Appendix: Supplementary tables A-E [posted as supplied by author]

Table A: Details Of Imputation For Missing Data

Issue	Imputation Methods				
Outcomes assessed every 6 months	In subjects who had missing outcomes at 6 months, under the monotone assumption, baseline outcomes explanatory covariates was used to impute the missing values at 6 months. For patients who had missing outcomes				
Outcomes assessed every month	The disease activity score for 28 joints and its components were imputed using multivariate sequential imputation using chained equations. Firstly, all missing values were filled in by simple random sampling with replacement from the observed values. The first variable with missing values, say tender joint count at month one, was regressed on all other variables tender joint count-0, tender joint count-2,tender joint count-12, restricted to individuals with the observed tender joint count-1. Missing values in tender joint count-1 were replaced by simulated data points drawn from the corresponding posterior predictive distribution of tender joint count-1. Then, the next variable with missing was replaced by the same cycle				
Number of cycles	The imputation was 20 cycles. At the end of the cycle one imputed dataset was created. The process was repeated to create 20 imputed datasets. The 20 datasets were combined using Rubin's rules [1,2], therefore, the estimates and standard errors presented here are the combined ones. As an additional check of the robustness of the analyses performed to the missing at random assumption we further analysed the individual outcomes using the linear increments method of Diggle et al [3] to handle the missingness. As the results obtained using this approach were qualitatively the same as that of the multiple imputation approach adopted, we report only the findings from the standard multiple imputation analyses.				

1. Little RJA, Rubin DB. Statistical Analysis with Missing Data. 2nd ed. Hoboken, NJ: John Wiley and Sons, Inc; 2002

2. Schafer JL. Analysis of Incomplete Multivariate Data. 1st ed. London, United Kingdom: Chapman and Hall Ltd; 1997.

3. Diggle P, Farewell D, Henderson R. Analysis of longitudinal data with drop-out: objectives, assumptions and a proposal. J R Stat Soc C-Appl 2007; 56: 499-550.

Table B. Trial Treatments In The Two Treatment Strategies

	Therapies	Patients			
Combination Disease Modifying Drugs Strategy					
	One	0			
Disease Modifying Drug	Two	46			
Treatments	Three	48			
(<i>n</i> =104)	Four	8			
	Five	2			
	Methotrexate/Leflunomide	62			
Main Disease Modifying	Methotrexate/Ciclosporin	17			
Drug Combinations	Methotrexate/Sulfasalazine/Hydroxychloroquine	13			
(<i>n</i> =104)	Methotrexate/Gold	10			
	Other	2			
Switched To Tumour	Adalimumab	25			
Necrosis Factor	Etanercept	14			
Inhibitors	Infliximab	4			
(<i>n</i> =46)	Withdrew Before Starting	3			
Steroids	Oral Prednisolone	24			
(<i>n</i> =27)	Depomedrone injections	3			
,	Tumour Necrosis Factor Inhibitor Strategy				
Initial Tumour Necrosis	Adalimumab	58			
Factor Inhibitors	Etanercept	34			
(<i>n</i> =101)	Infliximab	9			
Second Tumour Necrosis	Adalimumab	7			
Factor Inhibitors	Etanercept	9			
(<i>n</i> =16)	Infliximab	0			
Steroids	Oral Prednisolone	19			
(n=19)	Depomedrone injections	0			

 Table C: Changes In Primary Outcome (Health Assessment Questionnaire Score) In Intention To Treat And Complete Case

 Populations

Population	Strategy Number		Initial	Final	Difference	Regression Coefficient (95% CI)	
			Mean (95% CI)	Mean (95% CI)	Mean (95% CI)	Unadjusted	Adjusted
Intention to	Disease Modifying Drugs	104	1.80 (1.68, 1.91)	1.35 (1.20, 1.50)	-0.45 (-0.55,-0.34)	-0.14 (-0.29, 0.01)	-0.15 (-0.31, -0.003)
treat	Tumour Necrosis Factor Inhibitors	101	1.90 (1.77, 2.03)	1.59 (1.43, 1.76)	-0.30 (-0.42,-0.19)	-0.14 (-0.29, 0.01)	
Complete	Disease Modifying Drugs	72	1.85 (1.71, 1.99)	1.33 (1.16, 1.51)	-0.52 (-0.63, -0.41)	-0.14 (-0.32, 0.03)	-0.15 (-0.32, 0.03)
cases	Tumour Necrosis Factor Inhibitors	75	1.84 (1.68, 2.00)	1.47 (1.27, 1.66)	-0.38 (-0.51, -0.24)	-0.14 (-0.32, 0.03)	

Combination disease modifying drugs are favoured by negative values for regression coefficients; the tumour necrosis factor inhibitor strategy was the reference group

Outcome	Strategy	Number	Initial	12 months	Difference 12-0	Regression Coefficient (95% CI)	
			Mean (95% CI)	Mean (95% CI)	Mean (95% CI)	Unadjusted	Adjusted
EQ5D-3L	Disease Modifying Drugs	104	0.39 (0.33, 0.45)	0.59 (0.53, 0.65)	0.20 (0.13,0.27)	0.06 (-0.04, 0.15)	0.11 (0.03, 0.18)
	Tumour Necrosis Factor Inhibitors	101	0.35 (0.28, 0.41)	0.49 (0.43, 0.55)	0.14 (0.08,0.21)		
SF-36 Physical Component Summary Score	Disease Modifying Drugs	104	28.4 (27.1, 29.7)	34.4 (32.2, 36.5)	6.0 (3.8, 8.1)	0.23 (-2.79, 3.26)	1.40 (-1.41, 4.22)
	Tumour Necrosis Factor Inhibitors	101	27.3 (25.9, 28.7)	33.0 (31.1, 35.0)	5.8 (3.7, 7.9)		
SF-36 Physical Component Summary Score	Disease Modifying Drugs	104	43.4 (41.0, 45.8)	48.4 (46.0, 50.8)	5.0 (2.2, 7.8)	-0.42 (-4.35, 3.51)	1.73 (-1.61, 5.07)
	Tumour Necrosis Factor Inhibitors	101	40.7 (38.3, 43.1)	46.1 (43.7, 48.6)	5.4 (2.7 8.2)		
Larsen Score	Disease Modifying Drugs	104	45.1 (37.0, 53.2)	46.3 (38.1, 54.5)	1.26 (0.19,2.34)	-0.11 (-1.67, 1.41)	-0.35 (-2.06, 1.37)
	Tumour Necrosis Factor Inhibitors	101	37.9 (30.2, 45.6)	39.3 (31.2, 47.4)	1.37 (0.26,2.48)		

Table D: Changes In Secondary Outcomes For Quality Of Life And Erosive Progression In Intention To Treat Population

Combination disease modifying drug strategy is favoured by positive differences with EQ5D-3L and SF-36 scores, and negative differences with Larsen scores; the tumour necrosis factor inhibitor strategy was the reference group

Table E Treatment Effects On Disease Activity In Intention To Treat Population Changes In Disease Activity Score For 28 Joints And ItsComponents Using Generalised Estimating Equations

Variable	Regression Coefficient (95%CI)			
	Unadjusted	Adjusted		
Disease Activity Score For 28 Joints	0.48 (0.17, 0.79)	0.40 (0.10, 0.69)		
Tender Joint Count	1.69 (-0.11, 3.50)	0.93 (-0.51,2.36)		
Swollen Joint Count	0.86 (-0.55, 2.27)	0.63 (-0.31, 1.57)		
Erythrocyte Sedimentation Rate	4.04 (0.40, 7.67)	4.62 (1.47, 7.77)		
Patients Global Assessment	2.83 (-3.20, 8.85)	1.96 (-3.11, 7.04)		

The tumour necrosis factor inhibitor strategy is favoured by positive differences; the tumour necrosis factor inhibitor strategy was the reference group