

Supplemental Figure 1. (A, B) Injection of 11.5 mM NaHCO₃ (**A**) at pH 7 or pH 8 into oocytes and (**B**) recordings in 96 mM NaCl extracellular buffer also cause enhancement of SLAC1-mediated anion channel currents, whereas (**A**) 23 mM sorbitol injection has no effect on SLAC1 activity. (**B**) Note that the reversal potential of SLAC1yc + OST1yn-mediated currents in (B) was close to the Cl-equilibrium potential. Data are mean \pm s.e.m.

Supplemental Figure 2. Steady-state current-voltage relationships show the average magnitude of SLAC1yc/OST1yn-mediated anion channel currents recorded from oocytes injected with 11.5 mM NaCl were reduced rather than enhanced. Data are mean \pm s.e.m. Data are representative of experiments performed on three independent oocyte batches.

Supplemental Figure 3. Surface pH (pH_s) measurements from oocytes exposed to CO_2/HCO_3^- . Oocytes were exposed to 5% $CO_2/33$ mM HCO_3^- long enough for the pH_s to rise and then decay exponentially to a stable value. Traces from oocytes recorded in the same batch are shown.

Supplemental Figure 4. The *PIP2;1-W85A and PIP2;1-F210A* mutation isoforms do not impair the PIP2;1-CA4 enhancement of SLAC1/OST1-mediated anion channel currents in oocytes by extracellular CO_2/HCO_3^- . (A) Whole-cell currents were recorded from oocytes expressing the indicated cRNAs with 11.5 mM NaHCO₃ in the bath solution. The voltage protocol was the same as in Figure 1. (B) Steady-state current-voltage relationships from oocytes recorded as in (A). Data are mean \pm s.e.m. Results from three independent batches of oocytes showed similar results.

Supplemental Figure 5. Simulated membrane surface pH (pH_s) as a function of time for baseline parameter values (black curve), in the presence of intracellular carbonic anhydrase (CA) activity (red curve), for simulated increased membrane CO₂ permeability (green curve), and in the presence of both intracellular CA activity and increased membrane CO₂ permeability (blue curve). An extracellular CO₂ increase from 200 ppm to 800 ppm (Hanstein et al., 2001) was simulated (see Methods), resulting in smaller modeled membrane surface pH (pH_s) changes than when larger CO₂ concentration steps were applied experimentally in oocytes.

Supplemental Figure 6. (A) Structure of *PIP2;1* gene and T-DNA insertion. *PIP2;1* consists of four exons (open boxes); black boxes highlight the 5' and 3' untranslated regions, respectively. Mutant line *pip2;1* (ABRC stock name CS320492) has a T-DNA insertion in 5'-UTR region. The location of qPCR primers is shown by opposing arrows. **(B)** qPCR analyses suggested that *pip2;1* is a knockdown mutant. Expression level was compared to *EF-1a*. **(C)** qPCR analyses suggest that *pip2;1-2* (Grondin et al., 2015) is a knockdown mutant. Expression level was compared by means \pm s.e.m, n=3.

sequence (5'-3')
GGCTTAAUAATGGCTCCTGCATTCGG
GGTTTAAUTTCCGGTAGCTTTCTTTC
CAGAATTCGACGAAATGGCAACGGAATC
CAGGATCCTTCCGGTAGCTTTCTTTC
GGCTTAAUTAACTATGGCAAAGGATG
GGTTTAAUGACTGATTTAGATTTGTACAGAGAG
GGCTTAAUTACCACCCACCTAACCAC
GGTTTAAUCTTTCTACAGCCCAAACC
GGGGACAAGTTTGTACAAAAAAGCAGGCTAATGGCTCCTGCATTCGG
GGGGACCACTTTGTACAAGAAAGCTGGGTAGGCAAAAGCAGGAGTG
GGGGACAAGTTTGTACAAAAAAGCAGGCTTCTCACTAACCACTCCAACA
GGGGACCACTTTGTACAAGAAAGCTGGGTCACTTCTGAATGATCCAAGA
GGCTTAAUATGTCAGAAACATCAAAGTC
GGTTTAAUCTATGAGTGGCTATCTTGTCC
TGAGCACGCTCTTCTTGCTTTCA
GGTGGTGGCATCCATCTTGTTACA

Supplemental Table 1. Primers Used for Construct and Expression Studies.