

Figure S1. Metabolic rate as a function of ambient temperature (T_a) for Siberian hamsters *Phodopus sungorus* acclimated for 3 months to winter- (A) and summer-like conditions (B; see the text for the details of acclimation procedure). In winter we successfully collected data for 39, while in summer for 40 individuals. In winter lower critical temperature (T_{LC}) was at $26.9 \pm 0.3^{\circ}$ C, while in summer $T_{LC} = 28.6 \pm 0.2^{\circ}$ C. The regression lines were fitted using least-squeres method, and for T_a 's < T_{LC} they were described by the following equations: for winter – MR (W) = 1.00 -0.028 T_a (°C), $r^2 = 0.66$; for summer – MR (W) = 1.04 -0.026 T_a (°C), $r^2 = 0.84$. Note that each symbol represents different individual and that in each season one symbol indicates the same individual.

Table 1a. Body mass (g) of Siberian hamsters *Phodopus sungorus* randomly assigned to groups which were acclimated in different order to T_a 's during winter and summer series of experiments. Body mass of individuals within group was compared using Friedman repeated measures test with Wilcoxon pairwise test for post-hoc comparisons. Values are mean \pm SD, N – number of animals in each group, χ^2 – value of the test statistics, superscript letters indicate statistical differences at P<0.05.

Season	Order of		Acclimation				
	acclimation T _a 's (°C)	Initial	First	Second	N	χ^2	Р
Winter	10-10-20	30.15±3.46 ^{a,b}	28.05±3.17 ^{a,c}	26.05±2.57 ^{b,c}	6	11.51	< 0.001
	10-10-28	$30.40{\pm}4.79^a$	28.56 ± 3.85^{a}	28.60 ± 3.74	6	6.00	0.052
	10-20-10	32.49 ± 3.29^a	29.85 ± 1.99^a	29.92 ± 1.69	7	3.50	0.192
	10-20-28	33.67 ± 3.38	34.63 ± 5.68	32.53 ± 4.62	5	3.29	0.182
	10-28-10	32.88 ± 2.52	31.29 ± 2.93	29.73 ± 3.56	5	7.12	0.024
	10-28-20	$30.20\pm2.58^{a,b}$	27.69 ± 1.62^{a}	27.50 ± 2.25^{b}	6	8.91	0.005
Summer	20-10-20	39.60±4.16	40.95 ± 4.78	40.34 ± 3.38	7	3.50	0.192
	20-10-28	41.29 ± 5.10	41.13±3.92	42.91 ± 4.72	6	2.11	0.429
	20-20-10	38.38 ± 1.25	39.64 ± 2.18	40.34 ± 1.70	5	4.42	0.124
	20-20-28	39.31 ± 3.13	39.31 ± 5.98	40.93 ± 7.39	6	4.05	0.142
	20-28-10	41.35 ± 1.06	40.60 ± 1.59	41.16 ± 1.29	5	0.96	0.691
	20-28-20	40.61 ± 5.04	41.00±4.22	41.36 ± 3.48	7	0.98	0.620

Table 2a. Basal metabolic rate (W) of Siberian hamsters *Phodopus sungorus* randomly assigned to groups which were acclimated in different order to T_a 's during winter and summer series of experiments. Basal metabolic rate of individuals within each group was compared using Friedman repeated measures test with Wilcoxon pairwise test for post-hoc comparisons. Values are mean \pm SD, N – number of animals in each group, χ^2 – value of the test statistics, superscript letters indicate statistical differences at P<0.05.

Season	Order of		Acclimation				
	acclimation T_a 's (°C)	Initial	First	Second	N	χ^2	P
Winter	10-10-20	$0.26{\pm}0.04^{a}$	0.21 ± 0.04^{a}	0.21±0.02	6	6.00	0.052
	10-10-28	0.27 ± 0.05	0.25 ± 0.04	0.22 ± 0.05	6	4.05	0.142
	10-20-10	0.25 ± 0.02	0.21 ± 0.05	0.26 ± 0.01	7	5.18	0.085
	10-20-28	0.26 ± 0.03	0.24 ± 0.04	0.24 ± 0.03	5	0.96	0.691
	10-28-10	0.27 ± 0.05	0.23 ± 0.04	0.27 ± 0.03	5	2.50	0.367
	10-28-20	$0.25{\pm}0.02^{a}$	0.22 ± 0.01^a	0.24 ± 0.02	6	6.00	0.052
Summer	20-10-20	0.31 ± 0.04	$0.33{\pm}0.05^{a}$	$0.28{\pm}0.01^a$	7	4.34	0.112
	20-10-28	0.30 ± 0.03	$0.34 {\pm} 0.04$	0.28 ± 0.02	6	4.05	0.142
	20-20-10	0.30 ± 0.01	0.28 ± 0.02	0.38 ± 0.05	5	4.81	0.093
	20-20-28	$0.29{\pm}0.03^a$	0.30 ± 0.04^{b}	$0.25\pm0.03^{a,b}$	6	8.91	0.006
	20-28-10	0.30 ± 0.01	0.28 ± 0.02	0.33 ± 0.02	5	5.96	0.004
	20-28-20	0.30 ± 0.04	0.30 ± 0.02	0.30 ± 0.03	7	0.14	0.964

Table 3a. Facultative nonshivering thermogenesis (W) of Siberian hamsters *Phodopus sungorus* randomly assigned to groups which were acclimated in different order to T_a 's during winter and summer series of experiments. Body

masses within each order of acclimation were compared using Friedman repeated measures test with Wilcoxon pairwise test for post-hoc comparisons. Values are mean \pm SD, N – number of animals in each group, χ^2 – value of the test statistics, superscript letters indicate statistical differences at P<0.05.

Season	Order of	Acclimation					
	acclimation T_a 's (°C)	Initial	First	Second	N	χ^2	P
Winter	10-10-20	1.19±0.03 ^a	$0.93{\pm}0.06^{a,b}$	1.20 ± 0.15^{b}	6	8.60	0.008
	10-10-28	$1.16\pm0.13^{a,b}$	$0.62 \pm 0.14^{a,c}$	$0.91 \pm 0.16^{b,c}$	6	11.51	< 0.001
	10-20-10	1.30 ± 0.19^{a}	$0.95{\pm}0.19^a$	1.27±0.23	7	7.42	0.021
	10-20-28	1.18 ± 0.07	0.94 ± 0.14	0.86 ± 0.12	5	7.12	0.024
	10-28-10	1.28 ± 0.04	0.45 ± 0.12	1.12 ± 0.36	5	7.12	0.024
	10-28-20	1.16 ± 0.11^{a}	$0.58{\pm}0.24^{a}$	0.95 ± 0.21	6	6.65	0.029
Summer	20-10-20	0.81 ± 0.27^{a}	$1.13\pm0.22^{a,b}$	0.88 ± 0.25^{b}	7	7.70	0.016
	20-10-28	$0.76\pm0.22^{a,b}$	$1.25\pm0.32^{a,c}$	$0.66\pm0.17^{b,c}$	6	11.51	< 0.001
	20-20-10	0.82 ± 0.19	0.68 ± 0.18	1.07 ± 0.18	5	4.81	0.093
	20-20-28	0.74 ± 0.15^{a}	0.78 ± 0.31	0.51 ± 0.07^{a}	6	4.05	0.142
	20-28-10	0.77 ± 0.19	0.63 ± 0.20	1.04 ± 0.27	5	5.96	0.004
	20-28-20	$0.82{\pm}0.26^{a}$	0.58 ± 0.21^{a}	0.69 ± 0.27	7	5.74	0.051

Table 4a. Minimum thermal conductance (mW°C⁻¹cm⁻²) of Siberian hamsters *Phodopus sungorus* randomly assigned to groups which were acclimated in different order to T_a 's during winter and summer series of experiments. Minimal thermal conductance of individuals within each group was compared using Friedman repeated measures test with Wilcoxon pairwise test for post-hoc comparisons. Values are mean \pm SD, N – number of animals in each group, χ^2 – value of the test statistics, superscript letters indicate statistical differences at P<0.05.

Season	Order of	Acclimation					
	acclimation T _a 's (°C)	Initial	First	Second	N	χ^2	P
Winter	10-10-20	0.25±0.07	0.24±0.04	0.22±0.10	6	2.11	0.429
	10-10-28	0.25 ± 0.06	0.27 ± 0.02	0.32 ± 0.12	6	2.11	0.429
	10-20-10	0.27 ± 0.04	0.24 ± 0.09	0.26 ± 0.05	7	0.14	0.964
	10-20-28	0.26 ± 0.04	0.31 ± 0.07	0.26 ± 0.09	5	0.19	0.954
	10-28-10	0.27 ± 0.03	0.21 ± 0.09	0.23 ± 0.05	5	0.19	0.954
	10-28-20	0.22 ± 0.07	0.24 ± 0.04	0.22 ± 0.08	6	0.81	0.740
Summer	20-10-20	0.24±0.05	0.28 ± 0.04	0.27 ± 0.04	7	0.70	0.768
	20-10-28	0.26 ± 0.03	0.26 ± 0.02	0.26 ± 0.04	6	2.11	0.429
	20-20-10	0.25 ± 0.04	0.24 ± 0.03	0.26 ± 0.03	5	0.19	0.954
	20-20-28	0.25 ± 0.03	0.24 ± 0.02	0.21 ± 0.04	6	2.76	0.252
	20-28-10	0.25 ± 0.02	0.25 ± 0.03	0.27 ± 0.05	5	0.19	0.954
	20-28-20	0.26 ± 0.05	0.25 ± 0.03	0.25 ± 0.03	7	0.70	0.768