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Estimating Exposure to Noise: 

We used noise exposure estimates (as estimated by the Integrated Noise Model, INM, described 

in the main text) at the census block level in combination with 2010 U.S. Census data on 

population counts, also at the census block level, to obtain aggregated measures of exposure to 

aircraft noise at the zip code level. We calculated exposure to noise metrics for 2218 zip codes 

around the 89 airports. 

More specifically, we assumed that the study population was uniformly distributed within a 

census block. We then overlaid noise estimates by census block with the population ≥ 65 years 

of age by census block, based on U.S. Census 2010. For zip codes that included census blocks 

that were outside of the 45 dB contour lines provided by INM, we assumed that those blocks 

were exposed to 45 dB. The zip codes for which no census blocks had noise estimates above 45 

dB were omitted from the analysis. We then constructed a number of candidate exposure metrics, 

as described in the main text, but ultimately focused on the following two: 1) population-

weighted arithmetic mean noise within each zip code, weighted by the  ≥ age 65 population and 

2) the 90th percentile noise exposure among the census blocks within each zip code that contain 

non-zero population ≥ age 65.   More formally, for each zip code, z, we calculated the 

population-weighted noise exposure by using the formula  xz = (∑pj  xj)/hz, where p j  denotes 

the population ≥ 65 years old in census block j, xj denotes exposure to noise at the centroid of 



census block j, and hz 
denotes the total population ≥ 65 years old in zip code z. We summed over 

all census blocks (j) included in the zip code (z) separately for each z. For blocks that were split 

by the 45 dB contour line, noise exposure was calculated as the population exposed to over 45 

dB, (estimated as the population pj multiplied by the fraction of the block area inside the contour 

line fj ), multiplied by xj, plus the estimated population outside the contour line multiplied by 45 

dB. For these “split” census blocks, the block-level exposure xj
split can be written as xj

split = xj  fj 

 pj + 45  (1-fj)  pj. 

 

Estimating Road Density as a Proxy for Road Noise and Near-Road Air Pollution: 

The density of major roads within 200 m of census block centroids was estimated as a proxy for 

multiple risk factors correlated with roadway proximity, including traffic-related noise and air 

pollution.  Population weighted road density within each zip code was calculated as rz = (∑pj  

rj)/hz, where p j  denotes the population ≥ 65 years old in census block j, rj denotes road density 

at the centroid of census block j, and hz 
denotes the total population ≥ 65 years old in zip code z.  

Major roads were defined as limited access highways, primary roads without limited access, and 

secondary and connecting roads (Census Feature Class Code A1, A2 or A3) from a nationwide 

road dataset (StreetMapTM, ESRI ArcGIS 10 Data and Maps). 

 

Statistical Model: 

We aggregated the Medicare enrollees living in areas with greater than 45 dB of airport-related 

noise to the zip code level, stratified by age/gender/race.  Each zip code represented part of a 

cluster of other zip codes around one of the 89 airports. We then fit the following hierarchical 

Poisson model: 
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where 

   

Yz,s
A
  and Nz,s

A  are the number of CVD hospitalizations and number of Medicare enrollees, 

respectively, for zip code z, surrounding airport A, in age/gender/race stratum s; xz  is either the 

population-weighted noise exposure in zip code z or the 90th percentile of noise exposure among 

the populated census blocks that make up zip code z, depending on the model; and 

   

Wz

A
 is a 

vector of potentially confounding variables (e.g. PM2.5 concentration, ozone concentration, other 

SES or demographic information) for zip code z. 

For each cardiovascular outcome (combined CVD hospitalization, and separate sub-analyses for 

cerebrovascular disease, ischemic heart disease and heart failure hospitalizations), we 

constructed three models for each of the two noise exposure metrics (population-weighted noise 

exposure and 90th percentile of noise exposure). Models 1 controlled for individual-level 

variables (age, sex and race); Models 2 additionally controlled for zip code-level SES and 

demographic variables (% Hispanic and median household income); and Models 3 added 

pollution variables (PM2.5 and ozone levels).  All models were fit using R statistical software, 

version 2.15.2. 

For our main analysis, with combined CVD hospitalizations as the outcome, we ran the 

hierarchical Poisson model defined above under a fully Bayesian approach,1 allowing us to 

estimate the posterior distributions of both the airport-specific effects as well as overall 

population-level effects. The Bayesian analysis was carried out without making strong prior 

assumptions about the values of the regression parameters; more precisely, we used unit 



information priors2 3 for the airport-specific regression parameters and flat, or uniform, priors on 

the fixed-effect regression parameters.  

The posterior distributions obtained from this analysis can then be used to determine the 

posterior probability that the relative rate of CVD hospitalizations associated with airport noise 

exposure has a particular value.  Some important calculations include the posterior mean, the 

posterior probability that the relative rate of CVD hospitalizations associated with airport noise is 

greater than zero, and the 95 percent posterior interval – a formulation similar to the 95 percent 

confidence interval.4 This type of Bayesian analysis is very computationally intensive. Thus, 

secondary analyses that examined separately the association between noise and cerebrovascular 

disease hospitalizations, ischemic heart disease hospitalizations, and heart failure hospitalizations 

were fit using the glmer() function in the linear mixed effects package (lme4) in R, which fits the 

hierarchical models in a more traditional framework.5 This method is very similar to the fully 

Bayesian approach used for the main analysis, and, indeed, estimates of the relative rates of total 

CVD hospitalization associated with noise exposure obtained using the lme4 package were 

nearly identical to those obtained from our fully Bayesian analyses across all models. 

 

Population Attributable Fraction: 

We calculated the population attributable fraction (PAF) using a standard expression6: 
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where Pi reflects the proportion of the population at exposure level i given current exposure, Pi’ 

reflects the proportion of the population exposed to exposure level i given the counterfactual 

level of exposure, RRi is the relative risk at exposure level i, and n is the number of exposure 

levels. For all exposures, we assumed a linear exposure-response function with a counterfactual 



exposure at the lowest level of exposure in the population. Exposure was treated continuously for 

both noise and air pollution, dividing the population into 0.01 dB, 0.01 µg/m3, and 0.01 ppb bins 

for noise, PM2.5, and ozone respectively, effectively calculating PAF as an integral as 

recommended for continuous exposures.  

 

As the counterfactual level of exposure was a defined constant across the population (with a 

relative risk of 1), and the relative risk was applied assuming linearity throughout the range of 

exposures, the equation for PAF can be re-expressed as:    

𝑃𝐴𝐹 =  
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All estimates were derived from a modified version of Model 3, which included additional area-

level covariates that might confound the air pollution-CVD hospitalization association although 

they were shown to not influence the noise-CVD hospitalization association. Specifically, we 

additionally controlled for zip code-level high school graduation rate, black rate, urban rate, and 

average annual temperature. As anticipated, the noise relative rate was essentially unchanged 

from Model 3, with a 3.6% increase in CVD hospitalizations per 10 dB increase in 90th 

percentile noise (versus 3.5% in Model 3). The estimate for PM2.5 corresponded with a 1.4% 

increase in CVD hospitalizations per µg/m3 increase in annual average PM2.5, and the estimate 

for ozone corresponded with a 0.56% increase in CVD hospitalizations per ppb increase in 

annual average ozone. 
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