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Supplementary Methods

Preprocessing high-throughput genomic datasets

Three breast cancer datasets, all profiled with Affymetrix Human Genome U133A Arrays
(GPL96), were retrieved from NCBI Gene Expression Omnibus database (Supplementary
Table S1). For each of the datasets, we employed the Robust Multi-array Average (RMA)
procedures on Affymetrix .CEL files for background adjustment, quantile normalization,
and calculation of probe-set-level expression values. Values were represented in log, scale.
For gene-level analysis, in the discovery dataset of breast cancer (GSE2034) a gene with
multiple probes was represented by the probe carrying the largest coefficient of variation
(CV). Genes with mean intensity < 6 or CV < 0.05 were considered as non-informative
genes and eliminated from subsequent MAGIC analysis. Corresponding probes were
selected from GSE2990 and GSE4922, respectively, for validation analysis. The ovarian
cancer dataset (GSE26712) was preprocessed identically as GSE2034. For the TCGA
ovarian dataset, we used the preprocessed level-3 RPKM values of 420 ovarian tumors
profiled by Illumina HiSeq 2000 RNA sequencing.

Representation of similar gene sets based on kappa statistics
Despite that MSigDB collects a large volume of gene sets from independent resources,
some gene sets may share highly overlapped gene contents, for a biological function may
be annotated as multiple gene sets in different categories (examples in Supplementary Fig.
S2A-B). Dependence between gene sets can cause bias in statistical tests and interpretation
of analytical results. Addressing this, we employed kappa statistics to identify clusters of
similar gene sets and find a representative gene set for each cluster. The kappa statistic
characterizes the “degree of agreement” of two gene sets, considering both commonly
shared (i.e. genes appearing in both of gene sets) and exclusive (i.e. genes included in
neither of two sets) components of two sets of genes. Defined as
K = Po — Pc ( S 1)
1-pc
, where p, and p. denote the observed and the expected proportions of genes in which
two gene sets agree, respectively, the kappa statistic falls in the range of [—1,+1], with
large value indicating high degree of agreement. k is approximately normally distributed
(Cohen, 1960) with the standard error of:




_ Po(1 — Do)
o= Na=p >

, and the statistical significance can be tested against the null hypothesis of p, = p.. Based
on the kappa statistics, functionally defined gene sets (CGP, GO, and OS) with pairwise
significant agreement (Bonferroni adjusted P-values < 0.05) were defined as similar gene
sets and pooled into a gene set cluster. Histogram of size of gene set clusters is shown in
Supplementary Fig. S2C. For each cluster, gene set with the highest intra-cluster mean
kappa statistic was selected as the representing gene set. For a gene set clusters with
multiple representing gene set definitions, to conserve the most information as possible the
representing gene sets with the largest sizes of gene contents was selected (examples in
Supplementary Fig. S2B). Subsequent gene-set level analysis of MAGIC was conducted
based on the representing gene sets.

Supplementary Discussion

MAGIC is developed based on two criteria: the modulation score A/ and the
significance assessed by the modulation test. Specifically, we adopted the conjugate
Fisher - inverse Fisher transformation to handle the biases on sample correlation
coefficients caused by sample sizes. Such transformation was shown to be statistically
effective (Fisher, 1915) and performed well in our simulation datasets (the Results
section of main text). To test its performance in real genomic dataset, we applied MAGIC
to sub-datasets generated by down-sampling the GSE2034 breast cancer data set (209
ER+ and 77 ER— samples). In the analysis of equally-sized ER+ and ER— sub-cohorts (N
= 77 in each group), we identified a moderate prevalence of ER+ specific gene
interaction pairs compared to ER— specific ones (average, 1,917.6 vs. 1,764.8 pairs, from
ten independent down-sampling iterations). However, in the scenario generated by
reversing the ER+/ER— ratio (i.e., 28 ER+ and 77 ER-), a majority of significant
ER-MRTPs were ER— specific (average, 42.8 vs. 6,073.3 pairs). Indeed, correlation
obtained from a population with large sample size is intrinsically of high statistical power.
Furthermore, the assumptions of MAGIC that high-throughput genomic data follow a
standard normal distribution and the expression of modulator gene is independent of
other genes may not always hold true in highly heterogeneous and complex cancer
genomics. The co-existence of other key modulator genes may also complicate the
problem.

On the other hand, while our findings of breast cancer (GSE2034) were validated by
two independent cohorts, we failed to verify those of ovarian cancer (GSE26712) in the
TCGA dataset profiled by a sequencing platform. This illuminated the possibility that
while ER serves as a dominant modulator gene in breast cancer, in ovarian cancer there
may coexist other key players of genomic modulation. As we discussed in the main text,
changes in the mutational spectrum and molecular profiles between the two cancers could
also affect the dominance of ER modulation. Furthermore, the validation rate may be
influenced by the differences in clinical characteristics of the two ovarian cancer cohorts.
Since in both datasets the immunohistochemical status of ER was not available, we
adopted the expression level of ESR/ as an estimation; the estimation accuracy may be
limited. Also, for expression measurement and processing is diverse in the analysis of
next-generation sequencing data, e.g., log-transform or not, RPKM or TPM, etc., further



modifications may be made to MAGIC to carry out statistically and biologically more
meaningful analyses from sequencing data. Future study that addresses these limitation is
warranted.
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Supplementary Figure S1: Illustration of two approaches for analyzing differential
interaction networks. (A) Differential networks can be analyzed by comparing
interaction networks each obtained from a specific cellular condition, in terms of
topological changes and rewiring. (B) An alternative method is to construct a constrained
differential interaction network by merging the modulated genomic pairings of which
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Supplementary Figure S2: Identification and representation of similar gene sets
based on kappa statistics. (A) Illustration of gene set clusters and selection of
representative gene sets. Kappa statistic was employed for identifying gene set clusters.
Functional gene sets with pairwise significant kappa p-values were considered as similar
and then clustered. For each gene set cluster, the gene set with the highest intra-cluster
mean kappa statistic was selected as the representative gene set (illustrated as the centered
gene set). For gene set cluster where two centered gene sets exist, the larger one was
selected. (B) Real examples of identified gene set clusters. (C) Histogram of number of

gene sets within each cluster.
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Supplementary Figure S3: Analysis flowchart of MAGIC. MAGIC is composed of
three major components: (A) gene/gene set scoring and filtering, (B) modulated analysis,
including two major criteria based on conjugate Fisher and inverse Fisher transformation,
and (C) construction and visualization of the modulated interaction networks.
Mathematical details are provided in the Methods section of main text.
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Supplementary Figure S4: Expression abundance of AKRICI and LPL in breast
cancer. AKRICI-LPL gene pair had the highest modulation score among all the
ER-MRTPs in breast cancer. However, neither of the two genes was differentially
expressed between the states of ER. Bonferroni adjusted #-test P-values are labeled in the
figure. (A) Box plots of AKRIC1. (B) Box plots of LPL.
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Supplementary Figure S5: The ER modulated interaction sub-networks of TUBB6
and GPNMB from the ER-MGIN in breast cancer (Fig. 2A of main text). (A)
Thirty-six genes were correlated with the expression of TUBB6 under ER modulation.
These genes showed enrichment functions of signal peptide, cell adhesion, and EGF-like
region, conserved site. (B) GPNMB was connected to 32 genes, enriched in functions of
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Supplementary Figure S6: The ER modulated interaction sub-networks of AR,
TGFBR2 and STAT3 from the ER-MGIN in breast cancer (Fig. 2A of main text). AR,
TGFBR?2 and STAT3 were found to be involved in 16, 11, and 8 ER-MRTPs, respectively.
The ER-modulated partners of AR exhibited enrichment in functions of phosphoprotein,
DNA binding, and Golgi apparatus. The partners of TGFBR2 were enriched in signal
peptide and glycoprotein. Acetylation was enriched in the STAT3 sub-network.
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Supplementary Figure S7: The sub-network of cytogenetic bands in breast cancer.
Extraction of CBs and their ER-modulated partners from the ER-MGSIN (Fig. 3A of
main text).
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of main text).
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Supplementary Figure S9: The ER dependent prognostic sub-network in breast
cancer. Extraction of ER+ dependent prognostic gene sets and their ER-modulated
partners from the ER-MGSIN (Fig. 3A of main text), with triangle and hexagon nodes
denoting gene sets with ER+ specific positive and negative beta values, respectively. Lis
of gene set interaction pairs is provided in Supplementary Table S4C.
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concordant to the results from GSE2034 and GSE4922.
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Supplementary Figure S11: The ER-modulated gene interaction network
(ER-MGIN) in ovarian cancer. We applied MAGIC to an ovarian cancer dataset and
inferred 11,584 significant ER-modulated gene pairs which involved 1,477 genes. Node
sizes are proportional to the connectivity of genes, and genes with connectivity >100 are
labeled with gene symbols. Genes with identical degree are arranged in one circle. List
and summary of ER-MRTPs are provided in Supplementary Table S6A-B.
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Supplementary Figure S12: The ER-modulated gene set interaction network
(ER-MGSIN) in ovarian cancer. We also used MAGIC to analyze the modulated
interactions among functions and pathways in ovarian cancer. A total of 38,891
significant ER-modulated gene set pairs which involved 1,517 gene sets were merged
into the ER-MGSIN. List and summary of ER-MRTPs are tabulated in Supplementary
Table S6C-D.
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Supplementary Figure S13: The subnetworks of CAHOY_ASTROCYTIC in breast
and ovarian cancers. Extraction of CAHOY ASTROCYTIC and its ER-modulated
partners from the ER-MGSINSs in breast cancer and ovarian cancer (Fig. 3A of main text
and Supplementary Fig. S12). The significance level of overlap between two groups of

gene sets was assessed by Fisher’s exact test.
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cancer. (A) Scatter plot of gene set connectivity and mean connectivity of genes
belonging to the gene set. (B) Scatter plot of gene set connectivity and percentage of
content genes that appeared as hubs (with connectivity in the top 5%) in the ER-MGIN.
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Supplementary Tables

Supplementary Table S1: Summary of microarray datasets used in the study

GSE2034 GSE2990 GSE4922 GSE26712 TCGA
Breast cancer Breast cancer Breast cancer Ovarian Ovarian
Usage . L L cancer cancer
discovery validation validation . 1
discovery validation
Number of 210/210
ER-+/ER~— 209/77 (2.71) 149/34 (4.38) 211/34 (6.21) 92/92 (1.00) (1.00)
patients (ratio)" )
[llumina
Platform Affymetrix Human Genome U133A Array HiSeq 2000
Sequencing
(Cancer
Reference (Wang, et al.,  (Sotiriou, et (Ivshina, et (Bonome, et Gzr;{)ar;le
2005) al., 2006) al., 2006) al., 2008)
Research,
2011)

"Patients with missing estrogen receptor (ER) status were not included for breast cancer
datasets.
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Supplementary Table S2: Performance of MAGIC in comparison with MI-based methods (balanced design)

Measurement ~ Method  pyu’ | 5.4 1\1:13‘? 1:3° | 3:1° lello"o 1:3° | 3:1° Nljgﬁ 1:3° | 3:1° Nljgﬁ 1:3° | 3:1° Nl?lol?o 1:3> | Mean
03 | 098 1.00 067 | 1.00 097 0094 | 1.00 1.00 099 | 1.00 1.00 1.00 | 1.00 1.00 1.00 | 097

MAGIC 0.7 | 1.00 1.00 094 | 1.00 1.00 1.00 | 1.00 1.00 1.00 | 1.00 1.00 1.00 | 1.00 1.00 1.00 | 1.00

Precision 1.0 | 1.00 1.00 1.00 | .00 1.00 1.00 | 1.00 1.00 1.00 | 1.00 1.00 1.00 | 1.00 1.00 1.00 | 1.00
03 | 040 025 033 | 067 020 050 ] 060 050 067 | 075 057 050 | 057 022  — | 048

MI 0.7 | 040 036 050 | 050 050 075 | 1.00 067 033 | 0.86 058 067 | 0.99 092 057 | 064

1.0 | 050 050 070 | 1.00 033 043 | 099 098 050 | 1.00 1.00 068 | 1.00 1.00 1.00 | 0.77

03 | 003 001 001 | 017 007 002] 075 048 018 | 0.96 0.82 038 | 1.00 099 080 | 044

MAGIC 0.7 | 053 025 007 | 1.00 095 057 | 1.00 1.00 1.00 | 1.00 1.00 1.00 | 1.00 1.00 1.00 | 0.2

Recall 1.0 | 1.00 1.00 085 | 1.00 1.00 1.00 | 1.00 1.00 1.00 | 1.00 1.00 1.00 | 1.00 1.00 1.00 | 0.99
03 | 000 000 000 ] 000 000 000]| 000 000 000 | 0.00 000 000 | 000 000 000 ]| 0.00

MI 0.7 | 000 000 000 | 000 000 000|000 000 000|001 000 000|010 001 000 | 00l

1.0 | 000 000 000|001 000 000]| 022 005 000 | 0.89 041 001 | 1.00 100 008 | 024

03 | 051 051 050 | 058 054 051 ] 0.87 074 059 | 098 091 069 | .00 1.00 090 | 072

MAGIC 0.7 | 077 062 053] 1.00 098 079 | .00 1.00 1.00 | 1.00 1.00 1.00 | 1.00 1.00 1.00 | 091

Accuracy 1.0 | 1.00 1.00 092 | 1.00 1.00 1.00 | 1.00 1.00 1.00 | 1.00 1.00 1.00 | 1.00 1.00 1.00 | 0.99
03 | 050 050 050 | 050 050 050 | 050 050 050 | 050 050 050 | 050 050 050 | 0.50

MI 0.7 | 050 050 050 | 050 050 050 | 050 050 050 | 050 050 050 | 0.55 051 050 | 0.50

1.0 | 050 050 050 | 050 050 050 | 0.61 052 050 | 0.95 070 050 | 1.00 1.00 054 | 0.62

03 | 53 52 51 | 52 52 52| 52 53 53 | 53 53 54 | 55 55 55 | 53

MAGIC 07 | 51 51 51| 52 52 51| 53 52 52| 53 53 53 | 55 54 54| 52

Fime (sec) 10 | 51 51 51| 51 52 52| 57 55 52| 61 57 84 | 58 54 54 | 56
: 03 | 741 726 697 | 1051 1029 972 | 1618 1589 1463 | 2098 2025 1853 | 3116 3018 2767 | 1651

MI 0.7 | 735 719 697 | 1030 1020 958 | 1611 1562 1453 | 2093 2009 1861 | 3117 2993 2766 | 1642

10 | 731 719 699 | 1037 1027 960 | 1613 1588 1607 | 2664 2590 2225 | 3193 2968 2741 | 1757

Measurement numbers greater than 0.80 are labeled in bold.

*Correlation coefficient in M+ samples for M-modulated pairs

PRatio between numbers of M+ and M— samples
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Supplementary Table S5: Validation of ER modulated interaction between
COULOUARN _TEMPORAL TGFB1_SIGNATURE DN and three NFxB target

gene sets in breast cancer

GSE2990 GSE4922

Corr. in ER+ Corr. in ER— AIY  P-value | Corr. in ER+ Corr.in ER— AI'Y  P-value

VSNFKAPPABG65 01 0.41 -0.14 042 1.67e-6 0.54 0.10 0.61 ~0
VSNFKAPPAB 01 0.43 -0.14 0.45 2.08e-7 0.53 0.01 0.65 1.11e-16
VENFKB_ Q6 0.39 -0.10 0.43 1.53e-6 0.53 0.03 0.64 1.11e-16
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Supplementary Table S7: Validation of ER modulated interaction between
COULOUARN _TEMPORAL TGFB1_SIGNATURE DN and three NFxB target

gene sets in ovarian cancer

GSE26712
Corr. in high-ESRI  Corr. in low-ESRI AI'Y  P-value

VSNFKAPPABG65 01 0.60 0.51 0.10  0.06

VSNFKAPPAB 01 0.57 0.40 0.17  0.008
VENFKB_ Q6 0.58 0.46 0.12  0.03
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