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1 Supplementary text for in

vitro experiment

1.1 Supplementary Result

1.1.1 Re-establishment of parental distribu-

tion after isolation of cells with high

and low CD10 expression in Rael cells.

CD 10 expression is characteristic for Rael cells

while CBM1 are typically CD10 negative. Using

this marker we next characterized the dynamics of

repopulating the basin of attraction. The pop-

ulation fractions with the highest and the lowest

CD10 edge cells from Rael cell population (1,3% of

the total population) were sorted by FACS and re-

cultured separately(Fig.S1). These two edge subpop-

ulations exhibited almost complete reconstitution of

the parental distribution within 5 days of culture

(Fig.S1). Thus with respect to a phenotype con-

sistent marker (CD10) isolated edge cells (<2% of

the whole parental population) were capable of re-

establishment of the parental distribution. This be-

havior of edge cells was robust since it is observed

in the various cell populations and from edges at the

different ’sides’ of the parental population.

1.1.2 Irregularities in the relaxation process

and reduced proliferation and viability

of the ’edge cells’.

A second peak with the small, distinct population

to the CD10 negative side in the 1st fraction on day

2 and day 3 attracted our attention (Fig.S3). It ap-

pears to be not the result of erratic behavior or exper-

imental noise since it was observed in two consecutive

days and also in repeated experiments, although the

time point of appearance varied somewhat between 1

and 8 days. This transient appearance of a subpop-

ulation in the opposite direction of the relaxation is

also seen in the relaxation of CD54+ cells. One is

tempted to interpret such behavior as manifestation

of a small group of cells that ’spill over’ to a neighbor-

ing attractor state representing a cell type not viable

in the conditions of the main cell population.

1.1.3 A key regulatory gene can facilitate a

switch between attractors.

Oct2 binds to the major enhancer (FR) for the vi-

ral C-promoter where transcription for the six viral

nuclear EBNA proteins expressed in latency III (21).

Oct2 shows higher expression in latency I (Rael) than

in latency III cells(21). Based on these findings we

employed a statistical mechanical model of the switch

between latency I (type I) and III (type III), showing

a possible key role of Oct 2 levels for this molecular

switch(22). Transient transfection of shRNA to Oct

2 suppressed Oct 2 levels (Fig.S 4).

1.2 Supplementary Material and

Methods

1.2.1 Cell lines and tissue culture.

Cell lines and tissue culture. Four human Epstein-

Barr virus (EBV) carrying B-cell lines were used:

Rael, Mutu I, CBM1-Ral-Sto and Mutu III. The cell

lines were maintained as suspension cultures in RPMI

1640 medium (Sigma-Aldrich, St Louis, MO, USA)

supplemented with 10% fetal bovine serum (FBS),

L-glutamine, streptomycin and penicillin (Sigma-

Aldrich, St Louis, MO, USA).

1.2.2 Antibodies and labeling of cells.

Antibody of anti-CD10 (ALB1) conjugated with

PE, anti-CD19 (J3-119) conjugated with APC and

(anti-CD23 (9P25) conjugated with FITC were from

Beckman Coulter (Bromma, Sweden). Antibody

anti-CD54 (HCD54) conjugated with Pacific-blue was

from Biolegend (San Diego, CA, USA). Appropri-

ate isotype control antibodies (Biolegend, San Diego,
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CA) were used to establish background signal caused

by non-specific antibody binding. BL (type I) cells

are CD10 positive and CD54 negative, while the re-

verse is true for LCL (type III) cells. CD19 and

CD23 are ubiquitous markers for most B-cells and

are shared by all four cell lines, while CD10 and CD

54 are cell type specific. CD10 is a marker of ger-

minal center B cells and some hematopoietic stem

cells. LCLs express CD54, also known as ICAM-1

(Inter-Cellular Adhesion Molecule 1), a transmem-

brane protein belonging to the immunoglobulin su-

perfamily, related to their property to form adhesion

and cell conglomerates in cell. Cells for FCM (see

below) were harvested 48h after feeding, and cen-

trifuged. The pellets were washed twice with PBS

and resuspended in PBS with 2% FBS. For sorting,

10 million cells/ml were labelled with antibodies and

incubated at +4◦ C for 30 min, washed with 1ml PBS

with 2 % FBS and centrifuged at 800 r/min for 5 min.

The supernatant was removed and 200-400ul 2% FBS

was added. Appropriate isotype control antibodies

were used to establish background signal caused by

non-specific antibody binding.

1.2.3 Flow cytometry (FCM), FACS includ-

ing calibration.

Flow cytometry was performed with a Becton Dick-

inson FACSAria (FACS facility at the Swedish Center

for Disease Control, KI), or with MoFlo XDP (Beck-

man Coulter, Bromma, Sweden) at the FACS facility

at MTC, KI. Computational data analysis was done

with FlowJo 2.2.2 (Ashland, OR, USA). For cell sort-

ing, the input cell number ranged from 100×106 cells

to 150 × 106 cells. Cells were sorted into ice-cold

medium for a maximal duration of 3 h. Original gat-

ing was based on the isotype and unstained controls.

Quantum PE MESF beads for CD10 and Quantum

APC MESF beads for CD 19 (Bangs Laboratories,

Fishers, IN, USA) were used to correct for the effect of

day-to-day fluctuations of the flow cytometer follow-

ing the manufacturer’s instructions. The MESF kits

were comprised of five populations of calibrated flu-

orescent standards: four populations of microspheres

having different levels of PE or APC fluorescence in-

tensity and one Certified BlankTM population. After

the cells were sorted out, they were cultured in proper

microwell tissue culture plates (Costar, Corning B.V.

Life Science, Amsterdam, The Netherlands) with the

RPMI 1640 medium (Sigma-Aldrich, St Louis, MO,

USA) and then transferred to tissue culture bottles

when there were enough numbers of cells.

1.2.4 Apoptosis analysis.

APC Annexin V/ Dead Cell Apoptosis Kit with

APC annexin V and STYOX Green for Flow Cy-

tometry (Invitrogen, Fisher Scientific, Gothenburg,

Sweden) was used for analysis of apoptosis accord-

ing to the protocol provided by the manufacturer.

In additional experiments we evaluated frequency of

apoptotic and dead cells by gating those in the Flow

Cytometry analysis.

1.2.5 CFSE staining.

The CellTraceTM CFSE Cell Proliferation Kit (In-

vitrogen, Fisher Scientific, Gothenburg, Sweden) was

used for intracellular labeling of cells according to the

protocol provided by the manufacture(37).

1.2.6 Gene expression profiling.

Gene expression profiling was performed using

HuGene-1_0-st-v1 chips at the Bioinformatics and

Expression Analysis core facility (BEA) at the Hud-

dinge campus, Karolinska Institutet.

1.2.7 Microarray and data analysis.

After gene expression profiling (see Supple-

mentary text on Material and Methods 1.2.5),
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the GEDI maps for visual representation of

global gene expression based on self-organizing

maps were generated using the program GEDI

(http://www.childrenshospital.org/research/ingber/

GEDI/gedihome.htm).

1.2.8 Relative quantitative RT-PCR.

Comparative CT method was used. The experi-

ments were performed using the ABI 7500 Sequence

Detection System (Applied Biosystems, Foster City,

CA). Power SYBR Green master mixture was from

Life Technologies (Applied Biosystem, Foster City,

CA USA). All reactions were conducted in triplicates

with reaction volume 25 ul/tube.

Primers: CD54: Sense: CAGAGGTTGAACCC-

CACAGT.

Antisence:CCTCTGGCTTCGTCAGAATC;

CD10: Sense: CCTTCTTTAGTGCCCAGCAG.

Antisense: GCAGACTGTTGAGTCCACCA.

GAPDH: Sense: GAGTCAACGGATTTGGTCGT.

Antisense: AATTTGCCATGGGTGGAA.

1.2.9 Knock down of Oct 2 by shRNA.

Knock down of transcription factor Oct 2 was done

with shRNA (anti-oct2 shRNA TI341098, Origene

Technologies Inc. Rockville, MD, USA) ). 2 × 106

Rael cells/tube were centrifuged at 1000 rpm × 5

min, the supernatant was discarded and 100 ul Mirus

IngenioTM Electroporation solution (Mirus Bio LLC,

Madison, WI, USA) was added with 2 ug GFP and

10 ul shRNA vector solution (100ng/ul). In addi-

tion, vector control (TR20003) and negative GFP

control (TR 30003 shRNA pRS non-effective GFP

plasmid) were used. After mixing, the mixture was

transferred to an electroporation cuvette. After mix-

ing in the cuvette, it was placed into Nucleofector

I (Amaxa Biosystems, Cologne, Germany) with pro-

gram D-26. After electroporation 1 ml pre-warmed

culture medium was added and the cells were trans-

Figure S. 1: The re-establishment of the Rael CD10

parental distribution from the highest and lowest CD

10 expressing, selected Rael cells. The Rael cells with

the highest and lowest CD10 expression were sorted

out separately (day 0) and cultured. Their CD10 lev-

els were re-analyzed on day 2,4 and 5 after isolation.

ferred to a 6-well tissue microplate (Becton Dickin-

son, Franklin Lakes, NJ, USA) and incubated at 37
◦C.

1.3 Supplementary Figure
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Figure S. 2: Analysis of viability in different sub-

fraction of CD 10-selected Rael. The relative fold

change of viability of the Rael cells sorted out by dif-

ferent CD10 levels. The viability of the Rael parental

control, the three CD10highest fractions, the three

CD10lowest fractions and one of the middle (the 6th

fraction) according to figure 3A.

Figure S. 3: The original FCM data of figure 4C with-

out adjustment of the Y-scale. CD10 level of the

CD10highest Rael cells (CFSE+) and the rest of the

Rael population (CFSE-, black) after CFSE staining

and co-culturing for 8 days.

Figure S. 4: Transient transfection of shRNA to Oct

2 suppressed Oct 2 levels. Oct 2 mRNA expression

72 hours after transfection of Rael cells with control

shRNA or anti-OCT2 shRNA by qPCR.
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2 Cancer Cell Attractor Ex-

plored By In Silico Modelling

With Fokker-Planck Equation

Abstract

This document contains supplementary material

detailing how a postulated dynamics of the Fokker-

Planck type can be reliably and robustly inferred

from FACS data, even using only one marker.

2.1 Introduction

The purpose of this Supplementary Material is to

discuss a mathematical approach to explore the can-

cer attractor hypothesis and its properties. The data,

described in the main paper, consist of single-cell

measurements of cell surface markers. Once mea-

sured, cells are removed from the system, and we

cannot follow how individual cells change over time.

We can however follow the distribution of a cell sur-

face marker in the population, and how this distribu-

tion changes over time, which suggests a description

in terms of Kolmogorov forward equations (Fokker-

Planck equations) [1]. If we want to deduce proper-

ties of the dynamics of single cells moving within or

between attractors we hence have to solve the inverse

problem of deducing the dynamics (drift and diffu-

sion terms in a Fokker-Planck equation) from snap-

shots of a distribution at discrete times, which is the

topic addressed here.

2.2 Mathematical Background

2.2.1 The Cell-State Space

Phenotypic cell-to-cell variability within a popula-

tion is a common feature of biological systems. In or-

der to characterize the property of cell quantitatively,

we can enumerate a list of variables which can be used

to identify different cell-types under a desired resolu-

tion for each cell, such as the expression of N different

proteins X1, X2, ...XN (and/or other quantities). A

set of Xi represents a specific cell-state, which can be

written as a vector ~X = (X1, X2, ...XN ), and each

cell can then be mapped onto this abstract high-

dimensional space to represent its phenotype. Tech-

nologies have successfully been developed to measure

the average of variables over a population (e.g. pro-

teomics, transcriptomics, other -omics technologies)

but one is still far from being able to measure any-

thing approaching a complete set of variables in sin-

gle cells. The single cell phenotypic description as

~X is therefore an abstract quantity, which is not di-

rectly observable. Under the control of the gene-

regulatory network, other biological mechanisms or

external stimuli, some property of a cell may change

over time, that is to say, each Xi = Xi(t) is a function

of time. The changes in cell state are then represented

by ~X(t) as a point moving along some trajectory in

state-space. In dynamical systems theory one says

that if different trajectories converge to the same set

of points that set is called an attractor, and the do-

main of initial conditions that eventually falls into the

same attractor is called its basin of attraction [2, 3].

In the problem at hand we have two complications;

that the dimension of the system is very large, and

that due to the intrinsic stochasticity of biological

systems, the dynamics of a single cell state ~X is not

purely deterministic. We refer to the monograph [4]

for general aspects of dynamical systems perturbed

by noise and to [5] for considerations pertaining in

very high dimension, and assume that the stochastic-

ity can be described as Gaussian noise. The cell state

is thus under the influence of deterministic changes

imposed by the underlying regulatory network (drift

towards the attractor) as well as random noise (dif-

fusion, corresponding to gene expression noise). This

type of system can be modeled by assigning functions

to explicitly describe these two forces, as is done e.g.
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with physical systems subject to thermal fluctuations.

The change of state will therefore be described by an

Itô stochastic differential equation (SDE):

d ~Xt = µ( ~Xt, t)dt+ σ( ~Xt, t)dWt (1)

In (1) µ( ~Xt, t) is a N -dimensional function (de-

terministic part), Wt is a standard M -dimensional

Wiener process (random part), and σ( ~Xt, t) is a N-

by-M dimensional matrix, the elements of which are

also functions of the state ~X. The Wt describe noise

sources and the number of independent noise sources

(M) does not have to be the same as the number of

observed variables (N). However, in the Itô stochas-

tic differential equation we may without restriction

take M ≤ N , and for simplicity of the argument we

will here assume that M equals N such that σ( ~Xt, t)

is a square matrix. The Itô prescription means that

the matrix σ( ~Xt, t) is evaluated before the increment

is taken and here means that the production rates of

any protein (and other state variable) are determined

by the amounts of this and other proteins (or other

state variables) present immediately before the actual

production process begins.

In general one cannot say much about the solutions

to an equation such as (1). However, one can argue

on qualitative grounds that it may often be of interest

to look at analogous equations of much lower dimen-

sionality. The argument goes as follows: we assume

that the deterministic part of (1), d ~Xt

dt
= µ( ~Xt, t), has

solutions characterized by low dimensionality. The

main example would be (attractive) fixed points ~X∗

(which have dimension zero). We assume this is

the case and write ~Xt = ~X∗ + ~Yt + ~Zt where ~Yt

are slow modes and ~Zt are fast modes. To linear

order we hence have d~Yt

dt
= AY Y

~Yt + AY Z
~Zt and

d~Zt

dt
= AZY

~Yt + AZZ
~Zt where AY Y , AY Z , AZY and

AZZ are suitable matrices (linear operators) which

depend on ~X∗. The separation into slow and fast

modes means that the matrix AZZ is strongly con-

tracting such that for every ~Yt and every time t we

will, to good accuracy, have ~Zt ≈ −A−1
ZZAZY

~Yt. The

Y directions are then marginal and the Z are sta-

ble. By techniques that are well developed in dy-

namical systems theory it is possible to extend such

reasoning to center manifolds and stable manifolds

where the slow motion takes place on a hyper-surface

given by ~Zt = g(~Y , ~X∗), where g is some func-

tion. By a change of variables ~Y = ~Y ′ + hY ( ~Y ′)

and ~Z = ~Z ′ + hZ( ~Y ′, ~Z ′) and using properly chosen

transformations hY and hZ the deterministic part

of (1) can then be written as d ~Y ′
t

dt
= F ( ~Y ′

t, t) and
d ~Z′

t

dt
= AZZ

~Z ′
t. where AZZ is the same linear oper-

ator as above. The new function F (Y ′) is called the

normal form and is equal to AY Y ( ~Y ′)+N( ~Y ′) where

AY Y is the same as above and N contains nonlinear

(resonant) terms determined by AY Y . The actual

values of these resonant terms can be computed from

µ by an established procedure [2, 6].

We now consider the new center manifold coordi-

nate ~Y ′ a function of the full state ~X = (~Y , ~Z) with

its dynamics given by (1). By the Itô lemma we gen-

erally have

d ~Y ′
t =

∂Y ′

∂Y
dY +

∂Y ′

∂Z
dZ +

1

2
∂Y

(

∂Y ′

∂Y

)

(dY )2

+
1

2
∂Z

(

∂Y ′

∂Y

)

(dY dZ) +
1

2
∂Y

(

∂Y ′

∂Z

)

(dZdY )

+
1

2
∂Z

(

∂Y ′

∂Z

)

(dZ)2 (2)

It may be permissible to ignore the cross-term

(dZdY ) as well as the squared fluctuations in the sta-

ble directions ((dZ)2). The dynamics for Y ′ would

then look like

d ~Y ′
t = F̃ (Y ′, t)dt+ σY ( ~Y ′

t , t)dW
Y
t (3)

where F̃ = F + 1
2∂Y

(

∂Y ′

∂Y

)

< (dY )2 > and σY dW
Y
t

describes the net noise acting tangentially to the cen-

ter manifold.

Equation (3) is of the same kind as (1), only of

much lower dimensionality. The approach of this pa-

per is not to try to derive (3) from (1), but to assume
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that a form like (3) is valid for a low-dimensional

(indeed one-dimensional) slow variable, and then see

if we can reconstruct the dynamics, in this variable,

from the data.

2.2.2 Fokker-Planck Equation

We now revert to the earlier notation and call

the state variable ~Xt. The Fokker-Planck Equation

(FPE) describes the time evolution of probability

density function f( ~Xt,t) for a system when individ-

ual trajectories follow (1) and is

∂f(~x, t)

∂t
= −

n
∑

i=1

∂

∂xi

(µif) +

n
∑

i=1

n
∑

j=1

∂2

∂xi∂xj

(Bijf)

(4)

where Bij =
1
2 (σ · σT )ij [1].

We will below consider the case where the variable

~X is one-dimensional and where Bij(~x, t) = δijB0

is a space-time constant. The field Ai(~x, t) is then

a gradient field i.e Ai(~x, t) = − ∂
∂xi

V (~x, t) and the

FPE can be written in a simpler form:

∂f(~x, t)

∂t
= ∇ · (f(~x, t)∇V (~x, t)) +B0∇

2f(~x, t)

= ∇ · (f∇V +B0∇f)

(5)

We note that the stationary states (∂f(~x,t)
∂t

= 0)

of (5) are those distributions that satisfy f∇V +

B0∇f = Constant. If we consider flux-less solutions

(no sources or sinks) the constant is zero which gives

the familiar result f ∝ exp(− V
B0

).

2.3 Reconstruction tasks

In the experiments described in the main text we

register/observe FCM-data at different time points,

which can be normalized to give probability distribu-

tions f(x, t). Data is now one-dimensional (one cell

surface marker per cell) and the variable (normalized

signal of the cell surface marker) is written x. The

mathematical task is then to determine the functions

A(x) and B(x) in a one-dimensional Fokker-Planck

equation

∂f(x, t)

∂t
= −

∂

∂x
(A(x)f(x, t)) +

∂2

∂x2
(B(x)f(x, t))

(6)

from observations of f(x, t). To illustrate possible

extensions and limitations we will also be interested

in models of more than one underlying state where

the change in each state is described by (6) and we

may also include different growth rates in different

states and/or transitions between the states.

The number of different model classes one can

choose is unlimited, but given finite data there is a

trade-off between goodness of fit and the complex-

ity of a model class. Different procedures have been

developed to strike this balance such as e.g. the

Akaike information criterion [7] and the Bayesian in-

formation criterion [8]. Our objective here is to illus-

trate that with models of different complexity differ-

ent aspects of behavior can be captured by including

more details in the description, and we will therefore

describe results obtained with the following simple

model classes:

1. A simple base-line one-attractor model “Model

1” given by

A(x) = −k(x− x∗) B(x) = B (7)

This model has three parameters, k, x∗ and B.

2. A two-attractor model “Model 2” given by two

equations of the same type as (6) for two un-

observable separate densities f1 and f2, and an

output equation

f(x, t) = (1 −
a1

1 + t/a2
)f1(x, t)

+
a1

1 + t/a2
f2(x, t) (8)

This model has eight parameters: k1, x∗
1 and

B1, k2, x
∗
2 and B2, and a1 and a2. This model

describes the biologically plausible scenario of a
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mixture of two underlying populations (which

cannot be distinguished experimentally), with no

transitions between them, and where the fraction

of cells in the respective population change lin-

early over time. As any small change is approx-

imately linear this is a proxy for more realistic

but also more involved changes such as different

growth rates.

3. A three-attractor model “Model 3” given by three

equations of the same type as (6) with transitions

between the states. This model is described in

more detail below. In its full version it has 13

parameters, but we find it convenient to primar-

ily consider special cases that have from three to

eight parameters.

2.3.1 Numerical procedure

For each of the models the basic steps when search-

ing for the appropriate parameters are

1. Initialize by choosing a set of reasonable param-

eters ~p0 as initial value

2. In step k with parameter value ~pk, numerically

simulate fpk
(x, t) from original distribution: use

the first distribution at t0 as the true initial f ,

and use FPE with parameter ~pk to calculate dis-

tributions at later time points

3. Compare fpk
(x, t) with experimental dis-

tribution fE(x, t), and use a functional

Q(fpk
(x, t), fE(x, t)) to score their difference

4. Minimize Q(fpk
(x, t),fE(x, t)), use some strat-

egy to find better parameters ~pk+1, which brings

lower Q-value.

5. Repeat step 2 to step 4 until convergence

6. When a minimum Q is reached, obtain the best

parameters p∗, such that fp∗
(x, t) closest to

fE(x, t)

We solved the time development of fpk
(x, t) by a

standard first-order discretization in time and second-

order discretization in space, accuracy and stability

checked by varying the resolution. As a reconstruc-

tion quality criterion Q we used mean square error.

The minimum was found using the Numerical Recip-

ies package ’amoeba.c’, which performs a descent in

the parameter landscape, without explicitly comput-

ing gradients [9].

2.4 Sample results

In this section we show experimental distributions

(full lines) compared to numerical simulations (dot-

ted lines), for each of the three models presented.

The same color is used to plot the experimental and

theoretical values for the same time point (day), in

each figure. The full data, including Day 0 (which

is partly off-scale) is shown in Fig.S5 for fraction of

highest value of CD10 (CD10-high) and in Fig.S6 for

the fraction of lowest value of CD10 (CD10-low). Day

0 is not only off-scale, the simplest “Model 1” also can-

not fully reproduce the changes from Day 0 to Day

1. In the following data for Day 0 will mostly not

be displayed, and for part of the modeling the initial

data will be taken to be Day 1.

2.4.1 Model 1

In this model there are three parameters to be

optimized, denoted [B, k, x∗]. For this example the

stationary state i.e. the parental distribution is

f(x,∞) = 1√
2πσ2

exp(− (x−x∗)2

2σ2 ) where σ2 = B
k
,

which is a normal distribution with center x∗ and

standard deviation σ. We can use the ratio σ =
√

B
k

to check the width of curves, and as a benchmark

to judge the quality of fitting. We use Day 1 data

as initial condition, and fit the parameters to data

in Day 2, Day 7, Day 16 and Day 28, respectively.

We start from either the fraction of highest value of

CD10 (CD10-high) or the fraction of lowest value of
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Figure S. 5: Development of the distribution of the

fraction of highest value of CD10 (DC10-high). Black

line (sharply peaked) represent the distribution on

Day 0 where only cells with a FACS signal greater

than about ten have been retained. This threshold is

far out in the tail of the distribution (see main text),

and the sharp peak in the distribution on Day 0 is a

reflection of this tail. Observe that the distribution in

the main moves out (moves to higher values) between

Day 0 and Day 1 (red), and thereafter relaxes back

to the parental distribution through Day 2 (green),

Day 7 (navy blue), Day 16 (magenta) and Day 28

(turquoise).
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Figure S. 6: Development of the distribution of the

fraction of lowest value of CD10 (DC10-low). Black

line (sharply peaked) represent the distribution on

Day 0 where only cells with a FACS signal less than

about eight have been retained. Observe the double-

peaked structure on Day 2 (green).

CD10 (CD10-low).

CD10-high Starting from Day 1 the distribu-

tion moves towards the center gradually, in qual-

itative agreement with the behavior predicted by

the FPE. The optimized parameters were found to

be [B, k, x∗] = [0.0512, 0.367, 9.15] giving σhigh =
√

B
k
=

√

0.0512
0.3668 = 0.373612 which compares well with

the parental distribution. Fig.S7 shows the theoreti-

cal curves in comparison with the experimental data

and it is clear that the FPE also quantitatively cap-

tures the relaxation of the CD10-high fraction to the

parental distribution starting from Day 1.

Between Day 0 and Day 1 (see main text and Fig.S5

above) other effects take place where the distribution

temporarily moves away from the parental distribu-

tion (Day 0 data not shown in Fig.S7).

CD10-low This data behaves qualitatively quite

differently from what one would expect from FPE.

First the distribution quickly moves back close to the

10
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Figure S. 7: Results obtained by simulating the

Fokker-Planck equation describing Model 1 and op-

timal parameters as explained in text. High CD10

fraction (CD10-high) on Day 1. used as initial con-

ditions for the FPE. Note that CD10 value increases

from Day 0 to Day 1 (Day 0 data is shown in Figure

S. 5), a behavior which cannot be captured by Model

1, see main text and Fig.S5.
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Figure S. 8: Results obtained by simulating the

Fokker-Planck equation describing Model 1 and op-

timal parameters as explained in text. Low CD10

fraction (CD10-low) used as initial conditions for the

FPE.

parental distribution (Day 1), then it moves in the

opposite direction (Day 2), and then slowly returns

again to the parental distribution (Days 7, 16 and

28). In Fig.S6 above we show that the distribution

also develops a second peak on Day 2 (to the left

of data displayed in Fig. 8) a behavior which can-

not be captured by Model 1. Assuming nevertheless

that Model 1 can be used on this data and proceed-

ing as above, the optimized parameters are found to

be [B, k, x∗] = [0.0010, 0.0202, 9.25] indicating weak

noise (low value of B) and a weak restoring force

(low value of k). The asymptotic width would be

σlow =
√

B0

k
=

√

0.0010
0.0202 = 0.222497 which is not a

good fit to the parental distribution. In short, Model

1 does not describe this data well, since it cannot ex-

plain the ’outward motion’ of the distribution from

Day 0 to Day 1 seen in CD10-high nor the second

peak on Day 2 seen in CD10-low.
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2.4.2 Model 2

To explore if these effects could be explained in a

simple way we hypothesized that what we observe

is a mixture with qualitatively different behaviours,

particularly at early times. We then assume that the

populations we observe are composed of two under-

lying sub-populations, each one obeying independent

and different FPE. We assume that we observe a mix-

ture of the sub-populations in proportions which vary

over time, which is a simple way to introduce growth

rates of the two sub-populations into the model in a

qualitative manner. Mathematically Model 2 is then

defined by the system of equations

∂f1(x, t)

∂t
= −

∂

∂x
(A1(x)f1(x, t)) +

∂2

∂x2
(B1(x)f1(x, t))

A1(x) = −k1(x− x∗
1), B1(x) = B1

∂f2(x, t)

∂t
= −

∂

∂x
(A2(x)f2(x, t)) +

∂2

∂x2
(B2(x)f2(x, t))

A2(x) = −k2(x− x∗
2), B2(x) = B2

f(x, t) = (1−
a1

1 + t/a2
)f1(x, t) +

a1
1 + t/a2

f2(x, t)

(9)

where the observed population is given by

f(x, t). Model 2 has eight parameters:

[B1, k1, x
∗
1, B2, k2, x

∗
2, a1, a2].

CD10-high Starting from Day 0 we can

now get a fit to the data with parameters

[0.0404, 0.212, 9.16, 0.0968, 0.0576, 25.0, 1.00, 2.94]

representing one sub-population behaving sim-

ilarly to the solution obtained in Model 1

(B1 ≈ 0.04, k1 ≈ 0.4, x∗
1 ≈ 9) and one sub-

population centered at a larger value (x∗
2 ≈ 25). On

Day 0 (data not displayed) Model 2 would give all

the weight to the second sub-population. This does

not mean that the optimal fit has a peak at x∗
2 ≈ 25

on Day 0, obviously not a good fit to the data in

Fig.S5, but that all of the cells initially start out in

the sub-population attracted to and moving towards

x∗
2 ≈ 25. On Day 1 the second sub-population

dominates approximately in ratio 3 : 1, and we can
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Figure S. 9: Results obtained by simulating the two

Fokker-Planck equations describing Model 2 and the

mixture using optimal parameters as explained in

text. The high CD10 fraction (CD10-high) is used

as initial data such that the two sub-populations are

initially in proportion a1 : (1 − a1).

therefore observe that the bulk of the population

moves out from Day 0 to Day 1, but beyond Day 3

(a2 ≈ 3) the first sub-population takes over. The

width of stationary distribution of center attractor

is σc,high =
√

B1

k1

= 0.436848 which again compares

well with the parental distribution.

On the negative side, the optimal fit leads to a

double-peak distribution on both Day 1 and Day 2,

which obviously does not fit the data well. We there-

fore conclude that Model 2 is not an appropriate

model for the CD10-high fraction.

CD10-low Starting from Day 1 we can

get a fit to the data with parameters

[0.0595, 0.332, 8.95, 0.0596, 0.100,−9.52, 0.413, 28.0].

which again represents one sub-population behav-

ing similarly to the solution obtained in Model 1

(B1 ≈ 0.06, k1 ≈ 0.3, x∗
1 ≈ 9) and one sub-population

centered at value away from the parental distribution

12
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Figure S. 10: Results obtained by simulating the

two Fokker-Planck equations describing Model 2 and

the mixture using optimal parameters as explained

in text. The low CD10 fraction (CD10-low) is used

as initial data such that the two sub-populations are

initially in proportion a1 : (1− a1). The second peak

on Day 2 is well fitted by the model, at the price of

introducing a spurious peak on Day 1.

(x∗
2 ≈ −10). On Day 1 the two sub-populations

are about evenly mixed (3 : 2) and only at around

the final time of observation does the first start

to take over (a2 ≈ 28). In a qualitative sense the

dynamics of Model 2 is simple: initially one finds

a mixture of both sub-populations, and over time

the second sub-population moves away from the

parental distribution towards its own attractor (this

is true also for CD10-high). We are therefore able

to reproduce the second peak on Day 2, at the price

of also having a second peak at an intermediate

position on Day 1 (not observed in the data).

The sub-populations of Model 2 deduced from the

CD10-high and CD10-low sub-populations agree be-

tween themselves and with the parental distribution.

For both sets of data Model 2 predicts a second sub-

population, but on opposite positions with respect to

the parental distribution. Model 2 provides a good

description of the second peak in the distribution ob-

served with CD10-low data on Day 2, but not for the

change in CD10-high data.

The conclusion from Model 2 is hence that a con-

ceptually simple model of two sub-populations devel-

oping independently without transitions can repro-

duce part of the data, but cannot consistently repro-

duce all parts of the data.

2.4.3 Model 3

In this model we assume there to be three underly-

ing sub-populations in the observed population. We

call these sub-populations respectively SL(low), SC

(center) and SH (high), and their three distributions

fL, fc and fH . Each of the three sub-population

obeys FPE with different parameters [B, k, x∗], and

in addition SL and SH can turn into Sc. In other

words, a cell in a given sub-population gravitates to

its respective attractor by different rates for different

attractors, but if is in SL or SH it may also switch

to Sc and start to gravitate to that attractor. The

main assumption, similar to Model 2, is that we can

only observe how many cells there are in total from

the sub-populations having the same value of the cell

surface marker.

Mathematically Model 3 is then described as fol-
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lows:

∂fC(x, t)

∂t
=−

∂

∂x
(AC(x)fC(x, t))

+
∂2

∂x2
(BC(x)fC(x, t))

+ pH ∗ fH(x, t) + pL ∗ fL(x, t)

AC(x) =− kC(x− xC), BC(x) = BC

∂fH(x, t)

∂t
=−

∂

∂x
(AH(x)fH(x, t))

+
∂2

∂x2
(BH(x)f2(x, t)) − pH ∗ fH(x, t)

AH(x) =− kH(x− xH), BH(x) = BH

∂fL(x, t)

∂t
=−

∂

∂x
(AL(x)fL(x, t))

+
∂2

∂x2
(BL(x)fL(x, t)) − pL ∗ fL(x, t)

AL(x) =− kL(x − xL), BL(x) = BL

(10)

The choice of having SL, SH turning into SC , but not

vice versa is partly for practical reasons, because it re-

duces the number of parameters, and partly because

the “middle attractor” will reconstitute the parental

distribution and hence should be more stable. Fur-

thermore we have to introduce two parameters to

model the initial conditions as a mixture of the three

sub-population, i.e.:

fC(x, 0) = (1 − aH − aL) ∗W0(x)

fH(x, 0) = aH ∗W0(x)

fL(x, 0) = aL ∗W0(x)

Model 3 hence has in all 13 parameters:

BC , kC , xC , BH , kH , xH , BL, kL, xL, pH , pL, aH , aL,

and further simplifications discussed below.

CD10-high Our main objective is to reproduce

the shift from Day 0 to Day 1 without introducing

additional qualitative errors, as this could not be cap-

tured in Model 1 or Model 2. We first observe that by

optimizing parameters starting from the high DC10

fraction data (CD10-high) on Day 0 as initial condi-

tions and using the distributions on Day 1, 2, Day 7,

Day 16 and Day 28 for the fitting we find aL to be

almost zero and aH to be almost one. We can there-

fore make the simplifying assumption that in fact at

Day 0 all the cells are in the high-value attractor SH

meaning that aL is set to zero and aH is set to one.

Model 3 is then (for the CD10-high fraction) simpli-

fied to a model describing only the interplay of SH

and SC :

∂fC(x, t)

∂t
=−

∂

∂x
(AC(x)fC(x, t))

+
∂2

∂x2
(BC(x)fC(x, t)) + pH ∗ fH(x, t)

AC(x) =− kC(x− xC), BC(x) = BC

∂fH(x, t)

∂t
=−

∂

∂x
(AH(x)fH(x, t))

+
∂2

∂x2
(BH(x)f2(x, t))− pH ∗ fH(x, t)

AH(x) =− kH(x − xH), BH(x) = BH

fC(x, 0) =0

fH(x, 0) =W0(x)

(11)

This reduced Model 3 has 7 param-

eters: BC , kC , x
∗
C , BH , kH , x∗

H , pH =

[0.0373, 0.288, 9.12, 0.136, 9.38, 11.1, 1.68] describing

two attractors not too far apart (x∗
c ≈ 9.1, x∗

H ≈ 11.1)

where both the noise and the rate of attrac-

tion are much larger in SH (BH ≈ 0.4, kH ≈ 9

than in Sc (Bc ≈ 0.04, kc ≈ 0.3). The vari-

ance of the distribution for large times is again

σc,high =
√

BC

kC
= 0.359568, which matches well the

parental distribution.

Qualitatively, reduced Model 3 describes a situ-

ation where the high attractor (SH) relaxes to its

asymptotic shape on a time scale of hours (1/kHσ ≈

6h) and then leaks over to the center attractor on the

time scale of a day (1/pH ≈ 15h). After several days

the fraction of cells left in SH is therefore small. The

central attractor (Sc) on the other hand relaxes on a

much longer time scale (1/kcσ ≈ 10day) and so its

shape will change relatively little while all the cells

move over from SH . It is therefore consistent that
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Figure S. 11: Results of reduced Model 3 for the CD-

high fraction, initial data taken at Day 0 as in Fig.S5.

Initially on Day 1 (red curve) the distribution moves

out, after which it relaxes back to the parental distri-

bution through Day 2 (green), Day 7 (navy blue), Day

16 (turquoise) and Day 28 (magenta). This model re-

produces this data quite well both qualitatively and

quantitatively.

the parameters BC , kC , x
∗
C are quite similar to the

parameters of the simpler one-attractor Model 1 i.e.

[B, k, x∗] = [0.0512, 0.367, 9.15] as determined above.

CD10-low We proceed similarly as to the

CD10-high fraction and assume that the process

starts with only two sub-population SC (center)

and SL; however now we cannot assume that

their proportions are known, which brings us to 8

parameters Y = [BC , kC , x
∗
C , BL, kL, x

∗
L, pL, aL] =

[0.060, 0.437, 8.98, 0.060, 0.409, 2.00, 0.521, 0.306].

The predicted width of the parental distribution

is σc,low =
√

BC

kC
= 0.370497. On a qualitative

level we find that reduced Model 3 can reproduce

the second peak in Day 2, again at the price of

introducing a similar but smaller second peak in the

data on Day 1 (not present in the data). We find

that the parameters describing SC are similar to the

CD10-high fraction, while the parameters obtained
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Figure S. 12: Results of second reduced Model 3 for

the CD-low fraction, initial data taken at Day 0 as

in Fig.S5. The second peak on Day 2 (green) is well

reproduced, while at the same time a spurious sec-

ond peak on Day 1 (red) is observed. In addition, a

small spurious second peak is also observed on Day

7 (navy blue). The final relaxation to the parental

distribution is well observed. This model reproduces

this data quite about as well as Model 2, the major

problem being the spurious peak on Day 1.

for SL are different from those describing SH . The

major qualitative differences are that the predicted

center of SL is more different from the parental

distribution x∗
L ≈ 2 and the time scale of SL is as

slow as SC (kL ∼ kC ∼ 0.4day−1).

We can test the robustness of the model in different

ways. For instance, we can fix the three parameters

[BC , kC , xC ] = [0.0373, 0.2885, 9.1177]

obtained from the CD10-high fraction and optimize

the other parameters using the CD10-low fraction.

This leads to a model with only five parameters

[B02, k2, x02, a1, p2] = [0.060, 0.412, 2.00, 0.575, 0.327]

which fits the experimental data from Day 1 to Day

28 as well as the eight-parameter model, particularly
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Figure S. 13: Results of second reduced Model 3 for

the CD-low fraction, where part of the parameters

are determined from the DC10-high fraction and the

rest are found from initial data taken on Day 0. The

results are practically indistinguishable from those of

Fig.S12 showing that the properties of the center at-

tractor are coherently recovered from the two data

sets.

for the return to the parental distribution on Day 28,

see Fig.S13.

We can also disregard Day 1, to investigate the

possibility that there is something wrong with the

Day 1 data. The five-parameter model is then

[B02, k2, x02, a1, p2] = [0.100, 0.435, 2.187, 0.714, 0.303]

which improves the fit for Day 2, which was to be

expected, as shown in Fig.S14.

2.5 General Discussion

In this Supplementary Material we have shown that

the underlying dynamics of a cell attractor can be

reconstructed from snap-shots. Several variations of

the basic model have been investigated to exemplify

that the complex dynamics of outliers, representing

cells that could be in one out of several attractors, can

be captured more or less well by including different
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Figure S. 14: Results of second reduced Model 3 for

the CD-low fraction, where data on Day 1 is not used.

The spurious peak on Day 1 is then not penalized by

the optimization and is more massive than in Figs.S12

and Fig.S13. The observed second peak on Day 2 is

on the other hand reproduced more accurately.

model details. The reconstructed dynamics of central

attractor, which reproduces the parental distribution

at long times, is well captured in all cases except the

simplest model and one data set, demonstrating the

robustness of the approach.
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