

Supplemental Figure 1: Transformation of *G. gynandra* **M** and **BS cells**. Abaxial leaf surfaces of *G. gynandra* seedlings (A) were subjected to microprojectile bombardment. This transformed many cells with the reporter GUS, including M (B) and BS (C) cells. Scale bars in A = 1 cm, B-C = 50 μ m. The CaMV35S promoter control construct (D) transformed an equal number of M and BS cells (number of cells counted = 394) (E). Error bars represent one standard error.

Supplemental Figure 2: 3' UTRs of Gg-CA2 and At-CA2 generate M-specificity. Transient transformation of *G. gynandra* leaves by microprojectile bombardment demonstrates that 3' UTRs of Gg-CA2 and At-CA2 genes increase the proportion of M-cells expressing GUS relative to a CaMV35S control (dashed lines), whereas 5' UTRs do not direct M-specificity. Numbers within histogram bars represent the number of independently transformed cells for each construct. Asterisks denote statistical significance compared to the control (p<0.005, two-tailed student's t-test), error bars denote standard error.

Supplemental Figure 3: Representative transverse sections from stable transgenic lines. Transverse sections of GUS stained leaves from each of three independent stable transgenic lines expressing the Gg-*CA4* 5' UTR fused to GUS (A-C), and three lines expressing the Gg-*CA4* 5' UTR with a 5 nt mutation (D-F). Two representative transverse sections are shown for each of two lines expressing a chimaeric Gg-*CA4* sequence sufficient to direct GUS accumulation primarily in M cells (termed MEM2 sufficiency 2). Line 1 (G-H), Line 2 (I-J). Scale bars = 100 μ m.

Supplemental Figure 4: Quantification of marker transcripts in isolated M and BS cells.

qRT-PCR quantification of the M cell marker *PPC* and the BS cell marker *NADME2* in A) lines expressing *GUS* under the control of the Gg-*CA4* 5' UTR and B) lines expressing *GUS* under the control of a mutated Gg-*CA4* 5' UTR. Error bars represent one standard error. Data are presented as mean of three replicates for each line and cell type.

Supplemental Figure 5: Mutation of MEM2 does not effect translation *in vitro*. *In vitro* translation of *uidA* encoding GUS sequence with or without Gg-*CA4* UTRs. Translation in vitro produced more protein with Gg-*CA4* UTRs compared with the pTNT vector control UTRs (A). Quantification by fluorescent gel analysis showed a 60% increase in protein synthesized from RNA with both 5' and 3' Gg-*CA4* UTRs (B). Mutation of MEM2 did not alter translation rate. Asterisks denote statistical significance compared to the control (p = <0.05, two-tailed student's t-test), error bars denote one standard error. Results in (B) represent the mean of two independent experiments.

Supplemental Figure 6: Hypothesis for mechanisms regulating the abundance and cellspecificity of CA4. In the ancestral C_3 state (A), high levels of CA4 expression in A. thaliana are conferred by the promoter region (black). Introns (grey), exons (white) and UTRs (blue) have little net effect on At-CA4 abundance, but repressive elements in the 5' UTR intron and 3' UTR reduce expression. The promoter of CA4 from C_4 G. gynandra generates higher expression than At-CA4 (B and C). The repressive 5' UTR intron is not present in Gg-CA4, perhaps contributing to this increased abundance. M-specificity is conferred by sequences present in both the 5' and 3' UTR of Gg-CA4. Gg-CA4 transcripts are equally abundant in M and BS cells, but preferentially translated in M cells (B). We hypothesize the presence of a *trans*-acting factor that reduces translation (denoted by red cross) of Gg-CA4 in BS cells (C). Pointed arrowheads represent mechanisms conferring increased abundance; flat arrowheads represent mechanisms that may operate transcriptionally or post-transcriptionally. (+) symbols denote a positive effect on overall expression, (-) symbols denote a negative effect.

UTR Construct	TOTAL M Cells	Total BS Cells	Total Cells
CaMV 35S Control	595	613	1208
Gg- <i>CA4</i> 5' UTR	323	114	437
Gg-CA4 5' 60F deletion	132	64	196
Gg-CA4 5' 80F deletion	441	194	635
Gg-CA4 5' 100F deletion	174	186	360
Gg-CA4 5' 20R deletion	107	104	211
Gg-CA4 5' 14R deletion	272	352	624
Gg-CA4 5' 7R deletion	320	413	733
Gg-CA4 5' mutant	234	187	421
Gg- <i>CA4</i> 3' UTR	283	81	364
Gg-CA4 3' mutant	153	165	318
Gg- <i>CA2</i> 3' UTR	199	49	248
Gg-CA2 3' mutant	210	188	398
Gg- <i>PPDK</i> 5' UTR	224	101	325
Gg-PPDK 5' mutant	223	203	426
Gg- <i>PPDK</i> 3' UTR	143	64	207
Gg-PPDK 3' mutant	202	149	351
Gg- <i>CA2</i> 5' UTR	198	150	348
At- <i>CA2</i> 5' UTR	204	195	399
At- <i>CA2</i> 3' UTR	310	172	482
MEM2 Sufficiency 1	547	297	844
MEM2 Sufficiency 2	609	248	857

Supplemental Table 1

RNA-Seq replicate	Transcript abundance (effective counts)		
	М	BS	
Rep 1	2307	3403	
Rep 2	2013	2242	
Rep 3	1650	2491	
Mean	2253	2337	
Fold Change	1.04		
log2 Fold Change	0.05		
p-value (Fisher's exact test)	0.729		

Supplementa` Table 2: Gg-*C* A4 transcript abundance, measured by transcriptome sequencing of M and BS cells

Construct	No. of replicates	Median GUS activity (pmol MU/min/µg protein	Standard deviation	p value (vs. mutant, two-tailed t-test)
Gg- <i>CA4</i> 5' UTR	18	9.5	16.4	0.89
Gg-CA4 5' UTR mutant	14	11.2	23.9	
Gg- <i>CA4</i> 3' UTR	11	4.1	18.2	0.15
Gg-CA4 3' UTR mutant	12	4.9	15.9	

Supplementa` Table 3