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Figure S1.  Related to Figure 1.  Wavelength specificity of LD reduction.  10 µmol m
-2

 s
-1

 of blue light (=470nm) 

causes significant breakdown of LD (p<0.01), while the same amount of red light (=660nm) does not (p>0.05).  

Error bars = ± S.E., n=90. 

 

 

 

 

 

 

  

0

25

50

75

100

Dark 2h blue
light

2h red
light

V
o
lu

m
e
 o

f 
N

R
 f

lu
o
re

s
c
e
n
c
e
 (

%
) 



 

A        B 

 

 

C 

 

 

Figure S2.  Related to Figure 3.  A - The cts1-1 mutant displays slower light-induced stomatal opening than WT.  

Error bars = ± SE, n=90, p<0.001 at 2h, p>0.05 at 4h.  B - SDP1 transcript abundance oscillates under light-dark 

cycles and constant light, peaking around actual or subjective dawn.  Data were obtained by interrogation of 

microarray data using Diurnal [S1].  RNA timecourses were obtained from 35-day old compost grown seedlings 

[S2] and 8-day old agar grown seedlings [S3] for light/dark and constant light experiments, respectively.  C - 

Change of LD volume in guard cells through a 24 h diurnal cycle.  Error bars = ± SE, n=121-142 per timepoint 
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Figure S3.  Related to Figure 4.  Effect of fusicoccin on LD. Dark-incubated guard cells showed significant LD 

breakdown after 20µM fusicoccin treatment for 3 h. p<0.01, n=90, error bars = ± SE. 
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Figure S4.  Related to Figure 3.  Light-induced stomatal opening in Selaginella is associated with a reduction in 

abundance of LDs and is inhibited by the LD breakdown inhibitor DMP. (A) Light induced stomatal opening is 

associated with a decrease in NR fluorescence (n=90, p<0.001, error bars = ±SE).  (B) Light-induced stomatal 

opening is inhibited by DMP (n=90, p<0.001, error bars = ± SE)  
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Table S1.  Abundance of total TAG and individual TAG molecular species pre and post dawn (for full details see 

methods). 

TAG species Time 
ng/mg 

FW 
S.E. 

Change (% 
of 

predawn) 
p value 

No. of 
samples 

18:2-18:3-18:3 
predawn 3.7 0.65 

48 0.011 
13 

postdawn 1.8 0.32 14 

18:2-18:2-18:3 
predawn 2.5 0.41 

50 0.013 
13 

postdawn 1.3 0.22 14 

18:3-18:3-18:3 
predawn 1.6 0.31 

54 0.048 
13 

postdawn 0.9 0.17 14 

16:0-18:2-18:2 
predawn 1.4 0.08 

66 0.032 
2 

postdawn 0.9 0.04 2 

16:0-18:3-18:3 
predawn 0.8 0.19 

69 0.267 
13 

postdawn 0.6 0.13 14 

18:2-18:2-18:2 
predawn 1.4 0.17 

82 0.314 
6 

postdawn 1.2 0.17 8 

18:1-18:1-18:2 
predawn 2.0 0.94 

87 0.786 
13 

postdawn 1.7 0.26 14 

16:0-16:0-18:2 
predawn 0.5 0.16 

106 0.883 
6 

postdawn 0.5 0.13 8 

18:0-18:0-18:2 
predawn 0.9 0.13 

114 0.498 
6 

postdawn 1.1 0.13 8 

18:0-18:2-18:3 
predawn 0.2 0.05 

114 0.645 
6 

postdawn 0.3 0.05 8 

18:1-18:2-18:2 
predawn 1.9 0.42 

115 0.644 
6 

postdawn 2.1 0.40 8 

16:0-18:1-18:2 
predawn 1.5 0.43 

118 0.644 
6 

postdawn 1.8 0.37 8 

18:0-18:2-18:2 
predawn 0.5 0.15 

125 0.531 
6 

postdawn 0.6 0.13 8 

16:0-18:1-18:1 
predawn 2.0 0.65 

130 0.478 
6 

postdawn 2.6 0.53 8 

Total 
predawn 14.5 2.84 

76 0.355 
13 

postdawn 11.1 2.18 14 

 

  



 

Table S2. 

Expression levels of TAG lipolysis, peroxisomal fatty acid beta-oxidation, glyoxylate cycle and gluconeogenesis 

related genes in Col-0 derived guard cell and leaf samples.  The genes are grouped according to function and the 

order proceeds from lipolysis through the various steps and pathways to gluconeogenesis.  Raw microarray data was 

downloaded and independently processed.  Fold change was calculated to represent the comparison of the 2 sample 

types (guard cell and leaf) that had been maintained either in the presence or absence of exogenous ABA.  Gene 

descriptions are from the latest version of the Arabidopsis genome annotation TAIR10 

(http://www.arabidopsis.org/portals/genAnnotation/gene_structural_annotation/annotation_data.jsp). 

 

 

 

 

  



Supplemental Experimental Procedures 

Microarray data in Table S2. Unprocessed Affymetrix microarray data from Col-0 guard cell and leaf samples
 

[S4] was downloaded from the gene expression omnibus (GEO) at NCBI using accession No. GSE19520 

(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE19520).  The data were processed and normalised using 

the MAS5 algorithm in R/bioconductor with a mean target intensity of 500.  A comprehensive list of genes involved 

in TAG lipolysis, peroxisomal fatty acid beta-oxidation, the glyoxylate cycle and gluconeogenesis was assembled 

from the Arabidopsis Acyl-Lipid Metabolism Website (ARALIP, 

http://aralip.plantbiology.msu.edu/pathways/triacylglycerol_fatty_acid_degradation,) [S5] and the compiled list of 

genes involved in storage oil mobilisation [S6].  The CGI-58 gene with a proposed role in neutral lipid homeostasis 

is also included [S7].  The expression values of these genes were calculated by averaging the triplicate 

measurements and a fold change was used to represent the comparison of the 2 sample types (guard cell and leaf) 

that had been maintained either in the presence or absence of exogenous ABA.   
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