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Supplementary information

1 Mode correction for HG/LG probing beams

Hermite-Gaussian (HG) modes and Laguerre-Gaussian (LG) modes can
form a complete orthogonal set of modes. The mode index N of HGn

m and
LGp

` is defined as N = m+n, or 2p+ |`|. Each LG(HG) mode can be trans-
formed from a set of corresponding HG(LG) modes with the conditions of
` = n�m, p = min(n,m) [29, 30]. The mode purity can be calculated as an
inner product of the required theoretical mode and the measured mode [29].
The orthogonality error is obtained from the maximum o↵-diagonal value in
the orthogonal matrix of the whole set of measured probing modes.

To ensure the mode purity of each HG/LG probing beam and the or-
thogonality in each set of HG/LG probing beams created by SLM, we need
to correct each mode with a double-pinhole correction scheme. As shown in
Fig. 5, a beam splitter (BS1) is used to divert part of light from the main
optical axis onto a double-pinhole (DP). The diameter of the big pinhole
has the same size as P1 (� = 4 mm) which is used to selects the same first
di↵raction order only. The zero-th di↵raction order is filtered through the
other 20µm pinhole on the DP in order to obtain a reference beam with
a planar wavefront after the lens (L5). The separation distance between
these two pinholes on DP is 4 mm which is determined by the grating used
on SLM. The interference pattern between the first di↵raction order and
the reference beam is then recorded by a CCD (CCD2, SBIG STF-8300M).
With a well-known FFT fringe analysis method [S1], the complex field of the
probing beam can be retrieved from the recorded fringe pattern. Because
the probing beam and the reference beam are in the common path, we can
obtain stable fringe patterns with high visibility, which in turn reduces the
noise in the final calculated complex fields. The mode correction scheme is
then can be described as following steps.

a. Encode a complex field S0(x, y) = u0(x, y) exp[i�(x, y)] of one LG/HG
mode onto SLM with a complex-amplitude modulation method [31].

b. Record an interference pattern and calculate the complex field Sc(u, v)
on the CCD plane.
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Figure S1: Plots of the maximum orthogonality error in each set of probing
beams (a) and the minimum mode purity of all probing beams (b) as a
function of iteration steps.

c. The measured complex field Sc(u, v) can be transformed back onto the
SLM plane as S

0
(x, y) with a precise image registration method [S2]

since the CCD plane is on the image plane of SLM.

d. The mode purity is estimated from the inner production of the mea-
sured mode S

0
(x, y) and theoretical mode S0(x, y). Then locally cor-

rect the probing beams on the SLM if the mode purity is not accept-
able. A new the complex field S

0
0(x, y) can be calculated and then

applied onto SLM.

e. Repeat steps (a) to (d) to correct all other probing beams.

f. Calculate the orthogonality error of the whole set of probing beams.
Repeat step (a) to (e) to do further mode corrections until the orthog-
onality error is small enough.

With several iteration steps, a high mode purity can be achieved while
maintaining the orthogonality in each set of probing beams, as shown in
Fig. S1. With such a correction scheme, minimum mode purity can be
finally achieved as high as 0.99 while maximum orthogonality error is as low
as 0.14% in both sets of HG/LG probing beams.

2 Total power of input probing beams

The total power in each probing beam is measured by a photo diode (PD)
when no optical restricting element is used. These 36 probing beams have
the same optic axis, waist size and waist position, but di↵erent mode indices
in order to keep the orthogonality. As shown in Fig. S2, the measured power
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Figure S2: Power of 36 input HG/LG probing beams measured by PD.

Table S1: Normalization factors.

Medium
Probes Free space 5µm 3µm Fibre
HG 1.075±0.006 0.661±0.033 0.573±0.012 1.602±0.184
LG 1.083±0.006 0.671±0.031 0.569±0.013 1.612±0.182

in each probing beam varies a lot and is used to normalize each corresponding
output beam [32].

3 ODoF normalization factors

As introduced in theoretical description section, we can have a relative num-
ber of ODoF if the eigenvalues are normalized by the highest one. Table S1
shows these normalization factors between absolute and relative number of
ODoF.

4 Degenerate eigenmodes

In Figure 3 we observe that all eigenvalues are twice degenerate i.e. there are
two optical eigenmodes associated with each distinct eigenvalue. Physically,
these eigenvalues represent the coupling e�ciency or transmission coe�cient
of the optical system between the input plane and the detector plane. The
origin of the twice degenerate eigenmodes is the time reversal invariance of
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Figure S3: Eigenmodes in numerical simulations. Real, Imag and Abs de-
note taking the real part, the imaginary part and the absolute value of a
complex field respectively.

the wave equations. Figure S3 shows the fields and intensity associated with
four optical eigenmodes. The first two and last two are each having the same
eigenvalue. We observe that using a superposition between the degenerate
eigenmodes it is possible to define two modes that are complex conjugate to
each other and orthonormal. However, taking the complex conjugate of a
solution of the wave equation is equivalent to the time reversal which leaves
the wave equation invariant.

5 Eigenvalues cut-o↵

From the measured optical eigenmodes, it can be observed that no signal
can be detected for those high order eigenmodes. As shown in Fig. S4, all
eigenmodes are detectable for the free space case while there are thresholds
as 18, 9 and 19 eigenmode for 5µm pinhole, 3µm pinhole and a “few-mode”
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Figure S4: Measured optical eigenmodes through the free space, 5µm pin-
hole, 3µm pinhole and a “few-mode” fibre.

fibre respectively. Those eigenvalues corresponding to the eigenmodes or-
der higher than the threshold will be considered as noise and will NOT be
counted for the ODoF.
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