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Supplementary Methods 
Preprocessing high-throughput genomic datasets 
Three breast cancer datasets, all profiled with Affymetrix Human Genome U133A Arrays 
(GPL96), were retrieved from NCBI Gene Expression Omnibus database (Supplementary 
Table S1). For each of the datasets, we employed the Robust Multi-array Average (RMA) 
procedures on Affymetrix .CEL files for background adjustment, quantile normalization, 
and calculation of probe-set-level expression values. Values were represented in log2 scale. 
For gene-level analysis, in the discovery dataset of breast cancer (GSE2034) a gene with 
multiple probes was represented by the probe carrying the largest coefficient of variation 
(CV). Genes with mean intensity < 6 or CV < 0.05 were considered as non-informative 
genes and eliminated from subsequent MAGIC analysis. Corresponding probes were 
selected from GSE2990 and GSE4922, respectively, for validation analysis. The ovarian 
cancer dataset (GSE26712) was preprocessed identically as GSE2034. For the TCGA 
ovarian dataset, we used the preprocessed level-3 RPKM values of 420 ovarian tumors 
profiled by Illumina HiSeq 2000 RNA sequencing. 

�

Representation of similar gene sets based on kappa statistics 
Despite that MSigDB collects a large volume of gene sets from independent resources, 
some gene sets may share highly overlapped gene contents, for a biological function may 
be annotated as multiple gene sets in different categories (examples in Supplementary Fig. 
S2A-B). Dependence between gene sets can cause bias in statistical tests and interpretation 
of analytical results. Addressing this, we employed kappa statistics to identify clusters of 
similar gene sets and find a representative gene set for each cluster. The kappa statistic 
characterizes the “degree of agreement” of two gene sets, considering both commonly 
shared (i.e. genes appearing in both of gene sets) and exclusive (i.e. genes included in 
neither of two sets) components of two sets of genes. Defined as 

 ! = #$ − #&
1 − #&

 (S1) 

, where #$ and  #& denote the observed and the expected proportions of genes in which 
two gene sets agree, respectively, the kappa statistic falls in the range of −1,+1 , with 
large value indicating high degree of agreement. ! is approximately normally distributed 
(Cohen, 1960) with the standard error of: 



- 2 - 

 *+ =
#$(1 − #$)
.(1 − #&)/

 (S2) 

, and the statistical significance can be tested against the null hypothesis of #$ = #&. Based 
on the kappa statistics, functionally defined gene sets (CGP, GO, and OS) with pairwise 
significant agreement (Bonferroni adjusted P-values < 0.05) were defined as similar gene 
sets and pooled into a gene set cluster. Histogram of size of gene set clusters is shown in 
Supplementary Fig. S2C. For each cluster, gene set with the highest intra-cluster mean 
kappa statistic was selected as the representing gene set. For a gene set clusters with 
multiple representing gene set definitions, to conserve the most information as possible the 
representing gene sets with the largest sizes of gene contents was selected (examples in 
Supplementary Fig. S2B). Subsequent gene-set level analysis of MAGIC was conducted 
based on the representing gene sets. 
 
Supplementary Discussion 
MAGIC is developed based on two criteria: the modulation score ∆Iadj and the 
significance assessed by the modulation test. Specifically, we adopted the conjugate 
Fisher - inverse Fisher transformation to handle the biases on sample correlation 
coefficients caused by sample sizes. Such transformation was shown to be statistically 
effective (Fisher, 1915) and performed well in our simulation datasets (the Results 
section of main text). To test its performance in real genomic dataset, we applied MAGIC 
to sub-datasets generated by down-sampling the GSE2034 breast cancer data set (209 
ER+ and 77 ER− samples). In the analysis of equally-sized ER+ and ER− sub-cohorts (N 
= 77 in each group), we identified a moderate prevalence of ER+ specific gene 
interaction pairs compared to ER− specific ones (average, 1,917.6 vs. 1,764.8 pairs, from 
ten independent down-sampling iterations). However, in the scenario generated by 
reversing the ER+/ER− ratio (i.e., 28 ER+ and 77 ER−), a majority of significant 
ER-MRTPs were ER− specific (average, 42.8 vs. 6,073.3 pairs). Indeed, correlation 
obtained from a population with large sample size is intrinsically of high statistical power. 
Furthermore, the assumptions of MAGIC that high-throughput genomic data follow a 
standard normal distribution and the expression of modulator gene is independent of 
other genes may not always hold true in highly heterogeneous and complex cancer 
genomics. The co-existence of other key modulator genes may also complicate the 
problem. 

On the other hand, while our findings of breast cancer (GSE2034) were validated by 
two independent cohorts, we failed to verify those of ovarian cancer (GSE26712) in the 
TCGA dataset profiled by a sequencing platform. This illuminated the possibility that 
while ER serves as a dominant modulator gene in breast cancer, in ovarian cancer there 
may coexist other key players of genomic modulation. As we discussed in the main text, 
changes in the mutational spectrum and molecular profiles between the two cancers could 
also affect the dominance of ER modulation. Furthermore, the validation rate may be 
influenced by the differences in clinical characteristics of the two ovarian cancer cohorts. 
Since in both datasets the immunohistochemical status of ER was not available, we 
adopted the expression level of ESR1 as an estimation; the estimation accuracy may be 
limited. Also, for expression measurement and processing is diverse in the analysis of 
next-generation sequencing data, e.g., log-transform or not, RPKM or TPM, etc., further 
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modifications may be made to MAGIC to carry out statistically and biologically more 
meaningful analyses from sequencing data. Future study that addresses these limitation is 
warranted. 
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Supplementary Figures 
 

 
Supplementary Figure S1: Illustration of two approaches for analyzing differential 
interaction networks. (A) Differential networks can be analyzed by comparing 
interaction networks each obtained from a specific cellular condition, in terms of 
topological changes and rewiring. (B) An alternative method is to construct a constrained 
differential interaction network by merging the modulated genomic pairings of which 
regulatory strength is significantly modulated by cellular conditions. 
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Supplementary Figure S2: Identification and representation of similar gene sets 
based on kappa statistics. (A) Illustration of gene set clusters and selection of 
representative gene sets. Kappa statistic was employed for identifying gene set clusters. 
Functional gene sets with pairwise significant kappa p-values were considered as similar 
and then clustered. For each gene set cluster, the gene set with the highest intra-cluster 
mean kappa statistic was selected as the representative gene set (illustrated as the centered 
gene set). For gene set cluster where two centered gene sets exist, the larger one was 
selected. (B) Real examples of identified gene set clusters. (C) Histogram of number of 
gene sets within each cluster. 
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Supplementary Figure S3: Analysis flowchart of MAGIC. MAGIC is composed of 
three major components: (A) gene/gene set scoring and filtering, (B) modulated analysis, 
including two major criteria based on conjugate Fisher and inverse Fisher transformation, 
and (C) construction and visualization of the modulated interaction networks. 
Mathematical details are provided in the Methods section of main text. 
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Supplementary Figure S4: Expression abundance of AKR1C1 and LPL in breast 
cancer. AKR1C1-LPL gene pair had the highest modulation score among all the 
ER-MRTPs in breast cancer. However, neither of the two genes was differentially 
expressed between the states of ER. Bonferroni adjusted t-test P-values are labeled in the 
figure. (A) Box plots of AKR1C1. (B) Box plots of LPL. 
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Supplementary Figure S5: The ER modulated interaction sub-networks of TUBB6 
and GPNMB from the ER-MGIN in breast cancer (Fig. 2A of main text). (A) 
Thirty-six genes were correlated with the expression of TUBB6 under ER modulation. 
These genes showed enrichment functions of signal peptide, cell adhesion, and EGF-like 
region, conserved site. (B) GPNMB was connected to 32 genes, enriched in functions of 
signal peptide glycoprotein, growth factor binding, and response to wounding. 
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Supplementary Figure S6: The ER modulated interaction sub-networks of AR, 
TGFBR2 and STAT3 from the ER-MGIN in breast cancer (Fig. 2A of main text). AR, 
TGFBR2 and STAT3 were found to be involved in 16, 11, and 8 ER-MRTPs, respectively. 
The ER-modulated partners of AR exhibited enrichment in functions of phosphoprotein, 
DNA binding, and Golgi apparatus. The partners of TGFBR2 were enriched in signal 
peptide and glycoprotein. Acetylation was enriched in the STAT3 sub-network.  



- 10 - 

 
Supplementary Figure S7: The sub-network of cytogenetic bands in breast cancer. 
Extraction of CBs and their ER-modulated partners from the ER-MGSIN (Fig. 3A of 
main text). 
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Supplementary Figure S8: The sub-network of gene ontology terms in breast cancer. 
Extraction of GO terms and their ER-modulated partners from the ER-MGSIN (Fig. 3A 
of main text). 
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Supplementary Figure S9: The ER dependent prognostic sub-network in breast 
cancer. Extraction of ER+ dependent prognostic gene sets and their ER-modulated 
partners from the ER-MGSIN (Fig. 3A of main text), with triangle and hexagon nodes 
denoting gene sets with ER+ specific positive and negative beta values, respectively. List 
of gene set interaction pairs is provided in Supplementary Table S4C. 
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Supplementary Figure S10: Kaplan-Meier curves of 
COULOUARN_TEMPORAL_TGFB1_SIGNATURE_DN gene set in GSE2990. The 
TGFβ signature exhibits a trend of ER+ specific association with favorable prognosis, 
concordant to the results from GSE2034 and GSE4922. 
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Supplementary Figure S11: The ER-modulated gene interaction network 
(ER-MGIN) in ovarian cancer. We applied MAGIC to an ovarian cancer dataset and 
inferred 11,584 significant ER-modulated gene pairs which involved 1,477 genes. Node 
sizes are proportional to the connectivity of genes, and genes with connectivity >100 are 
labeled with gene symbols. Genes with identical degree are arranged in one circle. List 
and summary of ER-MRTPs are provided in Supplementary Table S6A-B. 
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Supplementary Figure S12: The ER-modulated gene set interaction network 
(ER-MGSIN) in ovarian cancer. We also used MAGIC to analyze the modulated 
interactions among functions and pathways in ovarian cancer. A total of 38,891 
significant ER-modulated gene set pairs which involved 1,517 gene sets were merged 
into the ER-MGSIN. List and summary of ER-MRTPs are tabulated in Supplementary 
Table S6C-D.  
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Supplementary Figure S13: The subnetworks of CAHOY_ASTROCYTIC in breast 
and ovarian cancers. Extraction of CAHOY_ASTROCYTIC and its ER-modulated 
partners from the ER-MGSINs in breast cancer and ovarian cancer (Fig. 3A of main text 
and Supplementary Fig. S12). The significance level of overlap between two groups of 
gene sets was assessed by Fisher’s exact test. 
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Supplementary Figure S14: Relationship between connectivity of gene sets in 
ER-MGSIN and the connectivity of their content genes in the ER-MGIN in breast 
cancer. (A) Scatter plot of gene set connectivity and mean connectivity of genes 
belonging to the gene set. (B) Scatter plot of gene set connectivity and percentage of 
content genes that appeared as hubs (with connectivity in the top 5%) in the ER-MGIN. 
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Supplementary Tables 
 
Supplementary Table S1: Summary of microarray datasets used in the study 
 

 GSE2034 GSE2990 GSE4922 GSE26712 TCGA 

Usage Breast cancer 
discovery 

Breast cancer 
validation 

Breast cancer 
validation 

Ovarian 
cancer 

discovery 

Ovarian 
cancer 

validation 

Number of 
ER+/ER− 

patients (ratio)* 
209/77 (2.71) 149/34 (4.38) 211/34 (6.21) 92/92 (1.00) 210/210 

(1.00) 

Platform Affymetrix Human Genome U133A Array 
Illumina 

HiSeq 2000 
Sequencing 

Reference (Wang, et al., 
2005) 

(Sotiriou, et 
al., 2006) 

(Ivshina, et 
al., 2006) 

(Bonome, et 
al., 2008) 

(Cancer 
Genome 

Atlas 
Research, 

2011) 
*Patients with missing estrogen receptor (ER) status were not included for breast cancer 
datasets. 
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Supplementary Table S2: Performance of MAGIC in comparison with MI-based methods (balanced design) 
 
Measurement Method ρM+

a N=30 N=100 N=300 N=500 N=1000 Mean 3:1b 1:1b 1:3b 3:1b 1:1b 1:3b 3:1b 1:1b 1:3b 3:1b 1:1b 1:3b 3:1b 1:1b 1:3b 

Precision 

MAGIC 
0.3 0.98 1.00 0.67 1.00 0.97 0.94 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 0.97 
0.7 1.00 1.00 0.94 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
1.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

MI 
0.3 0.40 0.25 0.33 0.67 0.20 0.50 0.60 0.50 0.67 0.75 0.57 0.50 0.57 0.22 -- 0.48 
0.7 0.40 0.36 0.50 0.50 0.50 0.75 1.00 0.67 0.33 0.86 0.58 0.67 0.99 0.92 0.57 0.64 
1.0 0.50 0.50 0.70 1.00 0.33 0.43 0.99 0.98 0.50 1.00 1.00 0.68 1.00 1.00 1.00 0.77 

Recall 

MAGIC 
0.3 0.03 0.01 0.01 0.17 0.07 0.02 0.75 0.48 0.18 0.96 0.82 0.38 1.00 0.99 0.80 0.44 
0.7 0.53 0.25 0.07 1.00 0.95 0.57 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.82 
1.0 1.00 1.00 0.85 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 

MI 
0.3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
0.7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.10 0.01 0.00 0.01 
1.0 0.00 0.00 0.00 0.01 0.00 0.00 0.22 0.05 0.00 0.89 0.41 0.01 1.00 1.00 0.08 0.24 

Accuracy 

MAGIC 
0.3 0.51 0.51 0.50 0.58 0.54 0.51 0.87 0.74 0.59 0.98 0.91 0.69 1.00 1.00 0.90 0.72 
0.7 0.77 0.62 0.53 1.00 0.98 0.79 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.91 
1.0 1.00 1.00 0.92 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 

MI 
0.3 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 
0.7 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.55 0.51 0.50 0.50 
1.0 0.50 0.50 0.50 0.50 0.50 0.50 0.61 0.52 0.50 0.95 0.70 0.50 1.00 1.00 0.54 0.62 

Time (sec.) 

MAGIC 
0.3 5.3 5.2 5.1 5.2 5.2 5.2 5.2 5.3 5.3 5.3 5.3 5.4 5.5 5.5 5.5 5.3 
0.7 5.1 5.1 5.1 5.2 5.2 5.1 5.3 5.2 5.2 5.3 5.3 5.3 5.5 5.4 5.4 5.2 
1.0 5.1 5.1 5.1 5.1 5.2 5.2 5.7 5.5 5.2 6.1 5.7 8.4 5.8 5.4 5.4 5.6 

MI 
0.3 741 726 697 1051 1029 972 1618 1589 1463 2098 2025 1853 3116 3018 2767 1651 
0.7 735 719 697 1030 1020 958 1611 1562 1453 2093 2009 1861 3117 2993 2766 1642 
1.0 731 719 699 1037 1027 960 1613 1588 1607 2664 2590 2225 3193 2968 2741 1757 

Measurement numbers greater than 0.80 are labeled in bold. 
aCorrelation coefficient in M+ samples for M-modulated pairs 
bRatio between numbers of M+ and M− samples 
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Supplementary Table S5: Validation of ER modulated interaction between 
COULOUARN_TEMPORAL_TGFB1_SIGNATURE_DN and three NFκB target 
gene sets in breast cancer 
 

 
GSE2990 GSE4922 

 Corr. in ER+ Corr. in ER− ΔIadj P-value Corr. in ER+ Corr. in ER− ΔIadj P-value 

V$NFKAPPAB65_01 0.41 -0.14 0.42 1.67e-6 0.54 0.10 0.61 ~0 

V$NFKAPPAB_01 0.43 -0.14 0.45 2.08e-7 0.53 0.01 0.65 1.11e-16 

V$NFKB_Q6 0.39 -0.10 0.43 1.53e-6 0.53 0.03 0.64 1.11e-16 
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Supplementary Table S7: Validation of ER modulated interaction between 
COULOUARN_TEMPORAL_TGFB1_SIGNATURE_DN and three NFκB target 
gene sets in ovarian cancer 
 

 
GSE26712 

 Corr. in high-ESR1 Corr. in low-ESR1 ΔIadj P-value 

V$NFKAPPAB65_01 0.60 0.51 0.10 0.06 

V$NFKAPPAB_01 0.57 0.40 0.17 0.008 

V$NFKB_Q6 0.58 0.46 0.12 0.03 

 
 
 


