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Supplemental Figure 1: Plant growth and 

chlorophyll fluorescence during progressive 

drought stress. A - rosette biomass (g) in well watered 

(open circles) and drought stressed (closed circles) 

plants; B - leaf area measurements (cm2) in well 

watered (open circles) and drought stressed (closed 

circles) plants throughout the drying period; C – leaf 7 

(red arrow) was fully expanded at the start of the 

drought stress.  Leaf 7 is marked with black colouring 

on the tip. Looking at the leaf from the centre of the 

rosette, the tip is to the right of the leaf. Red colouring 

on the tip indicates  leaf 8, green indicates leaf 9 and 

blue indicates leaf 10, and D - photochemical (qP) and 

non-photochemical (NPQ) at representative rSWC. The 

data represent the mean (n= 3; ± s.e.m.).  
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Supplemental Figure 2. Targeted metabolite analyses of secondary metabolites (except 

flavonoids), sugars and amino acids. Peak areas were log2 transformed and mean-centered and 

divided by standard deviation. The metabolites are clustered (Pearson distance and Ward clustering). 

Analysis was carried out with MetaboAnalyst 2 (Xia et al., 2012). Raw data and ANOVA are shown in 

Supplemental Data Set 1 (see key for compounds), Supplemental Data Set 2 (see key for 

compounds) and Supplemental Data Set 3.  
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Supplemental Figure 3: Targeted metabolite analyses of flavonoids and 

anthocyanines. Peak areas were log2 transformed and mean-centered and divided 

by standard deviation. Analysis was carried out as described in Supplemental Figure 

2. Raw data and ANOVA are shown in Supplemental Data Set 1 (see key for 

compounds), Supplemental Data Set 2 (see key for compounds) and Supplemental 

Data Set 3.  
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Supplemental Figure 4: The impact of drought stress on plant development. A –  Comparative 

meta-analysis of the publicly available drought datasets (Harb et al., 2010; Wilkins et al., 2010) with a 

publicly available leaf 7 senescence time-series dataset (Breeze et al., 2011); mDr – moderate drought, 

pDr – progressive drought, diel – diurnal drought, and senescence – time series senescence. The Venn 

diagram shows the overlap of the 3 drought treatments - and senescence DEGs, and B - Flowering 

time in well watered and drought stressed Arabidopsis wild type plants. Col-0 plant were grown under 

short day conditions as described in the Methods section. At 5 weeks plants were subjected to 

progressive drought stress. When 17% rSWC was reached, plants were re-watered and flowering time 

was recorded as days after sowing. Control plants were maintained well watered (n=15, ± ser) 
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Supplemental Figure 5: Temporal expression 

patterns of five selected flavonol biosynthesis 

genes. Gene expression across the microarray time 

series in control (open circles) and drought stressed 

(closed circles) plants. LDOX - 

LEUCOANTHOCYANIDIN DIOXYGENASE, PAP1 - 

PRODUCTION OF ANTHOCYANIN PIGMENT1, ANL2 

- ANTHOCYANINLESS 2, CHS - CHALCONE 

SYNTHASE and FLS - FLAVONOL SYNTHASE1. The 

data represent the mean (n= 4; ± s.e.m.). 
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5 



Supplemental Figure 6: Analysis of TF binding sites. Over-representation of known TF 

binding motifs in promoters of gene clusters. Cluster names are given on the horizontal axis, 

names and sequence logo representations of known TF binding motifs (where character size 

indicates nucleotide frequency) are shown on the vertical axis. Coloured boxes correspond to 

raw P values, and only rows/columns where at least one cluster-motif pairing shows significant 

enrichment are shown (full results available in Supplemental Data Set 13). 
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Supplemental Figure 7: Gene expression of selected drought responsive genes and 

growth analysis of agl22 mutants. A - AGL22 expression across the time series in control 

(open circles) and drought stressed (closed circles) plants, indicating an early rise in AGL22 

during drought. The star represents the time of first differential expression (Supplemental Data 

Set 4); B -  fold expression of selected differentially expressed TF genes calculated at day 12 of 

the microarray time-series experiments (for abbreviations see Supplemental Data Set 14), and 

C - growth analysis according to Boyes et al., 2001 for agl22-3 and agl22-4, compared to Col-0, 

segregating WT (AGL22-WT) and non-developmental mutant (anl2-1). The blue line indicates 

the time at which drought stress was performed. 
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B 

A 

Supplemental Figure 8: Validation of the knockout phenotype in agl22 insertion mutants and the 

specific role of AGL22 during drought stress. A - gene regulatory networks generated using the control 

time series data (threshold z-score = 1.65). No significant network emerged from the network modelling of 

the control dataset, and B - location of T-DNA insertions in agl22-3 and agl22-4 and RT-PCR of the full 

length AGL22 transcript. 
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Supplemental Figure 9: Growth and 

photosynthetic phenotype of agl22 mutants 

during drought stress A – rosette leave number 

of Col-0, agl22-3 and agl22-4 mutants plants at 

different soil water contents (n=6); B – Col-0, 

agl22-3 and agl22-4 mutants at day 22 prior to the 

start of the drought experiment, C - Col-0, agl22-3 

and agI22-4 mutants at day 31 after 9 days of 

water withdrawal and D – light response curves in 

Col-0, agl22-3 and agl22-4 at different rSWC 

(n=5). 
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Supplemental Figure 10: Biomass production in agl22 mutants compared to wild-type and 

timeline of events. A – total above ground biomass of agl22-3 and agl22-4 (n = 8). The data 

represent the mean (± s.e.m.). The letter a indicates significant difference between mutants and 

Col-0 at p < 0.05; B - biological and metabolic processes enriched across the drought 

transcriptome time-series (blue boxes). Changes in metabolites, plant growth and physiology are 

indicated in the white boxes. Enriched GO terms were identified using DAVID (Huang et al., 

2008), and C – above ground biomass distribution (biomass index; %) under control and drought 

stress conditions.   

Supplemental Data. Bechtold et al. (2016). Plant Cell 10.1105/tpc.15.00910 
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Supplemental Figure 11: Schematic overview of array hybridisations across the 13 time points and 

two different treatments. CO  indicates well-watered control sample, and D indicates the drought 

stressed samples. The numbers from zero to thirteen indicate the days of the experiment. Small letters a – 

d indicate biological replicates. Lines between samples represent hybridisations across the time-series and 

treatments. 

Supplemental Data. Bechtold et al. (2016). Plant Cell 10.1105/tpc.15.00910 
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B 

Supplemental Figure 12: Validation of the M-VBSSM approach. A – Example plateauing of the 

Marginal Likelihood around step 2000. Here different traces represent the likelihoods built around 

different genes, B - M-VBSSM was used to identify sets of genes to model together data from the 

network outlined in Zak et al. (2003). In general the M-VBSSM approach was able to correctly identify 

most to the genes to model (see Supplemental Methods).  

. 

Supplemental Data. Bechtold et al. (2016). Plant Cell 10.1105/tpc.15.00910 
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Supplemental Table 1: primers for qPCR, mutant screen and RT-PCR analyses   

Supplemental Data. Bechtold et al. (2016). Plant Cell 10.1105/tpc.15.00910 
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Primer Name Sequence Locus ID

DREB1A F TGAGATGTGTGATGCGACGAC AT4G25480

DREB1A R AAACATCGCCTCATCGTGCA AT4G25480

WRKY20 F CTGGCCGAGATGAGAAGGGA AT4G26640

WRKY20 R CGCTTCTCCACCATCGTCAG AT4G26640

GIS F CGTCGAATCCTTCTCTCAGC AT3G58070

GIS R AGAGAAATCTCTGCCGGTGA AT3G58070

AGL22 F (qPCR) CTCTCCGTTCTCTGCGACG AT2G22540

AGL22 R (qPCR) GGGCGTGATCACTGTTCTCA AT2G22540

AGL22 F (RT-PCR) ATGGCGAGAGAAAAGATTC AT2G22540

AGL22 R (RT-PCR) CTAACCACCATACGGTAAGC AT2G22540

Actin 2A AAGCTGGGGTTTTATGAATGG AT3G18780

Actin 2B GACTACGTGAACACACACTGTT AT3G18780

Cyclophilin F TCTTCCTCTTCGGAGCCATA AT2G29960

Cuclophilin R AAGCTGGGAATGATTCGATG AT2G29960

GATA7 F TGGAGAATGGGTCCATTAGG AT4G36240

GATA7 R TGGTGAATGTTGGGCTACAA AT4G36240

HB6 F TTGTGAAAATGGAGCAGACG AT2G22430

HB6 R TGATCAACGGTGGAGTACCA AT2G22430

RAP2.12 F TCGCCGATGTGAAACCATTC AT1G53910

RAP2.12 R ATTTCTCAGCGTCCCCATCC AT1G53910

VRN1 F TCCTTCTGGGTTTGCTGAGA AT3G18990

VRN1 R AGACATCGAACAGGCCATTG AT3G18990

PRE1 F TTGCCGGAGATTGGTCAACG AT5G39860

PRE1 R ACGCTCGCTCAGATTGTCAA AT5G39860

BHLH038 F AAAGGCGGTCCGCGAGTTAT AT3G56970

BHLH038 R TGGACGATGAGACTTGGAC AT3G56970

ARF1 F GGCAGACACTCCTTCCTCAG AT1G59750

ARF1 R GCCAAAAGGCTGATCCAATA AT1G59750

CaMTF5 F GCAAACGGCTGGAAACATTA AT4G16150

CaMTF5 R CCTTCAGGCTTTGCTCCTCT AT4G16150

C2H2 F GAGCAACCTTCCGTTTTCAA AT4G17810

C2H2 R ATCGAGCCAATGCTCTCATC AT4G17810

FBH3 F CCAGGGAGGGAGTTGTGCAT AT1G51140

FBH3 R CCCTTTTCACCACCACCACC AT1G51140

SPL7 F TTTTACCCGAAGCATCAACG AT5G18830 

SPL7 R TCGCCATTAGAAGGTGAACG AT5G18830 

NFY-A4 F TCAGGACGAAGTTCGGAATC AT2G34720

NFY-A4 R TGGAAGATACGCTTGCTGTG AT2G34720

SAIL_LB1 GCCTTTTCAGAAATGGATAAATAGCCTTGCTTCC

SALK_LBa1 TGGTTCACGTAGTGGGCCATCG
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Supplemental Methods 

 

As the Metropolis Variation Bayesian State Space Modelling (M-VBSSM) has not 

been published previously, we outline the model selection approach that was used in 

the main text to identify potential hub genes involved in the drought response in 

more detail. 

 

Model Comparison via a Metropolis Search 

Let 𝐺 represent a set of genes of interest (such as the set of all differentially 

expressed genes), some finite subset of which constitutes a core set, 𝑆 ⊂ 𝐺 which 

contains a particular gene of interest, 𝑖. Together this set forms a gene regulatory 

network. A key objective lies in identifying this set, as well as inferring the underlying 

network. Here we assume that the gene expression for any subset of genes is well 

modelled by a State Space model using the following coupled set of equations: 

 

𝒙𝑡 ∝ 𝐴𝒙𝑡−1 + 𝐵𝒚𝑡−1 + 𝒘𝑡 , 

𝒚𝑡 = 𝐶𝒙𝑡 + 𝐷𝒚𝑡−1 + 𝒗𝑡 , 

where 𝒙𝑡  represents the hidden states at time t, 𝒚𝑡  the vector of gene expression for 

the genes at time t, 𝒘𝑡  and 𝒗𝑡  represent additive Gaussian noise and 𝐴, 𝐵, 𝐶 and 𝐷 

capture the topology and dynamics of the underlying gene regulatory network. 

Following Beal et al. (2005) we may estimate a distribution over these parameters 

using a variational approach. Within the Bayesian setting, a key indicator of the 

model fit for a particular set of genes, S1 over a competing set of genes S2 lies in 

comparing their marginal likelihoods L(S1) and L(S2) (see e.g. Vyshemirsky and 

Girolami, 2008). In theory, model comparison can be used to exhaustively compare 

all possible sets of genes of particular cardinality with that of model S1 in order to 

identify sets of genes whose profiles have the highest probability of having been 

generated under the corresponding state space model. A distribution over these 

models might then be evaluated from their marginal likelihoods using Bayes' rule: 

 

𝑃(𝑆𝑘  𝐷 =
𝑃 𝐷 𝑆𝑘 𝑃(𝑆𝑘)

 𝑃 𝐷 𝑆𝑗  𝑃(𝑆𝑗 )𝑗

, 

where, in order to ensure models are comparable, the summation in the denominator  
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has taken place over all combinations of genes of identical cardinality. Since |𝐺| is 

typically large, exhaustive enumeration is prohibitive and a Metropolis algorithm is 

instead used to search for a local set with sufficiently large marginal likelihood. A 

Metropolis approach may be used to search for models with high marginal 

likelihoods as follows: 

 

1. First let J represent an initial set of genes with corresponding likelihood L(J) 

and complementary set 𝐽′ = 𝐺\𝐽. 

2. A new set of genes, 𝐽𝑛𝑒𝑤 , may generated by randomly swapping out 𝑁 genes 

in 𝐽\𝑖 with an identical number of genes from 𝐽′. 

3. The number of genes to be swapped is assumed to be Binomially distributed: 

 

𝑁 ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 min( 𝐽′  , |𝐽 − 1|), 𝑝 , 

 

where 𝑝 is a random variable that may be tuned to ensure acceptance rates are 

optimal, and the maximum number of genes that can be swapped is min( 𝐽′  , |𝐽 − 1|). 

The genes to be swapped are then chosen at random from their corresponding sets, 

and therefore represent a sample from a hypergeometric distribution. The new set of 

genes 𝐽𝑛𝑒𝑤  may be then be accepted or rejected according the Metropolis rule: 

 

𝑃(𝑎𝑐𝑐𝑒𝑝𝑡) =  1,
𝐿(𝐽𝑛𝑒𝑤 )𝑝(𝐽|𝐽𝑛𝑒𝑤 )

𝐿 𝐽 𝑝(𝐽𝑛𝑒𝑤 |𝐽)
 , 

where the forward and backward transition probabilities are given as products of 

Binomial and hypergeometric distributions which therefore cancel out. In this manner 

we may select genes that, when modelled alongside gene 𝑖 using a Bayesian state 

space model, yield comparatively high marginal likelihoods. This approach may be 

used to systematically identify groups of genes to model with each gene from the 

larger list. After running the algorithm for sufficiently long periods of time, the 

marginal likelihood will plateau, as shown in Supplemental Figure 12A. Since we are 

only using this approach to achieve a preliminary ranking of genes, we opt to 

terminate the algorithm once the marginal likelihood plateaus, which occurs around 

step 2000. The networks at step 2000 are then used to compile summary network 

statistics, such as the number of times a given gene appears in a model, or the 

number of downstream connections it has. 

Supplemental Data. Bechtold et al. (2016). Plant Cell 10.1105/tpc.15.00910 
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Results 

 

A preliminary test of the above algorithm was run on the in silico network of Zak et al. 

(2003), an ODE model describing 10 genes interacting via a total of 55 

intermediates. This network incorporates many important biological network 

structures, including cascades, switches and auto-activation, complex kinetic 

interactions, including dimerisation/undimerisation and promoter binding/unbinding. 

For this reason, the Zak network is often employed as gold standard for the initial 

benchmarking of methods (Beal et. al., 2005; Penfold and Wild, 2011). 

 

Using the Zak network, a series of WT time series profiles were simulated (indexed 

by 𝑀 =  1, … ,10 ). Subsequently a perturbation set of profiles (𝑁 =  11, … ,20 ) were 

generated by perturbing the ligand injection, Q, and the two sets combined to give 

𝐺 = 𝑀 ∪ 𝑁. 

 

In the MVBSSM the main goal is to identify as subset of genes that fit well together 

i.e., produce a model with a high marginal likelihood. We therefore chose to 

systematically build models around genes 1 through 10 i.e., the conditional set 𝑋 

was chosen to be systematically genes 1 through 10. The MVBSSM algorithm was 

run for 9000 iterations, allowing an additional 1000 steps for burn-in to identify 9 

other genes to model alongside 𝑋. For each set 𝐽 the following ratio could be 

calculated: 

 

𝑅 =
|𝐽∩𝑀|

|𝐽 |
, 

 

indicating the ratio of the number of genes in 𝐽 that belong to the WT set 𝑀 to the 

number of genes in 𝐽. Since the conditional set 𝑋 belongs in 𝑀 this ratio should high 

i.e., relatively few genes from 𝑁 should belong with 𝐽. The results are summarised in 

Supplemental Figure 12B and show that the algorithm correctly identified the correct 

genes to model around a particular gene of interest. These scores suggest that the 

approach represents a useful way of identifying subsets of genes that warrant 

further, more specific network modelling. 

Supplemental Data. Bechtold et al. (2016). Plant Cell 10.1105/tpc.15.00910 
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