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Section 1. Global spatial patterns of annual WUE and NDVI. 

                             

Supplementary Figure S1 Global distribution of mean annual WUE and NDVI over 1982-

2011. (a) global distribution of mean annual WUE calculated over 1982-2011 based on the 

MTE data, (b) global distribution of mean annual NDVI over 1982-2011 calculated based on 

the AVHRR-GIMMS-3g NDVI dataset, and (c) relationship between mean annual WUE and 

NDVI over 1982-2011. The red solid line in (c) indicates the best linear fit. Note there are no 

MTE data over Sahara, Greenland and Antarctica regions. Map was drawn using ArcMap 

10.2.  
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Supplementary Figure S2 Mean (1982-2011) and spatial variability of mean annual WUE 

for each vegetation type based on the MTE data. The spatial variability of the entire biome 

class is indicated by the coefficient of variation (CV). The results show that higher WUEs are 

generally found in forest ecosystems, whereas the spatial variability of WUE is lower in high 

WUE regions than in low WUE regions. Image was drawn using Excel 2013.  
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Section 2. Drought effect on the WUE 

 

Supplementary Figure S3 Relationship between non-detrended annual MTE-WUE and 

PDSI series over 1982-2011. (a) Spatial distribution of Pearson’s coefficient (r) between non-

detrended annual MTE-WUE and PDSI series, (b) boxplot of Pearson’s coefficient between 

non-detrended annual MTE-WUE and PDSI for each biome, (c) boxplot of Pearson’s 

coefficient between non-detrended annual MTE-WUE and PDSI for each climate zone. The 

background colours in (b) indicate different climate zones (red: arid zone; yellow: semi-

arid/sub-humid zone; green: humid zone). The interpretation of the boxplots is given in 

Figure 2. Map was drawn using ArcMap 10.2 and boxplots were drawn using R 3.1.2. 
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Supplementary Figure S4 Relationship between detrended annual MTE-WUE and WI 

series over 1982-2011. (a) Spatial distribution of Pearson’s coefficient (r) between detrended 

annual MTE-WUE and WI series, (b) boxplot of Pearson’s coefficient between detrended 

annual MTE-WUE and WI for each biome, (c) boxplot of Pearson’s coefficient between 

detrended annual MTE-WUE and AI for each climate zone. The background colours in (b) 

indicate different climate zones (red: arid zone; yellow: semi-arid/sub-humid zone; green: 

humid zone). The interpretation of the boxplots is given in Figure 2. Map was drawn using 

ArcMap 10.2 and boxplots were drawn using R 3.1.2. 
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Supplementary Figure S5 Relationship between non-detrended annual MTE-WUE and WI 

series over 1982-2011. (a) Spatial distribution of Pearson’s coefficient (r) between non-

detrended annual MTE-WUE and WI series, (b) boxplot of Pearson’s coefficient between 

non-detrended annual MTE-WUE and WI for each biome, (c) boxplot of Pearson’s 

coefficient between non-detrended annual MTE-WUE and WI for each climate zone. The 

background colours in (b) indicate different climate zones (red: arid zone; yellow: semi-

arid/sub-humid zone; green: humid zone). The interpretation of the boxplots is given in 

Figure 2. Map was drawn using ArcMap 10.2 and boxplots were drawn using R 3.1.2. 
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Supplementary Table S1 Descriptions of the flux sites used in this study including site 

number, site identifier (Site ID), latitude (Lat), Longitude (Lon), mean wetness index during 

the data period (Mean WI), climate zone (based on Mean WI), correlation coefficient 

between annual WUE and WI (r) and the p-value, and references (Ref). 

Site 

Number 

Site ID Lat (oN) Lon (oE) Biome 

Type 

Mean 

WI 

Climate 

Zone 

r p-value Ref 

1 BW-Ma1 -19.92 23.56 Savanna 0.07 Arid -0.748 0.462 2 

2 CA-NS1 55.88 -98.48 Shrub 0.11 Arid -0.955 0.191 3 

3 CA-NS3 55.91 -98.38 ENF 0.12 Arid 0.413 0.489 3 

4 CA-NS6 55.92 -98.96 Shrub 0.16 Arid 0.329 0.671 3 

5 CA-NS7 56.64 -99.95 Shrub 0.16 Arid -0.989 0.096 4 

6 CA-SF3 54.09 -106.00 Shrub 0.11 Arid -0.999 0.027 5 

7 ES_Lma 39.94 -5.77 Shrub 0.18 Arid -0.998 0.037 6 

8 US-FR2 29.95 -98.00 Savanna 0.12 Arid -0.995 0.064 7 

9 US-SRM 31.82 -110.87 Savanna 0.09 Arid -0.546 0.642 8 

10 US-Wkg 31.74 -109.94 Grass 0.07 Arid -0.337 0.781 9 

11 US_Me5 44.44 -121.57 Savanna 0.15 Arid -0.994 0.07 10 

12 AU-Tum -35.66 148.15 EBF 0.57 Sub-humid 0.104 0.868 11 

13 AU-How -12.49 131.15 Savanna 0.43 Semi-arid 0.937 0.019 12 

14 BE_Vie 50.31 6.00 MF 0.54 Sub-humid 0.228 0.556 13 

15 CA-Man 55.88 -98.48 ENF 0.21 Semi-arid 0.394 0.44 14 

16 CA-Mer 45.41 -75.52 Wetland 0.50 Sub-humid 0.608 0.184 15 

17 CA-NS2 55.91 -98.52 ENF 0.21 Semi-arid 0.436 0.566 3 

18 CA-NS5 55.86 -98.49 ENF 0.22 Semi-arid 0.928 0.0721 3 

19 CA-Qfo 49.69 -74.34 ENF 0.64 Sub-humid 0.567 0.433 16 

20 CA-SF2 54.25 -105.88 ENF 0.21 Semi-arid 0.034 0.978 5 

21 DE_Geb 51.10 10.91 Crop 0.58 Sub-humid -0.043 0.973 17 

22 DE_Hai 51.08 10.45 DBF 0.53 Sub-humid 0.866 0.012 18 

23 DE_Kli 50.89 13.52 Crop 0.45 Semi-arid 0.784 0.426 19 

24 DE-Tha 50.96 13.57 ENF 0.52 Sub-humid 0.504 0.138 20 

25 ES_ES1 39.35 -0.32 ENF 0.22 Semi-arid 0.287 0.5 21 

26 ES_ES2 39.28 -0.32 Crop 0.22 Semi-arid -0.238 0.847 21 

27 ES_VDA 42.15 1.45 Grass 0.58 Sub-humid 0.325 0.789 22 

28 FI-Hyy 61.85 24.29 ENF 0.31 Semi-arid 0.754 0.031 23 

29 FR-LBr 44.72 -0.77 ENF 0.38 Semi-arid 0.244 0.56 24 

30 FR_Pue 43.74 3.60 EBF 0.40 Semi-arid -0.132 0.777 25 

31 FR-Hes 48.67 7.06 DBF 0.51 Sub-humid -0.251 0.551 26 

32 HU_Bug 46.69 19.60 Grass 0.28 Semi-arid 0.476 0.424 27 

33 HU_Mat 47.85 19.73 Grass 0.31 Semi-arid 0.994 0.069 27 

34 IL-Yat 31.34 35.05 ENF 0.25 Semi-arid 0.952 0.048 28 

35 IT_LMa 45.58 7.15 Grass 0.27 Semi-arid 0.644 0.167 29 

36 IT_PT1 45.20 9.06 DBF 0.32 Semi-arid 0.951 0.2 30 

37 IT_Ren 46.59 11.43 ENF 0.49 Semi-arid 0.951 0.085 31 

38 IT_Sro 43.73 10.28 ENF 0.28 Semi-arid -0.425 0.401 32 

39 IT-Amp 41.90 13.61 Grass 0.42 Semi-arid 0.619 0.266 22 

40 IT-Cpz 41.71 12.38 EBF 0.31 Semi-arid -0.152 0.7 33 

41 IT-MBo 46.02 11.05 Grass 0.55 Sub-humid 0.944 0.056 34 

42 IT-Ro1 42.41 11.93 DBF 0.28 Semi-arid 0.809 0.024 35 

43 IT-Ro2 42.39 11.92 DBF 0.31 Semi-arid 0.362 0.764 36 

44 NL-Ca1 51.97 4.93 Grass 0.45 Semi-arid 0.714 0.286 37 

45 PT-Esp 38.64 -8.60 EBF 0.22 Semi-arid 0.751 0.459 38 
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46 RU-Fyo 56.46 32.92 ENF 0.41 Semi-arid 0.052 0.912 39 

47 SE-Fla 64.11 19.46 ENF 0.33 Semi-arid 0.191 0.809 40 

48 SE-Nor 60.09 17.48 ENF 0.40 Semi-arid 0.809 0.1 41 

49 UK-Esa 55.91 -2.86 Crop 0.31 Semi-arid 0.482 0.68 42 

50 UK-Gri 56.61 -3.80 ENF 0.57 Sub-humid 0.94 0.005 43 

51 US-Wi4 46.74 -91.16 MF 0.24 Semi-arid 0.993 0.067 44 

52 US-ARM 36.61 -97.49 Crop 0.22 Semi-arid -0.322 0.688 45 

53 US-Aud 31.59 -110.51 Grass 0.31 Semi-arid 0.81 0.1 46 

54 US-Bkg 44.35 -96.84 Grass 0.37 Semi-arid 0.995 0.064 47 

55 US-Blo 38.90 -120.63 ENF 0.35 Semi-arid 0.654 0.056 48 

56 US-Bo1 40.01 -88.29 Crop 0.38 Semi-arid -0.331 0.35 49 

57 US-FPe 48.31 -105.10 Grass 0.38 Semi-arid 0.431 0.469 47 

58 US-Ha1 42.54 -72.17 DBF 0.55 Sub-humid 0.392 0.233 50 

59 US-Ho1 45.20 -68.74 ENF 0.43 Semi-arid 0.07 0.859 51 

60 US-Me2 44.45 -121.56 ENF 0.25 Semi-arid 0.635 0.562 52 

61 US-MMS 39.32 -86.41 DBF 0.39 Semi-arid 0.516 0.484 53 

62 US-Ne1 41.17 -96.48 Crop 0.28 Semi-arid 0.726 0.276 54 

63 US-Ne3 41.18 -96.44 Crop 0.24 Semi-arid 0.083 0.917 54 

64 US-Ton 38.43 -120.97 Savanna 0.22 Semi-arid 0.446 0.376 55 

65 US-UMB 45.56 -84.71 DBF 0.31 Semi-arid 0.564 0.322 56 

66 US-Var 38.41 -120.95 Grass 0.50 Semi-arid -0.072 0.892 55 

67 US-WCr 45.81 -90.08 DBF 0.45 Semi-arid 0.433 0.271 57 

68 US_Bar 44.06 -71.29 DBF 0.53 Sub-humid 0.578 0.607 58 

69 US_IB2 41.81 -88.24 Crop 0.56 Sub-humid 0.319 0.681 59 

70 US_NR1 40.03 -105.55 ENF 0.26 Semi-arid 0.38 0.312 60 

71 US_SP3 29.75 -82.16 EBF 0.43 Semi-arid 0.763 0.11 61 

72 US_SP1 29.74 -82.22 EBF 0.34 Semi-arid -0.097 0.903 61 

73 US_Ro1 44.71 -93.09 Crop 0.51 Sub-humid 0.718 0.49 62 

74 US_Ro3 44.72 -93.09 Crop 0.46 Semi-arid 0.771 0.439 62 

75 US_So4 33.37 -116.62 Savanna 0.36 Semi-arid 0.859 0.343 63 

76 US-Syv 46.24 -89.35 MF 0.31 Semi-arid 0.187 0.813 64 

77 AT-Neu 47.12 11.32 Grass 1.15 Humid -0.335 0.665 65 

78 BE_Bra 51.31 4.52 MF 0.66 Humid 0.427 0.291 66 

79 CA-Qcu 49.27 -74.04 ENF 0.70 Humid -0.573 0.313 16 

80 CH-Oe1 47.29 7.73 Grass 0.78 Humid 0.202 0.798 67 

81 DE_Meh 51.28 10.66 Grass 0.68 Humid -0.555 0.62 68 

82 DE-Wet 50.45 11.46 ENF 0.69 Humid 0.192 0.757 69 

83 FI_Kaa 69.14 27.30 Wetland 0.75 Humid -0.331 0.52 70 

84 FI_Sod 67.36 26.64 ENF 0.70 Humid -0.31 0.55 71 

85 FR_Lq1 45.64 2.74 Grass 1.11 Humid -0.175 0.888 22 

86 FR_Lq2 45.64 2.74 Grass 1.09 Humid -0.008 0.995 22 

87 IE_Ca1 52.86 -6.92 Crop 0.73 Humid 0.036 0.997 72 

88 IE_Dri 51.99 -8.75 Grass 0.88 Humid 0.965 0.168 73 

89 IT_Non 44.69 11.09 DBF 0.72 Humid -0.488 0.512 74 

90 NL-Loo 52.17 5.74 ENF 0.68 Humid 0.108 0.752 75 

91 SE-Deg 64.18 19.56 Grass 0.78 Humid 0.671 0.251 76 

92 US_SP2 29.76 -82.24 Savanna 0.65 Humid -0.252 0.63 62 

93 US-Goo 34.25 -89.87 Grass 0.89 Humid 0.405 0.499 77 

94 US-PFa 45.95 -90.27 MF 1.04 Humid 0.345 0.503 78 

95 VU-Coc -15.44 167.19 EBF 0.73 Humid 0.505 0.495 79 
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Section 3 Relative sensitivity of GPP and ET to drought 

                               

Supplementary Figure S6 Spatial distribution of relative sensitivity of annual (a) GPP and 

(b) ET to changes in PDSI based on detrended MTE data. Results show that the higher GPP 

sensitivity is generally located in global semi-arid and sub-humid regions (i.e., the Great 

Plain of North America, Northern Mexico, western part to the Pampas Steppe, south-eastern 

part to the Amazon Basin, mid-latitude of Euro-Asia, and the areas surrounding the Congo 

Basin) and higher ET sensitivity in global arid regions (i.e., the mid- and eastern Asia, south-

eastern corner of Africa and majority of central- and western Australia). Our results also 

show a negative relationship between GPP (or ET) and PDSI in global energy-limited 

environments (i.e., tropical rainforests and boreal ecosystems). Maps were drawn using 

ArcMap 10.2. 
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Supplementary Figure S7 Relative sensitivities of GPP and ET to changes in wetness index 

at 19 flux sites (site detail is provided in Table S1), at which the WUE-WI relationship are 

significant (p<0.1). Results show that the five arid sites have a higher ET sensitivity and the 

14 sites located in semi-arid/sub-humid regions exhibit a higher GPP sensitivity. The 

background colours indicate different climate zones (red: arid zone; yellow: semi-arid/sub-

humid zone). Image was drawn using Excel 2013. 
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Section 4. Memory effect of previous-year drought on ecosystem WUE 

                              

Supplementary Figure S8 Spatial distribution of the difference between the Akaike 

Information Criterion value (ΔAIC) of the WUE model using the two-year PDSI and that 

using the one-year PDSI. The new model (with two-year PDSI) is considered as an 

improvement over the old one (with one-year PDSI) if the AIC value reduced by more than 

2.0 (i.e., ΔAIC< -2). Map was drawn using ArcMap 10.2.
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