	12	14	15.5	18	296(0)	<0.0001		
roux.	<i>sir-2.1</i> 300 mM	18.3	0.3	15	19	21	25	277(0)	<0.0001	<0.0001	
	<i>sir-2.2</i> 50 mM	12.3	0.1	11	12	14	15	334(0)	0.2825		
	<i>sir-2.2</i> 300 mM	15.2	0.3	12	15	19	21	292(0)	<0.0001	<0.0001	
	<i>sir-2.3</i> 50 mM	11.6	0.1	11	12	13	14	297(1)	<0.0001		
	<i>sir-2.3</i> 300 mM	14.7	0.2	11	15	18	22	299(2)	<0.0001	<0.0001	
	<i>sir-2.4</i> 50 mM	12.4	0.1	11	13	14	16	315(0)	0.6232		
	<i>sir-2.4</i> 300 mM	16.5	0.3	13	17	20	24	296(1)	< 0.0001	< 0.0001	

		Mean	Lifesp	an per	centiles	(days)					
	Experimental group	lifespan (days)	SEM	25%	50%	75%	95%	N (censored)	P vs. control	P vs. 50 mM NaCl	<i>P</i> vs. no FUdR
Experiment 11,											
shown in Figure 5D.	N2 50 mM	14.1	0.1	14	14	14	16	261(1)	control		
3 pooled replicates, 25° C, 400 μM	N2 300 mM	18.0	0.4	13	18	20	26	193(6)	<0.0001		
FUdR.	sir-2.1; sir-2.2; sir-										
	2.4 50 mM	14.2	0.1	14	14	16	19	286(4)	0.7255		
	sir-2.1; sir-2.2; sir-										
	2.4 300 mM	14.6	0.2	11	15	18	22	316(0)	0.0001	0.0002	
	sir-2.1; sir-2.3; sir-		0.4			4.6	10	224(0)	0.0004		
	2.4 50 mM	14.9	0.1	14	14	16	19	331(0)	<0.0001		
	SIF-2.1; SIF-2.3; SIF-2.3; SIF-2.4; S	16 /	0.2	10	10	20	22	207(0)	<0.0001	<0.0001	
	2.4 500 11101	10.4	0.5	15	10	20	22	307(0)	<0.0001	<0.0001	
Experiment 12, shown in Figure 6C.	N2 50 mM	16.4	0.4	14	16	21	27	164(41)	control		
2 pooled replicates, 20° C, 0 or 400 μM	N2 300 mM	10.1	0.2	8	10	10	16	161(24)	<0.0001		
FUdR	N2 50 mM +										
	FUdR	17.3	0.3	16	18	18	21	167(40)	1.0000		
	N2 300 mM +	20.0	0.2	10	24	22	25	467(2)	0.0004	10.0001	-0.0001
	FUAR	20.0	0.3	18	21	22	25	167(3)	0.0001	<0.0001	<0.0001
	<i>daf-16</i> 50 mM	14.4	0.3	12	14	18	21	165(45)	0.0002		
	<i>daf-16</i> 300 mM	8.8	0.2	8	8	10	14	162(33)	<0.0001	<0.0001	
	<i>daf-16</i> 50 mM + FUdB	14 8	02	14	16	16	18	170(22)	0 0006		1 0000
	daf-16 300 mM +	1.10	0.2		20	20	10	1, 0(11)	0.0000		1.0000
	FUdR	13.9	0.2	14	14	14	18	165(4)	<0.0001	0.0002	<0.0001
Experiment 13,	50 mM NaCl	11.3	0.5	6	11	16	18	89(1)	control		
shown in Figure S2.	50 mM NaCl +					-	-	()			
20° C, 0 or 400 μM	FUdR	11.0	0.6	6	11	16	21	90(0)	1.0000		
FUAR	300 mM NaCl	8.1	0.5	4	8	11	16	88(2)	<0.0001		
	300 mM NaCl +							(-)			
	FUdR	14.9	0.6	11	15	18	25	90(0)	0.0001	0.0006	<0.0001
	50 mM NaCl +										
	250 mM KCl	12.3	0.5	8	14	16	21	88(0)	1.0000		
	50 mM NaCl +										
	250 mM KCl +		o -			•		00(0)			
	FUdR	17.8	0.5	14	18	21	25	90(0)	<0.0001	<0.0001	<0.0001
	50 mivi Naci +	10.1	05	6	0	1/	10	90(0)	0 8620		
	50 mM NaCl +	10.1	0.5	0	0	14	10	90(0)	0.8039		
	500 mM glycerol										
	+ FUdR	17.4	0.6	14	18	23	25	90(0)	< 0.0001	<0.0001	< 0.0001
	50 mM NaCl +							. /	-	-	
	500 mM sorbitol	8.7	0.5	4	8	14	16	90(0)	0.0075		
	50 mM NaCl +										
	500 mM sorbitol										
	+ FUdR	16.5	0.7	11	16	21	28	90(0)	<0.0001	<0.0001	<0.0001

		Mean		Lifesp	an per	centiles	(days)				
	Experimental	lifespan						N	P vs.	P vs. 50	P vs. no
	group	(days)	SEM	25%	50%	75%	95%	(censored)	control	mM NaCl	FUdR
Experiment 14,											
shown in Figure	N2 50 mM	16.1	0.7	12	14	22	27	74(21)	control		
S4A. 1 replicate, 20°											
C, 0 or 400 μM	N2 300 mM	9.7	0.3	8	10	10	16	71(7)	<0.0001		
FUdR.	N2 50 mM +										
	FUdR	17.3	0.4	16	18	20	22	76(24)	1.0000		
	N2 300 mM +										
	FUdR	20.7	0.4	20	22	22	27	77(2)	0.0006	<0.0001	<0.0001
	<i>mes-1</i> 50 mM										
	GC+	15.5	0.6	12	14	20	24	74(13)	1.0000		
	<i>mes-1</i> 300 mM										
	GC+	9.7	0.3	8	10	10	14	72(16)	<0.0001	<0.0001	
	<i>mes-1</i> 50 mM +										
	FUdR GC+	17.1	0.4	14	16	20	22	75(6)	1.0000		1.0000
	<i>mes-1</i> 300 mM +										
	FUdR GC+	20.3	0.5	18	20	24	27	74(11)	0.0021	0.0001	<0.0001
						-					
	mes-1 50 mM GC-	22.7	1.2	14	20	31	37	78(29)	0.0001		
	<i>mes-1</i> 300 mM										
	GC-	10.7	0.4	10	10	12	18	69(2)	<0.0001	<0.0001	
	<i>mes-1</i> 50 mM +			•		~~					
	FUdR GC-	25.9	1.2	20	27	32	39	68(16)	<0.0001		1.0000
	<i>mes-1</i> 300 mM +	26.6		22		22	0 7	70/5)	0.0004	4 0000	
	FUAR GC-	26.6	1.0	22	27	32	37	70(5)	<0.0001	1.0000	<0.0001
Experiment 15,	N2 50 mM, live										
shown in Figure	OP50	14.5	0.6	10	14	18	23	97(31)	control		
S4B. 1 replicate, 20°	N2 300 mM, live										
C, 0 or 400 μM	OP50	10.5	0.4	8	10	11	18	96(17)	< 0.0001		
FUdR.	N2 50 mM +										
	FUdR, live OP50	17.3	0.4	14	18	21	21	100(50)	0.0182		
	N2 300 mM +										
	FUdR, live OP50	19.8	0.4	18	21	21	26	99(0)	< 0.0001	0.0003	< 0.0001
	N2 50 mM, dead										
	OP50	23.1	0.5	21	23	26	28	97(38)	< 0.0001		
	N2 300 mM, dead										
	OP50	16.6	0.3	16	16	18	21	93(25)	0.3139	< 0.0001	
	N2 50 mM +										
	FUdR, dead OP50	17.0	0.3	14	16	18	23	98(13)	0.0398		<0.0001
	N2 300 mM +										
	FUdR, dead OP50	20.6	0.3	18	21	21	26	99(1)	< 0.0001	< 0.0001	<0.0001

		Mean	Lifesp	oan per	centiles	(days)					
	Experimental	lifespan						N	P vs.	P vs. 50	P vs. no
	group	(days)	SEM	25%	50%	75%	95%	(censored)	control	mM NaCl	FUdR
Experiment 16,	a							22(2)			
shown in Figure	Control 50 mM	11.8	0.6	8	11	16	21	88(0)	Control		
58C. 20 C, 110 FUUR.	Control 200 mM	70	0 5	4	c	11	14	00(0)	<0.0001		
	$\frac{1}{2} \frac{1}{2} \frac{1}$	7.0	0.5	4	0	11	14	90(0)	<0.0001		
	sii-2.1(OL) 50 mM	11.6	05	8	11	16	18	90(1)	1 0000		
	sir-2 1(OF) 300	11.0	0.5	0	11	10	10	30(1)	1.0000		
	mM	7.3	0.5	4	6	11	16	90(0)	<0.0001	<0.0001	
		7.5	0.5		Ŭ		10	56(6)	40.0001	10.0001	
Experiment 17,											
shown in Figure		14.2	0.2	10	1.4	10	20	205(12)			
solicatos 20° C no	Control 50 mivi	14.Z	0.2	12	14	16	20	265(13)	control		
FlidR											
roun.	Control 300 mM	71	02	6	8	8	12	298(3)	<0 0001		
	sir-2.10F: sir-	7.1	0.2	Ũ	0	0		230(3)	40.0001		
	2.20E: sir-2.3 OE										
	50 mM	13.3	0.3	10	14	16	20	231(40)	0.0353		
	sir-2.10E; sir-										
	2.20E; sir-2.3 OE										
	300 mM	8.6	0.2	6	8	12	18	277(0)	<0.0001	<0.0001	
Experiment 18.											
shown in Figure	N2 50 mM	14.8	0.2	13	15	16	19	259(4)	control		
S10. 3 pooled		-	-	-	-	-	-				
replicates, 25° C,	N2 300 mM	19.1	0.3	15	20	22	26	255(18)	<0.0001		
400 μM FUdR.											
	<i>daf-16</i> 50 mM	11.6	0.1	11	12	12	14	265(3)	< 0.0001		
	<i>daf-16</i> 300 mM	10.0	0.1	8	11	11	12	280(5)	<0.0001	<0.0001	
	osm-7; osm-11;										
	<i>daf-16</i> 50 mM	10.7	0.1	10	11	12	15	256(1)	< 0.0001		
	osm-7; osm-11;			_				(-)			
	<i>daf-16</i> 300 mM	8.7	0.1	7	9	10	12	275(2)	<0.0001	< 0.0001	