Figure S1. Metabolic rate as a function of ambient temperature (T_a) for Siberian hamsters *Phodopus sungorus* acclimated for 3 months to winter- (A) and summer-like conditions (B; see the text for the details of acclimation procedure). In winter we successfully collected data for 39, while in summer for 40 individuals. In winter lower critical temperature (T_{LC}) was at $26.9 \pm 0.3^{\circ}$ C, while in summer $T_{LC} = 28.6 \pm 0.2^{\circ}$ C. The regression lines were fitted using least-squeres method, and for T_a 's < T_{LC} they were described by the following equations: for winter – MR (W) = 1.00 -0.028 T_a (°C), $r^2 = 0.66$; for summer – MR (W) = 1.04 -0.026 T_a (°C), $r^2 = 0.84$. Note that each symbol represents different individual and that in each season one symbol indicates the same individual. Table 1a. Body mass (g) of Siberian hamsters *Phodopus sungorus* randomly assigned to groups which were acclimated in different order to T_a 's during winter and summer series of experiments. Body mass of individuals within group was compared using Friedman repeated measures test with Wilcoxon pairwise test for post-hoc comparisons. Values are mean \pm SD, N – number of animals in each group, χ^2 – value of the test statistics, superscript letters indicate statistical differences at P<0.05. | Season | Order of | | Acclimation | | | | | |--------|---------------------------------------|---------------------------|---------------------------|---------------------------|---|----------|---------| | | acclimation
T _a 's (°C) | Initial | First | Second | N | χ^2 | Р | | Winter | 10-10-20 | 30.15±3.46 ^{a,b} | 28.05±3.17 ^{a,c} | 26.05±2.57 ^{b,c} | 6 | 11.51 | < 0.001 | | | 10-10-28 | $30.40{\pm}4.79^a$ | 28.56 ± 3.85^{a} | 28.60 ± 3.74 | 6 | 6.00 | 0.052 | | | 10-20-10 | 32.49 ± 3.29^a | 29.85 ± 1.99^a | 29.92 ± 1.69 | 7 | 3.50 | 0.192 | | | 10-20-28 | 33.67 ± 3.38 | 34.63 ± 5.68 | 32.53 ± 4.62 | 5 | 3.29 | 0.182 | | | 10-28-10 | 32.88 ± 2.52 | 31.29 ± 2.93 | 29.73 ± 3.56 | 5 | 7.12 | 0.024 | | | 10-28-20 | $30.20\pm2.58^{a,b}$ | 27.69 ± 1.62^{a} | 27.50 ± 2.25^{b} | 6 | 8.91 | 0.005 | | Summer | 20-10-20 | 39.60±4.16 | 40.95 ± 4.78 | 40.34 ± 3.38 | 7 | 3.50 | 0.192 | | | 20-10-28 | 41.29 ± 5.10 | 41.13±3.92 | 42.91 ± 4.72 | 6 | 2.11 | 0.429 | | | 20-20-10 | 38.38 ± 1.25 | 39.64 ± 2.18 | 40.34 ± 1.70 | 5 | 4.42 | 0.124 | | | 20-20-28 | 39.31 ± 3.13 | 39.31 ± 5.98 | 40.93 ± 7.39 | 6 | 4.05 | 0.142 | | | 20-28-10 | 41.35 ± 1.06 | 40.60 ± 1.59 | 41.16 ± 1.29 | 5 | 0.96 | 0.691 | | | 20-28-20 | 40.61 ± 5.04 | 41.00±4.22 | 41.36 ± 3.48 | 7 | 0.98 | 0.620 | Table 2a. Basal metabolic rate (W) of Siberian hamsters *Phodopus sungorus* randomly assigned to groups which were acclimated in different order to T_a 's during winter and summer series of experiments. Basal metabolic rate of individuals within each group was compared using Friedman repeated measures test with Wilcoxon pairwise test for post-hoc comparisons. Values are mean \pm SD, N – number of animals in each group, χ^2 – value of the test statistics, superscript letters indicate statistical differences at P<0.05. | Season | Order of | | Acclimation | | | | | |--------|---------------------------|---------------------|---------------------|---------------------|---|----------|-------| | | acclimation T_a 's (°C) | Initial | First | Second | N | χ^2 | P | | Winter | 10-10-20 | $0.26{\pm}0.04^{a}$ | 0.21 ± 0.04^{a} | 0.21±0.02 | 6 | 6.00 | 0.052 | | | 10-10-28 | 0.27 ± 0.05 | 0.25 ± 0.04 | 0.22 ± 0.05 | 6 | 4.05 | 0.142 | | | 10-20-10 | 0.25 ± 0.02 | 0.21 ± 0.05 | 0.26 ± 0.01 | 7 | 5.18 | 0.085 | | | 10-20-28 | 0.26 ± 0.03 | 0.24 ± 0.04 | 0.24 ± 0.03 | 5 | 0.96 | 0.691 | | | 10-28-10 | 0.27 ± 0.05 | 0.23 ± 0.04 | 0.27 ± 0.03 | 5 | 2.50 | 0.367 | | | 10-28-20 | $0.25{\pm}0.02^{a}$ | 0.22 ± 0.01^a | 0.24 ± 0.02 | 6 | 6.00 | 0.052 | | Summer | 20-10-20 | 0.31 ± 0.04 | $0.33{\pm}0.05^{a}$ | $0.28{\pm}0.01^a$ | 7 | 4.34 | 0.112 | | | 20-10-28 | 0.30 ± 0.03 | $0.34 {\pm} 0.04$ | 0.28 ± 0.02 | 6 | 4.05 | 0.142 | | | 20-20-10 | 0.30 ± 0.01 | 0.28 ± 0.02 | 0.38 ± 0.05 | 5 | 4.81 | 0.093 | | | 20-20-28 | $0.29{\pm}0.03^a$ | 0.30 ± 0.04^{b} | $0.25\pm0.03^{a,b}$ | 6 | 8.91 | 0.006 | | | 20-28-10 | 0.30 ± 0.01 | 0.28 ± 0.02 | 0.33 ± 0.02 | 5 | 5.96 | 0.004 | | | 20-28-20 | 0.30 ± 0.04 | 0.30 ± 0.02 | 0.30 ± 0.03 | 7 | 0.14 | 0.964 | Table 3a. Facultative nonshivering thermogenesis (W) of Siberian hamsters *Phodopus sungorus* randomly assigned to groups which were acclimated in different order to T_a 's during winter and summer series of experiments. Body masses within each order of acclimation were compared using Friedman repeated measures test with Wilcoxon pairwise test for post-hoc comparisons. Values are mean \pm SD, N – number of animals in each group, χ^2 – value of the test statistics, superscript letters indicate statistical differences at P<0.05. | Season | Order of | Acclimation | | | | | | |--------|---------------------------|------------------------|-----------------------|-----------------------|---|----------|---------| | | acclimation T_a 's (°C) | Initial | First | Second | N | χ^2 | P | | Winter | 10-10-20 | 1.19±0.03 ^a | $0.93{\pm}0.06^{a,b}$ | 1.20 ± 0.15^{b} | 6 | 8.60 | 0.008 | | | 10-10-28 | $1.16\pm0.13^{a,b}$ | $0.62 \pm 0.14^{a,c}$ | $0.91 \pm 0.16^{b,c}$ | 6 | 11.51 | < 0.001 | | | 10-20-10 | 1.30 ± 0.19^{a} | $0.95{\pm}0.19^a$ | 1.27±0.23 | 7 | 7.42 | 0.021 | | | 10-20-28 | 1.18 ± 0.07 | 0.94 ± 0.14 | 0.86 ± 0.12 | 5 | 7.12 | 0.024 | | | 10-28-10 | 1.28 ± 0.04 | 0.45 ± 0.12 | 1.12 ± 0.36 | 5 | 7.12 | 0.024 | | | 10-28-20 | 1.16 ± 0.11^{a} | $0.58{\pm}0.24^{a}$ | 0.95 ± 0.21 | 6 | 6.65 | 0.029 | | Summer | 20-10-20 | 0.81 ± 0.27^{a} | $1.13\pm0.22^{a,b}$ | 0.88 ± 0.25^{b} | 7 | 7.70 | 0.016 | | | 20-10-28 | $0.76\pm0.22^{a,b}$ | $1.25\pm0.32^{a,c}$ | $0.66\pm0.17^{b,c}$ | 6 | 11.51 | < 0.001 | | | 20-20-10 | 0.82 ± 0.19 | 0.68 ± 0.18 | 1.07 ± 0.18 | 5 | 4.81 | 0.093 | | | 20-20-28 | 0.74 ± 0.15^{a} | 0.78 ± 0.31 | 0.51 ± 0.07^{a} | 6 | 4.05 | 0.142 | | | 20-28-10 | 0.77 ± 0.19 | 0.63 ± 0.20 | 1.04 ± 0.27 | 5 | 5.96 | 0.004 | | | 20-28-20 | $0.82{\pm}0.26^{a}$ | 0.58 ± 0.21^{a} | 0.69 ± 0.27 | 7 | 5.74 | 0.051 | Table 4a. Minimum thermal conductance (mW°C⁻¹cm⁻²) of Siberian hamsters *Phodopus sungorus* randomly assigned to groups which were acclimated in different order to T_a 's during winter and summer series of experiments. Minimal thermal conductance of individuals within each group was compared using Friedman repeated measures test with Wilcoxon pairwise test for post-hoc comparisons. Values are mean \pm SD, N – number of animals in each group, χ^2 – value of the test statistics, superscript letters indicate statistical differences at P<0.05. | Season | Order of | Acclimation | | | | | | |--------|---------------------------------------|-----------------|-----------------|-----------------|---|----------|-------| | | acclimation
T _a 's (°C) | Initial | First | Second | N | χ^2 | P | | Winter | 10-10-20 | 0.25±0.07 | 0.24±0.04 | 0.22±0.10 | 6 | 2.11 | 0.429 | | | 10-10-28 | 0.25 ± 0.06 | 0.27 ± 0.02 | 0.32 ± 0.12 | 6 | 2.11 | 0.429 | | | 10-20-10 | 0.27 ± 0.04 | 0.24 ± 0.09 | 0.26 ± 0.05 | 7 | 0.14 | 0.964 | | | 10-20-28 | 0.26 ± 0.04 | 0.31 ± 0.07 | 0.26 ± 0.09 | 5 | 0.19 | 0.954 | | | 10-28-10 | 0.27 ± 0.03 | 0.21 ± 0.09 | 0.23 ± 0.05 | 5 | 0.19 | 0.954 | | | 10-28-20 | 0.22 ± 0.07 | 0.24 ± 0.04 | 0.22 ± 0.08 | 6 | 0.81 | 0.740 | | Summer | 20-10-20 | 0.24±0.05 | 0.28 ± 0.04 | 0.27 ± 0.04 | 7 | 0.70 | 0.768 | | | 20-10-28 | 0.26 ± 0.03 | 0.26 ± 0.02 | 0.26 ± 0.04 | 6 | 2.11 | 0.429 | | | 20-20-10 | 0.25 ± 0.04 | 0.24 ± 0.03 | 0.26 ± 0.03 | 5 | 0.19 | 0.954 | | | 20-20-28 | 0.25 ± 0.03 | 0.24 ± 0.02 | 0.21 ± 0.04 | 6 | 2.76 | 0.252 | | | 20-28-10 | 0.25 ± 0.02 | 0.25 ± 0.03 | 0.27 ± 0.05 | 5 | 0.19 | 0.954 | | | 20-28-20 | 0.26 ± 0.05 | 0.25 ± 0.03 | 0.25 ± 0.03 | 7 | 0.70 | 0.768 |