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INTRODUCTION 

 

We first give a brief description of three preliminaries.  The methods underlying the 

innovations achieved by our automated strategy are then described in detail by using the 

vehicle of a simple model to facilitate the four-part presentation:  (1) enumeration of the 

repertoire of qualitatively distinct phenotypes for a system; (2) generation of parameter 

values for any particular phenotype; (3) simultaneous realization of values for different 

phenotypes in parameter space to visualize transitions from one phenotype to another, in 

critical cases from functional to dysfunctional behavior; and (4) identification of 

ensembles of phenotypes whose expression can be phased to achieve a specific sequence 

of functions for rationally engineering synthetic constructs.   Finally, the details of these 

methods are presented for an application to the automatic identification of the phenotypic 
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repertoire for a class of genetic oscillator designs. The corresponding results are 

described and discussed in the main text.   

 

SYSTEM DESIGN SPACE PRELIMINARIES 

 

In this section, we describe three aspects at the system design space methodology that are 

at the foundation of our automated strategy for providing a global perspective on the 

system’s phenotypic repertoire. First is the system architecture for a mechanistic model 

consisting of nonlinear ordinary differential equations, second is the recasting of these 

equations into a standard nonlinear form, and third are generic definitions of systemic 

phenotypes.   

 

System Architecture  

 

By system architecture we mean those features that remain fixed independent of the 

parameter values that characterize particular instantiations of a system design.  Important 

architectural features include (a) the network topology of interactions, (b) the signs of the 

interactions, and (c) the number of binding sites involved in the interactions. The first two 

can be estimated by using current high-throughput technologies and methods for 

identifying causal connectivity1,2; similarly, the number of binding sites is routinely 

determined in the case of specific motifs in the DNA sequence and the number of 

subunits in multimeric proteins.  

The number of binding sites in turn manifests itself in the kinetic orders and Hill 

numbers of the rate laws that describe the flow of mass and information within the 

system. In these cases, the kinetic orders typically have small integer values 

corresponding to the maximum number of binding sites in the mechanism3.  Even for 

complex mechanism where the number of binding sites is unknown and the kinetic orders 
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must be approximated, sampling a small number of alternatives may be sufficient since 

the range of empirical kinetic orders for the vast majority of mechanisms is relatively 

small, typical between 0 and 4.  Once approximate kinetic orders are measured, estimated, 

or assumed, they become part of the model architecture and are no longer considered 

parameters from the perspective of our strategy.   

These architectural features are fixed for a given system design.  The rate constant 

and binding parameters that specify any particular system are typically unknown and 

difficult to measure or estimate.  There are no high-throughput technologies on the 

horizon to measure these kinetic parameters in situ.  Thus, it is critically important to 

determine the system architecture and obtain a global perspective on the phenotypic 

repertoire before launching a time-consuming and expensive effort to determine 

numerical values for the parameters of a model.  

 To facilitate the presentation, the automated strategy is first illustrated with the 

simplified conceptual model shown in Figure M1.  This model is then converted into a 

mathematical model that involves ordinary differential equations. The rate of synthesis of 

X1 is described by a rational function with a basal rate of synthesis at low concentrations 

of X2, an increase in the rate of synthesis within the regulatable regime as the 

concentration of X2 increases, and a maximum rate of synthesis at high concentrations of 

X2.  The rate of synthesis of X2 is described by a similar rational function that is 

dependent on the concentrations of both X1 and X3.  This rate has a linear response to the 

concentration of X1, whereas it has a sigmoidal response to the concentration of X3.  The 

rate of loss of both X1 and X2 is assumed to be a first-order process such as dilution due to 

exponential growth.  The equations that represent this system are the following 
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where the dimensionless kinetic orders for X1 activation by X2 and X2 activation by X3 are 

assumed to be 2, the Ki parameters represent the concentration of activator for half-

maximal activation, the βi parameters represent first-order rate constants for loss in units 

of inverse time,  the αi parameters represent the basal rate of transcription for the i-th 

species, with appropriate units for dimensional consistency, and the maximum rate is 

αi⋅ρi.  The dimensionless parameters representing the capacity for activation are ρi  > 1; 

this ensures that the signs of the interactions remain unchanged, which is part of the 

system architecture.  This approach to converting a conceptual model into a mathematical 

model is applicable to a large class of biochemical systems.   

 

Recasting Equations into a Generic Form 

 

In order to apply the design space methodology, we must recast the model into a generic 

form, and this can be done exactly through a defined series of steps4. Here, the generic 

form, a generalized mass action (GMA) system of equations, is obtained simply by 

defining new auxiliary variables for the denominators of Eqs. 1 and 2, and expanding the 

numerators. The result is a set of differential equations plus a set of algebraic constraints, 
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In the system design space methodology, system parameters (rate constants, regulatory 

capacities, and effective KM values) and independent variables (only X3 in this example) 

are treated equally and thus we refer to both as parameters of the model.   

 

Grouping terms 

Starting with a system of M equations in the GMA form, where the right-hand 

side of each equation is a sum of terms consisting of products of power laws. Each term 

has either a positive or negative coefficient, and the terms of an equation are grouped into 

positive terms and negative terms.  

 

System signature 

The system signature is defined as a list given by the number of positive and 

negative terms in each equation: [P1, N1, P2, N2, …, PM, NM], where Pi and Ni represent 

the number of positive and negative terms in the i-th equation, respectively. The system 

signature can be represented in a more compact form by removing the commas and 

spaces to yield [P1N1P2N2…PMNM], and values with multiple digits are represented 

within parentheses.  The system defined by Eqs. 3-6 has 2 positive terms and 1 negative 

term in each of the equations. Thus, Pi = 2 and Ni = 1 for i = {1, 2, 3, 4} and yields the 

system signature [21212121]. 

 

Dominant terms 

 At any point in time, each term of the system has a particular magnitude 

determined by the values of the variables and parameters of the system. For each 

equation, we identify the largest positive term, which we call the dominant positive term, 

and the largest negative term, which we call the dominant negative term. Therefore, a 

dominant term is defined as the largest term of a given sign for an equation in the GMA 
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form. For example, if we assume X4 = 1, K2 = 10, X2 = 0.1, ρ1 = 100 and α1 = 1 and we 

substitute these values into Eq. 3, we find that the first and second positive terms are 

equal to 1 and 0.01, respectively. The first term is larger than the second and therefore it 

is the dominant positive term for Eq. 3. Because there is only one negative term in Eq. 3, 

this too is considered a dominant term. 

 

Dominant sub-systems 

We define a dominant sub-system of the intact system where only the dominant 

terms are retained, and all other terms are neglected and removed from the system 

equations. The result is a nonlinear sub-system or S-System with one positive term and 

one negative term.  

For example, assume that the first positive and the first negative terms are 

dominant in Eqs. 3-5, and the second positive and the first negative terms are dominant in 

Eq. 6. If we retain the dominant terms, and neglect all non-dominant terms, we obtain the 

following dominant S-system:   
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Case signatures and case numbers 

Every S-system can be uniquely identified by its case signature and case number.  

The case signature is the sequence of numbers indicating the index of the dominant 

positive and dominant negative term in each equation: (p1, n1, p2, n2, …, pM, nM), where pi 

and ni represent the index of the dominant positive and dominant negative term for the i-



Lomnitz & Savageau 7 

th equation, respectively. Like the system signature, the case signature can be represented 

in a more compact form by removing the commas and spaces, (p1n1p2n2…pMnM). Case 

numbers are uniquely associated with the sequence of case signatures, from the smallest 

(111111…11) to the largest (P1N1P2N2…PMNM). 

For example, the intact system in Eqs. 3-6 with system signature [212121] has 16 

S-systems. These can be listed according to their case number and case signature as 

follows, 

 Case 1 with signature (11111111)  

 Case 2 with signature (11111121) 

 Case 3 with signature (11112111) 

 … 

 Case 16 with signature (21212121) 

The dominant S-system defined by Eqs. 7-10 has dominant terms with the following 

indices, pi = 1 and ni = 1 for i = {1, 2, 3} and p4 = 2 and n4 = 1.  The indices are listed to 

identify the corresponding case signature (11111121) and the associated case number 

Case 2.   

 

Dominance conditions 

Not all dominant S-systems are valid.  The validity of a dominant S-system 

depends on a set of dominance conditions that must be satisfied. The dominance 

conditions are the inequalities that arise from assuming that one term, the dominant term, 

is larger than every other term of the same sign in a given equation. For example, the 

dominant S-system given by Eqs. 7-10 involves a particular combination of dominant 

terms. For the dominant S-system to be valid, every dominant term must be larger than 

the remaining terms of the same sign in each equation.  This is expressed mathematically 

by the following dominance conditions, 
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In addition, any architectural constraints are added to the dominance conditions because 

they too must be satisfied.  Thus, the constraints ensuring that the regulators are 

activators are added as well, 

 

 ρ1 >1           [15] 

 ρ2 >1           [16] 

 

Boundary conditions in system design space 

 Substituting the steady-state solution of a dominant S-system into the dominance 

conditions for its validity gives rise to a set of inequalities involving all the parameters 

and only the parameters of the full system.   For example, the dominant S-system given 

by Eqs. 7-10, at steady state, can be transformed into logarithmic coordinates to yield a 

set of linear equations that can be readily solved, 

 

 logX1 = logα1 − logβ1         [17] 

 logX2 = logα1 + logα2 + 2 logK3 − logβ1 − logβ2 − 2 logX3    [18] 

 logX4 = 0          [19] 

 logX5 = 2 logX3 − 2 logK3        [20] 

 

The boundary conditions are obtained by substituting the steady-state solution in Eqs. 17-

20 into the dominance conditions in Eqs. 11-16, which yields the following linear 

inequalities in logarithmic coordinates, 
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 2 logβ1 + logβ2 + logK2 + 2 logX3 − logα1 − logα2 − 2 logK3[ ]− logρ1 > 0   [21] 

 2 logK3 − 2 logX3 − logρ2 > 0         [22] 

 2 logX3 − 2 logK3 > 0          [23] 

 logρ1 > 0           [24] 

 logρ2 > 0           [25] 

 

These boundary conditions must be satisfied for the potential S-system to be valid. 

Inspection of Eqs. 22, 23 and 25 reveals an inconsistency among the boundary conditions 

and therefore this S-system is invalid.    

In general, the steady state is a solution to a system of linear equations in the 

logarithms of the variables and parameters, and the dominance conditions are likewise a 

system of linear inequalities in the logarithms of the variables and parameters.  Thus, the 

boundary conditions can be expressed in the following matrix form5: 

 
Uiy+ zi > 0          [26] 

 

Ui is a N × p matrix of architecturally-fixed constants for the i-th case, where p is the 

number of parameters of the system and N is the number of boundary conditions; zi is a 

column vector of N numerical values representing the logarithms of stoichiometric 

constants (in this simple example the values are all 0) for the i-th case; and y is a column 

vector of p values representing the logarithm of the system parameters.  

The boundary conditions for all the valid S-systems partition parameter space into 

a finite number of “chunks” or regions (technically, space-filling convex irregular 

polytopes).  The partitioning is not arbitrarily imposed, but objectively determined by the 

system itself.  We defined this space as the system design space, which has a finite 

number of discrete and structured regions, in contrast to parameter space, which is 
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infinite, continuous and homogenous.   In this general approach the dependent variables 

of the system are eliminated and all the landmarks in design space are represented 

explicitly by particular constellations of the parameters of the original system.   

These concepts form the basis for our generic definition of systemic phenotypes, 

both quantitative and qualitative, and the characterization of the phenotypic repertoire in 

system design space5,6.  

 

Generic Definition of Systemic Phenotypes 

 

Quantitative phenotype  

Any state of the GMA system that is a fixed point, or steady state of the system, 

we define as a quantitative phenotype.  These phenotypes exhibit a variety of phenotypic 

properties, such as values for concentrations, fluxes, robustness, stability, and response 

times for small variations. Each quantitative phenotype has a corresponding set of 

dominant terms functioning within the intact system. It remains a fundamental challenge 

to find every fixed point for a system of nonlinear equations, more so for every 

combination of parameters and independent variables.  The fact that there is an infinite 

number of quantitative phenotypes and that only a small sample of them can be 

characterized for any complex nonlinear system seems hardly any better than the vague 

concept of phenotype conveyed by ad hoc descriptive terms.  Nevertheless, the infinite 

number of quantitative phenotypes have only a finite number of dominant S-systems, 

which suggests a natural grouping of phenotypes according to their dominant S-systems.  

 

Qualitative phenotypes 

The deconstruction of complex intractable biochemical systems into a finite 

number of tractable S-systems, and their visualization as a partitioning of parameter 

space into the system design space as described above, leads to boundaries 
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mathematically defined by the system itself.  In this general approach the dependent 

variables of the system are eliminated but all the parameters of the original systems are 

retained explicitly in the landmarks of design space (coordinates of all the vertices) as 

particular constellations of the genotypically determined parameters and the 

environmentally determined variables of the system.   

A potentially valid qualitatively-distinct phenotype is defined by having a unique 

dominant S-system with a particular combination of dominant terms.  However, not all 

combinations yield a valid phenotype: the nonlinear S-Systems that represent the 

qualitatively-distinct phenotypes may not have a steady-state solution, alternatively the 

boundary conditions that determine the region of validity may not be satisfied anywhere 

in design space.   The number of potentially valid qualitatively-distinct phenotypes for a 

given system is the finite number of combinations of dominant terms, and the number of 

combinations of dominant terms is given by the product of numbers in the system 
signature, i.e. P1 ⋅N1 ⋅P2 ⋅N2 ⋅…⋅PM ⋅NM[ ] .  For example, the system defined by Eqs. 3-6, 

with signature [21212121], has a maximum of 2⋅1⋅2⋅1⋅2⋅1⋅2⋅1 = 16 potentially valid 

qualitatively-distinct phenotypes.   

A qualitatively-distinct phenotype is defined as a potentially valid one that has 

passed the test for validity described in the previous section. The system design space 

methodology uses this definition of a qualitative-distinct phenotype to deconstruct 

complex systems into nonlinear S-systems with mathematically defined boundaries 

within which the phenotypes are valid5–7.  The boundaries define phenotypic regions that 

are convex polytopes in logarithmic coordinates.  Phenotypic regions of different 

qualitatively-distinct phenotypes may overlap in design space, which corresponds to a 

single set of parameter values for which there is more than a single fixed point.  Validity 

of overlapping regions can be determined in the same way as qualitatively-distinct 

phenotypes. Furthermore, they can be treated in the same manner as phenotypic regions 

in the context of our four-part automated strategy presented in the next section. 
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Phenotypic repertoire 

The Phenotypic repertoire is defined as the collection of qualitatively-distinct 

phenotypes integrated into the space-filling structure called the system design space6,7. 

 

 

AUTOMATED FOUR-PART STRATEGY  

 

Our automatic strategy builds on the Design Space Toolbox 1.0 for Matlab®5, uses an 

alternative parallel implementation in open-source software, and incorporates new tools 

(currently under development) that automatically perform several additional steps in the 

analysis of a biochemical system.  Our presentation of the methods starts with the basic 

architecture of a model that has been established, although none of the values for the 

parameters are known, and follows a four-part automatic strategy:  (1) enumeration of the 

repertoire of qualitatively distinct phenotypes of a system; (2) generation of parameter 

values for any particular phenotype of the system; (3) co-localization of phenotypes in 

system design space to facilitate the visualization of phenotypic transitions, in critical 

cases from functional to dysfunctional behavior; and (4) identification of ensembles of 

phenotypes that can be ordered to achieve a specific sequence of functions for the rational 

engineering of synthetic constructs.   

 

Part 1: Enumeration Of Qualitatively-Distinct Phenotypes 

 

This first of our automated four-part strategy is made more concrete in the example 

defined by Eqs. 3-6.  Recall from the previous section that this example has the following 

system signature [21212121] and a maximum of 16 potentially valid qualitatively-distinct 

phenotypes, or Cases. The complete set of case numbers and case signatures are shown in 
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the first two columns of Table M1.  The set of (valid) qualitatively-distinct phenotypes 

can be enumerated automatically without sampling parameter values using systematic 

methodologies. This is done for each case by (a) determining that a steady-state solution 

exists (through linear analysis in logarithmic coordinates8) and (b) determining if the 

boundary conditions define a feasible region in design space. The boundary conditions 

are linear inequalities in logarithmic space6 and are used to define a linear programming 

problem5. The task of determining if a feasible region exists somewhere in design space 

can be performed efficiently for a large number of variables with a large number of 

conditions9.   

The current implementation of our method considers all combinations of 

potentially dominant terms and this gives a bound on the number of cases.   However, it 

is a rather poor bound, since the rigorously defined valid cases are typically many fewer 

than the theoretical bound.  Our method is considered ‘embarisingly paralizable’, since 

the cases can be independently analyzed in parallel.  With our current parallel version, we 

have analyzed systems involving millions of case in minutes with twelve processors.   

Clearly, a large cluster will allow still larger systems to be examined. Furthermore, there 

are possibilities to prune the tree of possibilities, and we hope that in future this will give 

a more realistic bound on the number of cases that need to be examined.  In any case, the 

currently automated features have significantly enhanced the capabilities of the design 

space methodology. 

The results of our automatic enumeration for the simplified example are shown in 

the third column of Table M1, where only 9 of the 16 cases are valid somewhere in 

design space. This complete set of qualitatively-distinct phenotypes defines the 

phenotypic repertoire of the system. 
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Part 2:  Identification of Phenotype-Specific Sets of Parameter Values 

 

Given that the complete phenotypic repertoire of a system has been enumerated, how 

does one obtain meaningful sets of parameter values for a given phenotype? A naive 

approach is to sample parameter space until the desired phenotype is found. However, 

there are severe limitations to this approach: the number and nature of the behaviors is 

highly dependent on the density of sampling. If we were to look for qualitatively-distinct 

phenotypes by sampling 4 values for each of the 9 parameters in our simplified model, 

we would need to sample 49 = 262144 values. Even with such a large number of samples, 

there is no guarantee that all the phenotypes would have been sampled, and the likelihood 

of missing behaviors altogether would be high.  Our strategy offers a different approach 

to finding parameter values.  

By virtue of the linear boundaries in logarithmic coordinates, our design space 

tools provide a powerful means to obtain a unique set of parameter values within the 

feasible region of any qualitatively-distinct phenotype. We achieve this by defining a 

linear programming problem with an arbitrary linear objective function.  According to the 

fundamental theorem of linear programming9,10, if a solution exists it will be a basic 

feasible solution at an extreme point of the feasible region. Therefore, any solution to the 

linear programming problem yields a set of parameter values at a vertex of the 

phenotypic region in design space.   

 

Identifying interior phenotype-specific sets of parameter values 

It is more useful to acquire parameters values that are within the interior of a 

feasible region, where the behavior is most characteristic of the phenotypic region. 

Rigorous methods for obtaining interior points exist and are readily applicable to linear 

programming problems9.  However, we have found a fairly simple strategy that has 

worked well.  We (1) identify regions with parameters that are mathematically 
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unbounded and we bound the corresponding parameters to biologically realistic values; 

(2) use a set of parameter values at a vertex of the feasible region as the starting values; 

(3) perform a line search using linear programming to find the boundary values for 

parameter pi; (4) update the starting values by the geometric mean between boundaries; 

(5) repeat the same procedure sequentially for each parameter.  The entire sequence is 

then repeated in a daisy-chain fashion until the values converge, or the procedure 

terminates after a specified number of iterations.   

We show an example of this method in Figure M2 for 6 qualitatively-distinct 

phenotype in a 2-D slice of design space.  For each phenotypic region we show a 

sequence of steps, starting from a vertex, that results in a trajectory of interior points.  

The sequence of values tends to converge near the center of each phenotypic region.  

Although these phenotypic regions have simple geometries and thus the method 

converges within a few steps, this method can also be applied to identify interior points 

within phenotypic regions that are irregular and involve many dimensions.  The end 

result is a set of parameter values capable of realizing any qualitatively-distinct 

phenotype of interest.  

 

Characteristics of qualitatively-distinct phenotypes  

There are many characteristics associated with any given phenotype, and these 

can be readily analyzed in terms of the S-system equations that define the qualitatively-

distinct phenotypes.  S-Systems are tractable by virtue of becoming linear when 

transformed to logarithmic coordinates8. There is a large body of work that deals with the 

analysis of S-Systems11. We can apply the power of S-Systems analysis to better 

understand the properties of the qualitatively-distinct phenotypes of the system. For 

example, the log-gain functions that characterize signal propagation, as well as parameter 

sensitivities that characterize the robustness of the system, are defined purely by 

architectural features (kinetic orders) of the S-System model and thus are constant 
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throughout the entire region of validity for a given qualitatively-distinct phenotype, 

independent of parameter values. The log-gain of X2 in response to a change in X3 for 

each valid phenotype is shown in the penultimate column of Table M1. However, not all 

phenotypic characteristics are parameter independent. An example that is of particular 

interest in the realm of dynamical systems is the stability of the fixed points. This can be 

calculated automatically using the Routh criteria for stability8, which identify the number 

of eigenvalues with positive real part.  The stability of the fixed points can be determined 

automatically and the results for our simplified model are shown in the last column of 

Table M1.  These are only a small sample of the characteristics associated with any 

phenotype that can be examined in this fashion.   

 

Part 3:  Identification of Parameter Sets for Co-Localized Phenotypes 

 

A critical issue in many studies is the transition between specific phenotypes as certain 

parameters change; in such cases it is important to have the phenotypes co-localized 

within a given slice of design space so that the transition can be easily visualized and 

characterized. However, the task of finding values for the remaining parameters that are 

fixed can be a challenge. For example, assume we have a model with three parameters, x, 

k and z and two phenotypes of interest, as shown in Figure M3a, where one phenotype 

might represent a normal physiological state (green) and the other an abnormal state 

(red). The x and z parameters might represent genotypically determined parameters, while 

the k parameter might correspond to the concentration of a specific environmental toxin. 

In this example, we are searching for a value of the k parameter such that changes in x 

and z (the slice parameters) produce a transition between the normal and abnormal 

phenotypes.  Intuitively, this is equivalent to taking 2-dimensional slices through design 

space until finding those that contain both the green and the red phenotypes. An example 



Lomnitz & Savageau 17 

of a 2-D slice in which both phenotypes are co-localized is shown in Figure M3a with k  

= k0. 

How might this solution be efficiently implemented?  A naïve approach might 

involve sampling n points within specific ranges of the slice parameters x and y. This 

defines an n2 mesh and the behavior of the model at each point within this mesh could be 

calculated. If the behaviors to be co-localized are not identified within this n2 mesh, then 

a new value of the non-slice parameter k is chosen and the analysis repeated until the 

behaviors are co-localized, or until a stop criterion is reached after a large number of 

iterations. Consider what this entails when seeking to co-localize a set of phenotypes for 

a larger system with a total of 10 parameters of which 2 are allowed to change. Sampling 

just three values for each of the 8 non-slice parameters and a mesh of 100×100 points for 

the 2 slice parameters would involve 38 ⋅1002 = 65,610, 000 unique samples. This 

represents a huge sampling problem that minimally explores parameter space; 

furthermore, it does not guarantee that the behaviors are found co-localized within a slice. 

Clearly, this naïve approach of sampling parameter values is not adequate for the task.   

 

Simple Example 

By contrast, the co-localization of phenotypes in the system design space 

framework can be achieved without the need for sampling parameter values. We illustrate 

this part of the strategy first with a simple concrete example before providing a formal 

description that covers the general case.  The intuitive approach described in the first 

paragraph of this section viewed the co-localizing of the two phenotypes in Figure M3a 

by means of a 2-D slice through the 3-D design space. Assume that the goal now is to 

illustrate the co-localization of normal and abnormal phenotypes in a 1-D slice involving 

only the parameter x. Each phenotype has a single boundary condition consisting of a 

plane that divides the 3-D space into two half-spaces (recall that qualitatively-distinct 

phenotypes have linear boundaries in logarithmic coordinates, e.g. Eqs. 21-25). The 
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boundaries for the two phenotypes (green and red) are given in order by the following 

inequalities, 

 

c1 − log x − log z − logk > 0        [27] 

and 

 −3c1 + log x − log z + logk > 0        [28] 

 

where c1 represents a positive constant. The value of the slice parameter must not be the 

same for the two phenotypes; thus, we define two auxiliary variables, s1 and s2, where s1 

corresponds to log x  for the green phenotype, and s2 corresponds to log x  for the red 

phenotype. Next, substitute s1 and s2 into Eq. 27 and Eq. 28, respectively, and combine 

the result to form the boundaries with the auxiliary variables in matrix notation, 
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⎡
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⎢

⎤
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⎥
⎥
> 0    [29] 

 

This system of inequalities has 4 variables and thus we have mapped the original 

boundaries in a lower-dimensional space into a higher-dimensional space. The system of 

linear inequalities in Eq. 29 defines a feasible region in this 4-D space. A single point 

within this 4-D space can be projected back onto the original 3-D space as two distinct 

points that share the values for z and k, but have different values for x.  A visual 

representation of this is shown in Figure M3b.  If we allow s1 and s2 to vary, we obtain a 

2-D space in which the axes correspond to the s1 and s2 variables. Each of the boundary 

conditions defines the feasible region for one phenotype, shown as green or red in Figure 

M3b. If the intersection of these regions exists, as it does in this example, it corresponds 

to the feasible region for the combined boundaries within which both phenotypes are 

valid (shown by the yellow region in Figure M3b). Thus, the co-localization of 
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phenotypes in the system design space framework is achieved without sampling 

parameter values.   

The graphical solution in Figure M3b can readily be translated into the 

corresponding 1-D view in Figure M3c.  A single point within the feasible region of 

Figure M3b, for example the extreme point in the upper-left corner given by s1= c1 – log 

k0, and s2= 3c1 – log k0, corresponds to two points in the original 3-D space. The green 

phenotype is valid when log x = c1 – log k0, log k = log k0 and log z = 0; and the red 

phenotype is valid when log x = 3c1 – log k0, log k = log k0 and log z = 0. The 1-

dimensional slice in Figure M3c depicts the two values of the slice parameter log x that 

stem from the single value in Figure M3b. Although this is a simple example, the same 

principle can be applied to problems with a large number of slice parameters and a large 

number of phenotypes that have more complicated boundary conditions.   

 

General Strategy 

The following is a more formal description of the general strategy. We have 

previously shown that cases in system design space can intersect, that the regions of 

intersection can be enumerated by combining the boundaries of the individual cases, and 

that validity of the combined set can be readily determined5. The task of determining 

whether n phenotypes are co-localized within an m-dimensional slice involves finding the 

intersection of cases in a higher dimensional space. This is achieved by mapping the 

boundary conditions onto a higher-dimensional manifold. This higher-dimensional 

manifold and the corresponding combined boundaries are obtained through a series of 

steps.  

We start with the boundary conditions for the i-th case that are linear inequalities 

in logarithmic coordinates5, as shown in Eq. 26.   To find whether n cases are co-

localized within an m-dimensional slice, we must find n points that together satisfy the 

boundary conditions for all the cases. All of these points share the values of the p – m 
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non-slice parameters.  Thus, a partitioning of Eq. 26 into non-slice parameters and slice 

parameters yields 

 

 Ui,π yπ +Ui,σ yσ + zi > 0        [30] 

 

where the π subscript corresponds to the non-slice parameters and the σ subscript 

corresponds to the slice parameters.  

If a given case is valid, then there exists a point in the m-dimensional slice that 

also lies within the feasible region of the case.  The corresponding points for each of 

several valid cases need not be the same; therefore, we define a set of n auxiliary 

variables corresponding to the slice parameters for each of the n cases in the set. In this 

way, we find multiple points in the m-dimensional slice that determine the validity of 

multiple cases simultaneously. The boundary conditions for a single case can be written 

as  

 

 Ui,π yπ +Ui,σ yi,σ + zi > 0        [31] 

 

where yi,σ is a column vector containing logarithms of m auxiliary variables 

corresponding to the slice parameters for the i-th case. The boundary conditions for all 

the cases can be combined and represented in matrix form as 

 

 Wyπ +Hs+ζ > 0         [32] 

 

where W, H, s, and ζ are defined by the following block matrices and vectors, 
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W =

U1,π

!
Un,π

!

"

#
#
#
#

$

%

&
&
&
&          [33] 

 

H =

U1,σ 0 ! 0
0 U2,σ ! 0
" " # "
0 0 ! Un,σ

!

"

#
#
#
#
#

$

%

&
&
&
&
&
      [34] 

 

s =
y1,σ
!
yn,σ

!

"

#
#
#
#

$

%

&
&
&
&          [35] 

and   

 

ζ =

z1
!
zn

!

"

#
#
#
#

$

%

&
&
&
&          [36] 

 

The total number of auxiliary variables, s, is the product n⋅m and the number of 

dimensions for the new space is p + m⋅(n – 1). The resulting boundaries define a region 

in this higher dimensional space, and the feasibility of co-localization can be determined 

by solving the following linear programming problem, 

 

 minimize ε 

 subject to – Wy  – Hs – [1, 1, …, 1]T ε  ≤  ζ 

 

A feasible region exists if the slack variable, ε, can be minimized to a negative value. If 

the boundaries define a feasible region, then sets of parameter values can be obtained 

automatically. Although the auxiliary variables in s have been redefined, each 
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corresponds to a slice parameter in yσ for a specific case. The projection of the s variables 

back onto the m-dimensional slice results in n unique points.   

 

 

Maximizing the number of phenotypes in a slice of design space 

The ability to automatically identify parameters for phenotypes that are co-

localized within an m-dimensional slice of design space allows us to ask some interesting 

questions. For example, what is the maximum number of n qualitatively-distinct 

phenotypes that can be co-localized in a 2-dimensional slice of design space? Our 

solution is to apply the method described in the previous subsection. We (a) select 2 

parameters of interest, (b) define the set of 2n independent slice parameters, and (c) 

combine all the boundary conditions for the complete set of the n valid phenotypes. If the 

set of phenotypes does not have a feasible region, we can remove individual phenotypes 

iteratively until a feasible region is found.  Recall that the simplified model described by 

Eqs. 3-6 has 9 parameters and a total of 9 qualitatively-distinct phenotypes. If we 

combine all the boundaries of the valid phenotypes, we obtain a system of linear 

constraints in a 9 + 2⋅(9 – 1) = 25-dimensional space. Using linear programming we 

determine that the boundary conditions on this higher dimensional manifold define a 

feasible region in design space, thus there is a 2-D slice that contains all the behaviors of 

the system. We then automatically obtain a set of parameter values within this slice, as 

shown in Figure M4. 

 

Part 4:  Identification of Ensembles and Ordered Sequences of Desirable Phenotypes 

 

The synthesis of any new system, biological or otherwise, involves engineering a 

particular design to exhibit specific behaviors that occur under specific operating 

conditions. In complex nonlinear systems, these behaviors are not typically local 
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behaviors, but involve global properties of the system with multiple distinct phenotypes. 

Thus, we say that desired behaviors are generated from ensembles of distinct phenotypes 

that are observed at different values of the input parameters. The task of designing a 

biological system that behaves according to the desired ensemble of phenotypes can be 

challenging, again due to the complex nonlinearity of biological mechanisms.  Our 

strategy enables us to identify groups of qualitatively distinct phenotypes with desired 

behaviors that are co-localized within some slice of design space, and to obtain values for 

parameters associated with the slice. The slice may be bounded, such that all the 

parameters are within certain ranges relevant to their biology and/or the desired range of 

operation.  

This subsection provides two examples in which ensembles of the qualitatively-

distinct phenotypes are automatically generated by (a) selecting an ensemble of 

phenotypes that exhibit behaviors of interest, (b) determining whether they are co-

localized in a 1-dimensional slice, and (c) finding a set of parameter values associated 

with the desired ensemble of phenotypes.  In both cases, the input concentration X3 is the 

slice parameter.  In addition, the second example below shows an ensemble of cases that 

is ordered to produce a specific progression of behavior. 

 

Connecting three regions of bistability 

In the first example, we determine whether there is a 1-dimensional slice in which 

all the unstable phenotypes of the system are co-localized. From Table M1 we identify 

three qualitatively distinct phenotypes that exhibit an unstable behavior. The instability 

they exhibit is exponential instability, where the analysis of the local dynamics reveals 

that there is one positive eigenvalue, and all other eigenvalues have negative real parts. 

This type of instability is purely a function of the kinetic orders, and hence there is at 

least one positive eigenvalue for the entire region of validity, independent of parameter 

values.  We select Cases 9, 13 and 14 and determine whether they are co-localized in the 
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1-D slice with X3 as the slice parameter. The result of our co-localization for the desired 

ensemble of phenotypes is shown in Figure M5a. The unstable phenotypes are always 

overlapped by stable phenotypes, which results in bi-stability for the entire slice. 

 

Designed induction characteristic with ordered phenotypes 

In the second example we identify a slice of design space where Cases 1, 5, 13, 15 

and 16 are co-localized and arranged to produce a specific induction characteristic. These 

cases were chosen based on their log-gain of X2 with respect to X3, as shown in Table 

M1. The phenotypes have log-gains that correspond to (a) saturation of X2 (log-gain of 0), 

(b) synthesis of X2 within the regulatable domain (log-gain of 2), and (c) negative log-

gain consistent with an unstable phenotype (as there are no negative feedback loops 

within the system) for a switch-like behavior. However, co-localization of these cases, as 

previously described, does not guaranteed a specific arrangement; thus, the resulting slice 

could exhibit any one of many potential induction curves, depending on the order in 

which the phenotypes become dominant as the concentration of X3 increases.  To obtain 

an ensemble of cases that produces a specific progression of behavior as the slice 

variable, in this case X3, increases we add additional constraints among the auxiliary 

variables, s, during co-localization.  By adding constraints to the combined set of 

boundaries, defined by Eq. 32, a particular arrangement can be specified and a set of 

parameters that satisfies the constraints automatically determined.  

For example, If we now apply our method to identify sets of parameters where the 

phenotypes are co-localized, we obtain an array of new auxiliary variables s = {s1, s2, s3, 

s4, s5}, where s1 corresponds to log X3 for Case 1, and s2 corresponds to log X3 for Case 5, 

etc. We can identify a slice with a specific progression of behaviors by stating that certain 

slice variables in s are larger than others. For example, let us assume our intended design 

requires Case 1 to occur at very low concentrations of X3. As we increase X3 we require 

the system to become regulatable until switching to a higher state. Thus, s2, the s slice 
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variable that corresponds to log X3 for Case 5, would be greater than s1. The following 

constraints are added to the combined set of boundary conditions to ensure that the 

correct progression of phenotypes is identified, 

 

  s2 − s1 > 0          [37] 

 s3 − s2 > 0          [38] 

 s4 − s3 > 0          [39]  

 s5 − s4 > 0          [40] 

 

By adding the constraints in Eqs. 37-40 we identify a slice with the following 

progression of behaviors as X3 increases: basal rate of expression, followed by activation 

within the regulatable regime, followed by an unstable regime, followed by a second 

regulatable regime, and ultimately saturation.  Because Case 13 is unstable, as shown in 

the last column of Table M1, we expect it to overlap with some of the other cases and 

generate instances of bi-stability. The progression of behaviors specified by Eqs. 37-40 is 

consistent with an overlap of Cases 5, 13 and 15. The result of our co-localization for the 

ordered ensemble of phenotypes to realize this induction characteristic is shown in Figure 

M5b.   

This simple example can be extended for the ordering of cases in higher-

dimensions by adding constraints among auxiliary variables for multiple slice parameters.  

Furthermore, the constraints may involve more complex relationships, as long as both 

sides of each constraint inequality involve a single positive product of power laws. 
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AUTOMATIC IDENTIFICATION AND CHARACTERIZATION OF THE 

PHENOTYPIC REPERTOIRE FOR A CLASS OF GENETIC OSCILLATOR 

DESIGNS 

 

Two-Gene Relaxation Oscillator 

 

The first test of our automated parameter-independent strategy involves the analysis of a 

relaxation oscillator design that had previously been analyzed in the conventional manner 

by first assembling experimentally measured and estimated parameter values.  We 

analyzed the relaxation oscillator design following the global-to-local approach outlined 

in 12 and obtained the results shown in Figure 2 of the main text. The mechanistic model 

and the meaning of the parameters are reproduced here for convenience, 

 

 dX1
dt

=α1
ρ1
−1 + X2 /K2( )2 + ρ1−1 X4 /K4A( )2

1+ X2 /K2( )2 + X4 /K4A( )2
"

#
$
$

%

&
'
'−β1X1     [41] 

 
dX2
dt

=α2X1 −β2X2
        [42] 

 

dX3
dt

=α
ρ3
−1 + X2 /K2R( )2

1+ X2 /K2R( )2
"

#
$
$

%

&
'
'−β3X3

      [43]  

 
dX4
dt

=α4X3 −β4X4
        [44] 

 

where X1 and X2 represent the concentration of activator mRNA and protein, respectively; 

X3 and X4 represent the concentration of repressor mRNA and protein, respectively. The α 

and β parameters are rate constants for synthesis and degradation; the ρ parameters 

represent the capacity for regulation; the K2R and K2 parameters are the concentrations of 

activator for half-maximal induction of repressor and activator transcription; the K4A 

parameter is the concentration of repressor for half-maximal repression of activator 
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transcription.  The kinetic orders associated with activator and repressor binding are 

assumed to be 2, consistent with two sites for regulator binding. The architecture of the 

network is conserved for ρ1 > 1 and ρ3 > 1.  

We used the strategy outlined in the main text and expanded upon in the previous 

section to analyzed the design13 represented by Eqs. 41-44. Following the specification of 

the system architecture above, the second step in the strategy is the recasting of the 

original equations, which involve rational function nonlinearities, to generate equations in 

the generic GMA form. This involves defining new auxiliary variables for the terms in 

the denominators of Eqs. 41 and 43, and expanding the terms in the numerators. The 

result is the following set of differential equations plus algebraic constraints, 

 
dX1
dt

=α1ρ1
−1X5

−1 +α1X2
2K2

−2X5
−1 +α1ρ1

−1X4
2K4A

−2X5
−1 −β1X1    [45]

 
 dX2

dt
=α2X1 −β2X2         [46] 

 dX3
dt

=α3ρ3
−1X6

−1 +α3X2
2K2R

−2X6
−1 −β2X2       [47] 

dX4
dt

=α4X3 −β4X4         [48] 

0 =1+ X2
2K2

−2 + X4
2K4A

−2 − X5        [49] 

0 =1+ X2
2K2R

−2 − X6         [50] 

 

We applied the system design space methodology to achieve the phenotypic 

deconstruction of the system, which yields a maximum of 36 potentially valid 

qualitatively-distinct phenotypes. We determined validity using linear programming5 and 

found a total of 15 (valid) qualitatively-distinct phenotypes.  In step 3, sets of parameter 

values for each of these qualitatively-distinct phenotypes were determined automatically.  

The resulting phenotypes with their case number, case signature, and number of 

eigenvalues with positive real part are shown in Table 1 of the main text. The number of 
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eigenvalues with positive real part was determined using the Routh criteria for stability8 

applied within the system design space framework7.   

Our analysis of the global repertoire of potential behaviors revealed a single 

phenotype that had the potential to oscillate. We determined a set of parameter values 

that is within the region of validity for this phenotype, and analyzed the phenotypic 

landscape around this point (Figure 2a of the main text). The automatically determined 

values for the parameters are: α1 = 3.162, α2 = 1, α3 = 1, α4 = 1, β1 = 1, β2 = 1, β3 = 1, β4 = 

1, ρ1 = 100, ρ3 = 100, K2 = 3.162×10–1, K2R = 1 and K4A = 3.126×10–2.  

 Local analysis of the qualitatively-distinct phenotypes showed a region of 

potential oscillation, sandwiched between regions of overlapping stable and exponentially 

unstable phenotypes (Figure 2b of the main text).  We focused our analysis of the full 

model within the region of potential oscillation and found that the system indeed 

oscillates (Figure 2c of the main text). Through our automated strategy, we have 

reproduced previous findings regarding this oscillator design, including its capacity to 

exhibit phenotypes that are stable, exponentially unstable, and oscillatory7,12,13. 

 

 

General Class of Two-Gene Oscillator Designs 

 

We have previously defined a general class of two-gene circuits involving an activator 

and a repressor12. This general class of circuits was previously used to compare 7 unique 

oscillator designs with close analogs that have been synthesized experimentally [e.g. 13–

16]. However, there are 9 additional designs within this class that our previous analysis 

did not find to oscillate under the conditions used to ensure a fair comparison among the 

alternative designs. The mathematical models are very similar to that in Eqs. 41-44, but 

are modified to include an additional step in the maturation of the proteins7. 
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Here we revisit this general class of circuit designs, which are represented by the 

following mechanistic model that we reproduce here for convenience, 

 

 dX1
dt

=α1

ρ1
−π1 +δ1

X2
K2

"

#
$

%

&
'

g12g12

+ ρ1
−1 X4

K4A

"

#
$

%

&
'

g14

1+δ1
X2
K2

"

#
$

%

&
'

g12g12

+
X4
K4A

"

#
$

%

&
'

g14

(

)

*
*
*
*
*

+

,

-
-
-
-
-

−β1X1 −µX1  [51] 

 
dXA

dt
=α AX1 − βAXA − µXA   [52] 

 
dX2
dt

= βAXA − β2X2 − µX2   [53] 

 dX3
dt

=α3

ρ3
−π3 +

X2
K2R

"

#
$

%

&
'

g32

+δ3ρ3
−1 X4

K4

"

#
$

%

&
'

g34

1+ X2
K2R

"

#
$

%

&
'

g32

+δ3
X4
K4

"

#
$

%

&
'

g34

(

)

*
*
*
*
*

+

,

-
-
-
-
-

−β3X3 −µX3  [54] 

 
dXR

dt
=αRX3 − βRXR − µXR   [55] 

 
dX4
dt

= βRXR − β4X4 − µX4   [56] 

 

where X1, XA and X2 represent the concentration of activator mRNA, immature protein 

and functional protein, respectfully; X3, XR and X4 represent the concentration of 

repressor mRNA, immature protein and functional protein, respectfully. The α and β 

parameters are the first-order rate constants for synthesis and degradation; µ is the 

exponential growth rate of the cells; the ρ parameters represent the capacity for 

regulation; the K2R and K2 parameters are the concentrations of activator for half-maximal 

induction of repressor and activator transcription; the K4 and K4A parameters are the 

concentrations of repressor for half-maximal repression of repressor and activator 

transcription. The π and δ are binary indices that can assume either a 0 or 1 value that 

define the mode of transcriptional control. The π parameters determine whether the 

primary mode of transcriptional control involves an activator (π = 1) or a repressor (π = 
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0). The δ parameters determine whether transcriptional control involves dual (δ = 1) or 

single (δ = 0) regulators. However, this mathematical model has been defined such that 

activator-only control of activator and repressor-only control of repressor are not 

allowed; instead, the combination δ1 = 0 and π1 = 1 (or δ3 = 0 and π3 = 0) indicates a 

constitutive mode of transcription control for the activator (or repressor). Each 

combination of values for π1, δ1, π3, and δ3 defines a design within this general class and 

the total number of combinations yields 16 distinct designs. For example, the design for 

the relaxation oscillator in the previous section, but with the added steps for protein 

maturation, is represented by π1 = 1, δ1 = 1, π3 = 1, and δ3 = 0. 

In our previous analysis, we explored the oscillatory potential of seven of the 

designs in this general class by carefully determining nominal parameter sets from 

estimates and experimental measurements. These parameter sets were based on a rigorous 

procedure that involved (a) identifying experimental values available from the literature, 

(b) normalizing a reference system such that the cooperativity was at its greatest, thus 

maximizing the potential for oscillation, and (c) controlling for differences amongst the 

alternative designs12. The model for this general class, normalized and recast, is given by 

the following set of differential equations plus constraints, 
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where the superscript (0) corresponds to the normalized values for the parameters. The 

oscillatory phenotypes were then studied by varying the rate constants for effective 

degradation of activator and repressor proteins, β2 and β4, and for maturation of activator 

and repressor, βA and βR. The β2 and β4 parameters mimic the effect of gratuitous 

inducers, which are used to tuned the behavior of synthetic biology constructs by altering 

the rate of formation of inactive complexes [e.g. 15]. The βA and βR parameters were 

varied to determine the effect of relative delays in activator and repressor maturation. 

Taken together, these four (free) parameters were used to explore the characteristics of 

the oscillatory phenotypes.  In order for these designs to remain tunable and biologically 

relevant, the systems were analyzed when β > µ for all β = {β1, βA, β2, β3, βR, β4}. With 

these constraints, the second negative term in each equation can never be dominant. 

Hence, we can effectively remove these terms from the model for the design space 

analysis (but not for simulating the dynamics of the full system).   

Here, we use the same equations and the same strategy for consistency, but in 

contrast to our previous analysis, the parameters of the system have not been estimated or 
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experimentally measured. Instead, sets of parameter values are determined completely 

automatically using the design space framework. Once a set of parameter values has been 

automatically determined, we vary the four free parameters in a 4-D lattice around this 

point in design space and apply the Routh criteria for stability to identify the phenotypes 

that have potential for oscillatory behavior.    

Thus, each design was analyzed in an automated manner by (a) enumerating the 

qualitatively-distinct phenotypes, (b) determining a set of parameter values within the 

valid region of each phenotype, and (c) determining the potential for oscillation. The 

results of our analysis for the 16 designs are summarized in Table 2 of the main text. 
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Table M1. The Phenotypic repertoire with characteristics for the model in Figure 
M1.   
 

Case 
# 

Case 
Signature Validity ∂log X2/ 

∂log X3 
Stability 

1 11111111 + 0 S 
2 11111121 – – – 
3 11112111 – – – 
4 11112121 – – – 
5 11211111 + 2 S 
6 11211121 + 0 S 
7 11212111 – – – 
8 11212121 – – – 
9 21111111 + 0 U 

10 21111121 – – – 
11 21112111 + 0 S 
12 21112121 – – – 
13 21211111 + -2 U 
14 21211121 + 0 U 
15 21212111 + 2 S 
16 21212121 + 0 S 

The complete set of potential qualitatively-distinct phenotypes is given with their case 

numbers and signatures. Nine are valid and correspond to the repertoire of qualitatively-

distinct phenotypes.  Two characteristics of each phenotype are shown: logarithmic gain 

( ∂ logX2 / ∂ logX3 ; 2, 0,  -2) and stability (stable, S; unstable, U).  See text for discussion. 
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Figure M1. Schematic diagram for a toy model of a cascade of two activators X1  

and X2 within a positive feedback loop subject to modulation by an environmental 

variable X3 . Horizontal arrows represent mass flow, vertical arrows represents activation 

of target processes.  
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Figure M2. Example of the method for obtaining interior parameter sets for each of 

six phenotypic regions in a two dimensional slice of design space. The independent 

variable, X3, is plotted on the x-axis, and the concentration of activator for half-maximal 

induction, K2, of X1 synthesis is plotted on the y-axis. The colored regions represent 

qualitatively-distinct phenotypes. Color bar identifies the case numbers. The axes are in 

logarithmic coordinates and are normalized about a value automatically determined for 

the phenotype represented by Case 5.  A trajectory of interior points (white dots) obtained 

by a sequence of line searches in orthogonal directions (black lines), starting from initial 

values at a vertex (white square), until it converges in the center of a region (white star).  
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Figure M3. Example of the strategy for obtaining sets of parameter values that 

result in co-localization of phenotypes. (a) The feasible regions of two phenotypes, 

represented by the green and red polyhedrals, in a 3-D design space. Three examples of 

2-D slices are shown for different values of the k parameter. (b) The mapping of the 

lower-dimensional boundaries onto a higher dimension showing the auxiliary variables s1 

and s2 that correspond to log x for the green and red phenotypes, respectively. The green 

and red areas represent values of the auxiliary variables where each phenotype is valid. 

The overlapping region in the lower-right hand corner represents a feasible region for 

both phenotypes. The slice within which the phenotypes are co-localized is found 

automatically. (c) The 1-D slice with log k = log k0 and log z = 0. The single point shown 

in panel B is mapped back to the original space of the x parameter where the point 

becomes two points, shown by the white and black circles.   
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Figure M4. Example of a 2-D slice of design space that contains the complete 

phenotypic repertoire of the system in Figure M1. The axes are normalized with 

respect to the values automatically determined for Case 13 (white square). The values of 

the non-slice parameters are α1 = 3.162×10–3, α2 = 1, ρ1 = 100, ρ2 = 100, β1 = 1, β2 = 1 

and X3 = 3.162×10–1. 
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Figure M5. Examples of specific ensembles of behaviors constructed automatically. 

The x-axis represents the 1-D slice parameter, the concentration of X3, in log coordinates 

normalized with respect to the values automatically determined for Case 13. The y-axis 

represents the phenotypic character, the logarithm of the steady-state value for the 

activator X2. Solid lines represent stable fixed points; dashed lines represent unstable 

fixed points. The top bar shows the case numbers and the colors correspond to those in 

Figure M4. (a) All the unstable phenotypes co-localized in a 1-D slice. (b) A specific 

induction characteristic exhibiting hysteresis determined by ordering Cases 1, 5, 13, 15 

and 16. Note that the unstable phenotypes 9, 13 and 14 only appear in regions of overlap.   
 


