Supplementary Information

Title:

To Be a Flower or Fruiting Branch: Insights Revealed by mRNA and Small RNA Transcriptomes from Different Cotton Developmental Stages **Author:**

Quan Sun^{1,2*}, Xiongming Du^{3*}, Chaowei Cai¹, Lu Long¹, Sai Zhang¹, Peng Qiao¹, Weina Wang², Kexue Zhou¹, Guanghao Wang¹, Xin Liu¹, Hui Zhang¹, Shuaipeng Geng¹, Can Yang², Wei Gao¹, Jianchuan Mo¹, Chen Miao¹, Chunpeng Song^{1**}, Yingfan Cai^{1**} ** Correspondence: <u>cyf@henu.edu.cn</u>, <u>songcp@henu.edu.cn</u>

Supplemental Figure S1|Venn diagram analyses of pre-squaring stage specific expression genes in *G.barbadense* (Gb2) and *G. hirsutum* (Gh2).

Supplemental Figure S2

Supplemental Figure S2 | Expression profiles for stage-specific DEGs in square initiating stage both in *G. hirsutum* and *G.barbadense*. The bar show log2 value of fold change.

Supplemental Figure S3 | Venn diagram analyses of stage-specific expression novel miRNAs in *G.barbadense* (A) *G. hirsutum* (B).

Supplemental Figure S4

Supplemental Figure S4 | The buds grown in different positions of the plant for two different branch types of cotton, nulliplex-branch mutant: 3798 and Xinhai 16, wild type: Huazhong94-3130 and Hai1

Supplemental Figure 5

Supplemental Figure S5 | Confirmation of RNA-seq expression profiles with qPCR. Left showed expression ratios, as log2 (fold change) for RNA-seq in six compared groups. Right showed the expression ratios, also as log2 (fold change) for qRT-PCR in six compared groups.

Supplemental Table S1	Raw data statistic of RNA-seo
Suppremental racie or	

Supp	lemental Tab	ole S1 Raw d	ata statistic of RNA-se	eq		
Samples	Total Raw Reads	Total Clean Reads	Total Clean Nucleotides (nt)	Q20 percentage	N percentage	GC percentage
Gb1WT-1	55,582,284	52,864,154	4,757,773,860	98.33%	0.01%	44.23%
Gb1WT-2	54,681,700	51,962,266	4,676,603,940	98.28%	0.01%	44.31%
Gb1WT-3	55,823,910	53,033,216	4,772,989,440	98.32%	0.01%	44.41%
Gb1np-1	58,571,526	53,135,140	4,782,162,600	98.18%	0.01%	44.24%
Gb1np-2	57,387,014	54,464,656	4,901,819,040	98.32%	0.01%	44.37%
Gb1np-3	54,024,896	51,414,774	4,627,329,660	98.32%	0.01%	44.15%
Gb2WT-1	55,042,908	52,265,610	4,703,904,900	98.04%	0.01%	43.37%
Gb2WT-2	58,489,636	55,355,962	4,982,036,580	97.97%	0.01%	43.51%
Gb2WT-3	57,670,542	54,880,690	4,939,262,100	98.07%	0.01%	43.34%
Gb2np-1	57,907,284	54,917,224	4,942,550,160	97.62%	0.01%	43.29%
Gb2np-2	58,507,324	55,517,736	4,996,596,240	97.65%	0.01%	43.43%
Gb2np-3	56,863,582	53,880,600	4,849,254,000	97.61%	0.01%	43.37%
Gb3WT-1	57,576,230	54,971,746	4,947,457,140	98.14%	0.01%	43.89%
Gb3WT-2	57,580,500	54,582,626	4,912,436,340	97.58%	0.01%	43.58%
Gb3WT-3	54,580,784	51,652,392	4,648,715,280	97.56%	0.01%	43.59%
Gb3np-1	56,264,006	53,801,290	4,842,116,100	98.21%	0.01%	43.60%
Gb3np-2	53,761,796	51,352,526	4,621,727,340	98.15%	0.01%	43.61%
Gb3np-3	54,397,962	51,872,336	4,668,510,240	98.15%	0.01%	43.51%
Gh1WT-1	54,451,984	51,838,904	4,665,501,360	98.34%	0.01%	44.04%
Gh1WT-2	56,360,552	53,534,544	4,818,108,960	98.29%	0.01%	44.46%
Gh1WT-3	54,794,486	51,533,632	4,638,026,880	98.28%	0.01%	44.30%
Gh1np-1	54,119,498	51,174,464	4,605,701,760	97.99%	0.01%	45.11%
Gh1np-2	54,225,148	51,484,394	4,633,595,460	98.06%	0.01%	44.19%
Gh1np-3	58,869,832	55,545,094	4,999,058,460	97.97%	0.01%	44.47%
Gh2WT-1	54,118,698	51,215,100	4,609,359,000	97.63%	0.01%	43.38%
Gh2WT-2	57,748,844	54,860,278	4,937,425,020	98.03%	0.01%	43.55%
Gh2WT-3	58,154,564	55,324,496	4,979,204,640	98.03%	0.01%	43.49%
Gh2np-1	57,105,044	54,029,086	4,862,617,740	97.56%	0.01%	43.39%
Gh2np-2	59,847,754	54,979,614	4,948,165,260	97.54%	0.01%	43.55%
Gh2np-3	53,905,896	51,163,388	4,604,704,920	97.65%	0.01%	43.41%
Gh3WT-1	55,026,558	52,429,324	4,718,639,160	98.08%	0.01%	43.86%
Gh3WT-2	55,881,492	53,145,738	4,783,116,420	98.07%	0.01%	43.57%
Gh3WT-3	53,666,326	51,267,494	4,614,074,460	98.18%	0.01%	43.94%
Gh3np-1	57,848,924	54,620,742	4,915,866,780	97.95%	0.01%	43.46%
Gh3np-2	55,340,148	52,414,004	4,717,260,360	97.94%	0.01%	43.45%
Gh3np-3	56,159,378	53,293,290	4,796,396,100	97.99%	0.01%	43.39%

	Gene Ontology term	Gene number	P-value
	chloroplast	128(8.5%)	2.57E-16
	chloroplast part	124(8,2%)	8.80E-16
	thylakoid	125(8.3%)	1.05E-15
	chloroplast thylakoid	111(7.4%)	5.75E-15
	plastid thylakoid	113(7.5%)	4.84E-14
	organelle subcompartment	113(7.5%)	6.15E-14
	photosynthetic membrane	46(3.0%)	2.32E-11
	photosystem	39(2.6%)	1.75E-10
	thylakoid part	50(3.3%)	1.22E-09
	chloroplast stroma	27(1.8%)	4.62E-09
CC(1510)	plastid part	200(13.2%)	9.52E-09
	plastid	377(25.0%)	1.02E-06
	plastid stroma	90(6.0%)	0.00058
	photosystem I	9(0.6%)	0.00309
	intrinsic to membrane	229(15.2%)	0.00321
	thylakoid light-harvesting complex	4(0.3%)	0.00567
	external encapsulating structure	96(6.4%)	0.01696
	nucleotide-excision repair complex	3(0.2%)	0.02131
	plastid envelope	81(5.4%)	0.02328
	germ cell nucleus	4(0.3%)	0.03625
	anchored to membrane	20(1.3%)	0.04227
	tetrapyrrole binding	26(1.3%)	2.36E-07
	oxidoreductase activity, acting on CH or CH2 groups, disulfide as acceptor	8(0.4%)	2.36E-06
	hydrolase activity, acting on glycosyl bonds	104(5.1%)	4.38E-05
	oxidoreductase activity, acting on CH or CH2 groups	8(0.4%)	0.00243
	cofactor binding	90(4.4%)	0.00431
ME(2024)	oxidoreductase activity, acting on single donors with incorporation of molecular oxygen	30(1.5%)	0.00437
WII (2024)	DNA-directed RNA polymerase activity	4(0.2%)	0.00455
	dioxygenase activity	36(1.8%)	0.0093
	carbon-carbon lyase activity	37(1.8%)	0.02418
	oxidoreductase activity	340(16.8%)	0.02479
	hydrolase activity, hydrolyzing O-glycosyl compounds	69(3.4%)	0.04321
	transmembrane transporter activity	165(8.2%)	0.0445
	nitrogen compound transport	65(3.6%)	8.76E-09
	generation of precursor metabolites and energy	86(4.8%)	4.69E-08
	amide transport	31(1.7%)	1.98E-07
	response to radiation	104(5.8%)	9.68E-07
	photosynthesis	30(1.7%)	1.84E-06
	photosynthesis, light reaction	28(1.6%)	2.71E-06
	response to light stimulus	80(4.5%)	2.79E-06
	response to light intensity	31(1.7%)	4.86E-06
	peptide transport	26(1.5%)	2.93E-05
	response to abiotic stimulus	183(10.2%)	5.93E-05
BP(1787)	photosynthetic electron transport chain	20(1.1%)	0.00012
	response to stimulus	565(31.6%)	0.00037
	anion transport	46(2.6%)	0.00037
	alucan matabolic process	40(2.6%)	0.00049
	polysaccharida metabolic process	47(2.070) 60(3.4%)	0.00039
	porysacenariae metabolic process	122(6.89/)	0.00076
	carbonyurate metabone process	122(0.8%)	0.00159
	response to red or far red light	35(2.0%)	0.00462
	response to oxygen-containing compound	72(4.0%)	0.00945
	response to far red light	5(0.3%)	0.03695
	cellular carbohydrate metabolic process	55(3.1%)	0.03749

Supplemental Table S2 | GO annotation of pre-squaring stage-specific DEG in G.barbadense

Supplemental Table S3 | GO annotation of pre-squaring stage-specific DEG in *G*. *hirsutum*

	Gene Ontology term	Gene number	P-value
	sesquiterpene synthase activity	5(2.8%)	0.00018
	carbon-oxygen lyase activity, acting on phosphates	6(3.4%)	0.00022
MF(176)	terpene synthase activity	5(2.8%)	0.00096
	oxidoreductase activity	45(25.6%)	0.00274
	iron ion binding	15(8.5%)	0.01118
	ion binding	53(30.1%)	0.01873
	amylase activity	4(2.3%)	0.03057
	carbon-oxygen lyase activity	8(4.5%)	0.04376

Supplemental Table S4 Statistical analysis of sequencing reads and distribution of
small RNAs from twelve sRNA libraries in cotton

		Total	Matched	miRNA	rRNA	snRNA	snoRNA	tRNA	unann
miCh1WT	Uniqu(%)	4474033	3039685(67)	31528(0.72)	45558(1.17)	1392(0.03)	808(0.02)	5763(0.15)	4160090(90.25)
IIIGD1 W I	Total(%)	12078303	9727581(80)	3655768(30.02)	579837(4.75)	2836(0.02)	1709(0.01)	135522(1.11)	6459510(53.1)
	Uniqu(%)	4172688	2865411(68)	29108(0.66)	37979(0.98)	1347(0.04)	759(0.02)	4997(0.13)	3786021(90.59)
miGb1np	Total(%)	11585879	9557316(82)	3921513(33.86)	401589(3.47)	2997(0.02)	1619(0.01)	99631(0.86)	5934357(51.19)
miChOWT	Uniqu(%)	4699514	3203195(68)	25890(0.55)	46080(1.11)	1569(0.04)	899(0.02)	5783(0.14)	4284765(90.89)
IIIGD2 W I	Total(%)	11418835	8813601(77)	987225(8.64)	810271(7.09)	3739(0.03)	2907(0.02)	163213(1.43)	7663450(67.12)
miCh2nn	Uniqu(%)	4563616	3087176(67)	26342(0.6)	56194(1.53)	1603(0.04)	970(0.03)	7255(0.19)	4135888(89.97)
mG02np	Total(%)	11824530	9262478(78)	1103724(9.33)	1119070(9.43)	3701(0.03)	3576(0.03)	218339(1.84)	7335940(62.1)
miCh2WT	Uniqu(%)	5840522	3983736(68)	35448(0.61)	36298(0.56)	2082(0.03)	1154(0.02)	5830(0.09)	5332433(91.38)
IIIG05W1	Total(%)	11548644	8770452(75)	976855(8.44)	386402(3.35)	4694(0.04)	2624(0.02)	103323(0.89)	8427033(72.97)
miCh3nn	Uniqu(%)	4251084	2847955(66)	25030(0.62)	54580(1.36)	1822(0.05)	924(0.02)	7027(0.18)	3849375(90.33)
miGo3np	Total(%)	11909011	9298965(78)	1276813(10.72)	1104241(9.27)	4954(0.04)	3387(0.03)	205191(1.72)	7202315(60.47)
miCh1WT	Uniqu(%)	5135991	4127043(80)	32802(0.59)	41372(0.78)	1341(0.02)	735(0.01)	4812(0.09)	4672749(91.29)
Initial with	Total(%)	11802342	10331167(87)	2397414(20.32)	418142(3.54)	2706(0.02)	1388(0.01)	101884(0.86)	7258829(61.48)
miChlan	Uniqu(%)	5081157	4053379(79)	33310(0.66)	36964(0.75)	1318(0.03)	731(0.02)	4376(0.1)	4621375(90.87)
moninp	Total(%)	12113952	10568966(87)	2599202(21.49)	357448(2.94)	2721(0.02)	1397(0.01)	104803(0.86)	7331767(60.50)
miCh2WT	Uniqu(%)	4693705	3774429(80)	25446(0.56)	50658(1.15)	1686(0.04)	868(0.02)	6190(0.14)	4243476(90.11)
IIIGI12 VV I	Total(%)	12016249	10370737(86)	1287205(10.71)	1003192(8.35)	3824(0.03)	2511(0.02)	188202(1.57)	7382912(61.42)
miCh2nn	Uniqu(%)	4457930	3577845(80)	25424(0.55)	54198(1.04)	1651(0.03)	859(0.02)	6407(0.13)	4008255(90.06)
monznp	Total(%)	11546843	10029483(86)	1200926(10.43)	978732(8.48)	3779(0.03)	2799(0.02)	188002(1.63)	7001306(60.65)
miCh2WT	Uniqu(%)	6349325	5054794(79)	35520(0.57)	31028(0.38)	1564(0.02)	770(0.01)	4017(0.05)	5804822(91.61)
IIIGII 5 W I	Total(%)	11505129	9748728(84)	765647(6.65)	240728(2.09)	3034(0.02)	1173(0.01)	45615(0.4)	8721796(75.79)
miCh3nr	Uniqu(%)	4715587	3775532(80)	24854(0.5)	48733(0.85)	1799(0.03)	847(0.01)	6033(0.09)	4273328(91.28)
mononp	Total(%)	11623897	10012854(86)	1010827(8.69)	788646(6.82)	4785(0.04)	2509(0.02)	170575(1.47)	7588006(65.16)

miR_name	Sequence	log2Ratio(miGb2np/miGb2WT)	P-value	FDR
miR156c-3p	TGCTTACTTCTCTTCTGTCGGC	-17.3452	1.07E-05	0.000205
miR5298d	TGGGATGGTTGAAATGAAAAA	-16.4595	0.000405	0.005034
miR482d	TTTCCTATGCCCCCATTCCAC	17.53683	4.36E-06	9.34E-05
miR2913	GTAGGTCGGGGGATGCAAGTTGGAG	-17.8921	4.78E-07	1.15E-05
miR7496a	ATGACCAAATTGATAGAATGTGTA	-16.9319	7.69E-05	0.001287
miR5072	CGTTCCCCAGCGGAGTCGCCA	16.821	0.000119	0.001767
miR4354	CAACTCTGGATGGTCCAAAGCGGC	-16.8276	0.000112	0.001729
miR5537	TATGTTTTTAGGATCGTTGT	19.1318	5.00E-11	2.14E-09
miR4393b	TTGAAAAGGGATACAGATGACGC	-19.5048	2.37E-12	1.30E-10
miR5150-3p	AGCAGCTGCAGATCGTCAGAAGTC	-17.0137	5.98E-05	0.001046
miR5293	GATGAAGGTAGAAGGAACAGAAGA	4.970722	4.32E-05	0.000793
miR5291a	GTTGAGGATGGATTTGGATGGGTG	-16.6434	0.000211	0.003006
miR862-3p	ATATGTGAGATGCTGACTTGAAGA	-16.5445	0.000301	0.00399
miR1077-5p	TTGAAGTGTTCGGATCGCGGC	22.57754	1.03E-25	1.32E-23
miR156i-3p	TGCTCACTTCTCTTCTGTCAGC	17.38975	8.96E-06	0.000181
miR171c-5p	ATTGGTGCGGTTCAATCAGAT	17.68036	1.76E-06	3.98E-05

Supplemental Table S5 | The stage-specific DEM at pre-squaring stage in *G.barbadense*

miR_name	sequence	log2Ratio(miGh2np/miGh2WT)	P-value	FDR
miR166c	TATATGATCTCGGACCAGGCT	-19.4183	6.60E-09	3.80E-07
miR1520f-3p	AACCAGACAGTGACACATGACATA	-16.5558	0.000382	0.006154
miR5210	TAGGAATGTTAGGATATTAAGGTT	-6.85011	1.91E-05	0.000454
miR4354	CAACTCTGGATGGTCCAAAGCGGC	-16.5785	0.000383	0.006154
miR2619b-5p	TATGTTTTGGATTATCTTATGGCA	-16.4968	0.000553	0.007965
miR5672	CAGGGTAGTGGAAGCAATTGCGA	-18.8299	1.04E-07	4.21E-06
miR398b-5p	TGAGTTGCCTATAGAACACACGGT	11.78364	8.90E-26	3.59E-23
miR832-5p	TACTGGTGGTCGGGAATGAAA	17.32932	2.54E-05	0.000569
miR7804-5p	AGTGAGTGTCTGATCGAATCGAAT	20.83867	4.59E-13	4.63E-11
miR5054	GTTTCCCACGGACGGCGCCA	20.69966	1.61E-12	1.30E-10
miR8613	ATCAAAGTTGGATGACTGTTGGTG	18.65141	1.64E-07	6.03E-06
miR1119	CGAGCACGGCGTGACTTGTCAG	-16.5858	0.000412	0.006154
miR8710a	ATACATCGAACTTTCTCCACA	17.4994	1.36E-05	0.000341
miR4249	TGATTTTGAGAAGTATGATGGGA	16.96606	8.45E-05	0.00148
miR6475	TCTTGAGACAAGCAAAGAACAC	-22.4831	2.87E-19	5.77E-17
miR2950-5p	TTCCATCTCTTGCACACTGGA	-17.7163	7.68E-06	0.000238
miR1510a-3p	CGGTAGGATCAGGTAAATCAAC	-16.5906	0.000406	0.006154
miR5137	AGCGGAGAAGATCGTTTGGT	17.25097	3.50E-05	0.000742

Supplemental Table S6 | The stage-specific DEM at pre-squaring stage in *G. hirsutum*

Supplement Table S7 | The list of DEGs enriched in two KEGG pathways. The up- or down-regulation information of the DEGs were showed in supplements data set 2 and 5.

	The enriched DEGs Gene ID in	n Gb2WT-vs-Gb2np		The enriched DEGs Gene ID in
				Gh2WT-vs-Gj2e
Circadian rhythm - plant	CotAD_50720, CotAD_7663	2, CotAD_49060,	CotAD_46528,	CotAD_06187, CotAD_07275, CotAD_25160,
	CotAD_73020, CotAD_5557	3, CotAD_72073,	CotAD_65971,	CotAD_38632, CotAD_14148, CotAD_62384,
	CotAD_33120, CotAD_1893	6, CotAD_08025,	CotAD_57339,	CotAD_32839, CotAD_32848, CotAD_17833,
	CotAD_35151, CotAD_2516	0, CotAD_61351,	CotAD_46346,	CotAD_47983, CotAD_30985, CotAD_33647
	CotAD_12196, CotAD_7435	1, CotAD_02653,	CotAD_15306,	
	CotAD_32794, CotAD_5823	6, CotAD_01991,	CotAD_14148,	
	CotAD_22354, CotAD_5706	1, CotAD_72318,	CotAD_43458,	
	CotAD_16644, CotAD_6987	0, CotAD_41425,	CotAD_33121,	
	CotAD_63670, CotAD_1742	6, CotAD_43235,	CotAD_34322,	
	CotAD_32839, CotAD_1783	3, CotAD_11091,	CotAD_39072,	
	CotAD_30985, CotAD_10813	CotAD_11502, Cot	AD_30473	
Plant hormone signal transduction	CotAD_40334, CotAD_4652	8, CotAD_04225,	CotAD_28563,	
	CotAD_47590, CotAD_0837	8, CotAD_49470,	CotAD_12194,	
	CotAD_58021, CotAD_0688	0, CotAD_66459,	CotAD_22035,	
	CotAD_31752, CotAD_5467	9, CotAD_53169,	CotAD_45995,	
	CotAD_75512, CotAD_0876	9, CotAD_18778,	CotAD_40223,	
	CotAD_28570, CotAD_7315	9, CotAD_74752,	CotAD_27412,	
	CotAD_38579, CotAD_6077	5, CotAD_32908,	CotAD_38332,	
	CotAD_14880, CotAD_0668	9, CotAD_15901,	CotAD_73761,	
	CotAD_46420, CotAD_2962	2, CotAD_11634,	CotAD_23642,	
	CotAD_60230, CotAD_2279	6, CotAD_03487,	CotAD_15422,	
	CotAD_31462, CotAD_2592	1, CotAD_44751,	CotAD_53340,	
	CotAD_29302, CotAD_4990	3, CotAD_60363,	CotAD_22235,	
	CotAD_48099, CotAD_1339	6, CotAD_03390,	CotAD_19194,	
	CotAD_11283, CotAD_0243	3, CotAD_33068,	CotAD_23314,	
	CotAD_12135, CotAD_2822	2, CotAD_67654,	CotAD_51639,	
	CotAD_12195, CotAD_5953	2, CotAD_38414,	CotAD_54549,	
	CotAD_01401, CotAD_3279	4, CotAD_08177,	CotAD_37030,	
	CotAD_75152, CotAD_5794	1, CotAD_01991,	CotAD_45308,	
	CotAD_08638, CotAD_4420	1, CotAD_73075,	CotAD_63351,	
	CotAD_00235, CotAD_3824	8, CotAD_01782,	CotAD_26378,	
	CotAD_58763, CotAD_0712	6, CotAD_00351,	CotAD_36426,	
	CotAD_11769, CotAD_7688	3, CotAD_62019,	CotAD_62689,	
	CotAD_30952, CotAD_2403	3, CotAD_50337,	CotAD_62680,	
	CotAD_40567, CotAD_7203	8, CotAD_46354,	CotAD_22354,	
	CotAD_67648, CotAD_3147	7, CotAD_65545,	CotAD_65385,	
	CotAD_03246, CotAD_7231	8, CotAD_17676,	CotAD_43458,	
	CotAD 59480 CotAD 4655	 CotAD_57227, CotAD_42072 	$CotAD_{0212}$	
	COLAD_39460, COLAD_4055	$5, COLAD_{420}/3,$	COLAD_08512,	

CotAD_10815,	CotAD_06020,	CotAD_03674,	CotAD_14446,
CotAD_24929,	CotAD_52110,	CotAD_51284,	CotAD_39394,
CotAD_13230,	CotAD_09484,	CotAD_59180,	CotAD_02227,
CotAD_24101,	CotAD_41051,	CotAD_72124,	CotAD_00437,
CotAD_76936,	CotAD_52763,	CotAD_66141,	CotAD_52240,
CotAD_04030,	CotAD_08052,	CotAD_60541,	CotAD_21144,
CotAD_08185,	CotAD_61426,	CotAD_22336,	CotAD_07492,
CotAD_49856,	CotAD_12777,	CotAD_48610,	CotAD_21002,
CotAD_49347,	CotAD_27610,	CotAD_53606,	CotAD_06730,
CotAD_25220,	CotAD_01629,	CotAD_46619,	CotAD_09189,
CotAD_04601,	CotAD_71538,	CotAD_08178,	CotAD_15363,
CotAD_06191,	CotAD_61030,	CotAD_30274,	CotAD_05763,
CotAD_24283,	CotAD_62484,	CotAD_31119,	CotAD_23855,
CotAD_00601,	CotAD_06195,	CotAD_70072,	CotAD_07267,
CotAD_26121,	CotAD_37900,	CotAD_25036,	CotAD_73314,
CotAD_06519,	CotAD_75522,	CotAD_46547,	CotAD_33008,
CotAD_20318,	CotAD_36190,	CotAD_00678,	CotAD_24719,
CotAD_30011,	CotAD_42357,	CotAD_15514,	CotAD_40683,
CotAD_53107,	CotAD_00254,	CotAD_57715,	CotAD_56144,
CotAD_21748,	CotAD_66464,	CotAD_73762,	CotAD_04028,
CotAD_36136,	CotAD_03511,	CotAD_35956,	CotAD_09190,
CotAD_70718,	CotAD_03678,	CotAD_09712,	CotAD_49345,
CotAD_49340,	CotAD_61162,	CotAD_68755,	CotAD_43399,
CotAD_63886,	CotAD_28560,	CotAD_26249,	CotAD_53834,
CotAD_39116,	CotAD_63222,	CotAD_69885,	CotAD_24117,
CotAD_72113,	CotAD_49211,	CotAD_03587,	CotAD_26342,
CotAD_19840,	CotAD_35534,	CotAD_51741,	CotAD_08455,
CotAD_66289,	CotAD_04243,	CotAD_00052,	CotAD_49859,
CotAD_54965,	CotAD_61114,	CotAD_51911,	CotAD_16791,
CotAD_75181,	CotAD_51823,	CotAD_64512,	CotAD_13381,
CotAD_12824,	CotAD_62983,	CotAD_40163,	CotAD_29392,
CotAD_68015,	CotAD_12136,	CotAD_51754,	CotAD_52307,
CotAD_32099,	CotAD_38161,	CotAD_67655,	CotAD_08053,
CotAD_36698,	CotAD_15257,	CotAD_08054,	CotAD_09551,
CotAD_26207,	CotAD_66463,	CotAD_38660,	CotAD_14404,
CotAD_51326,	CotAD_60007,	CotAD_23287,	CotAD_34103,
CotAD_12670,	CotAD_52244,	CotAD_19985,	CotAD_30961,
CotAD_41794,	CotAD_62272,	CotAD_18245,	CotAD_76838,
CotAD_03886,	CotAD_3337	7, CotAD_02	542

Gene name	Gene ID or Forward primer		Reverse primer
	Genebank ID		
GhIAA18	CotAD_00235	TTTCTAAAGACACCAAGGAGGAG	GAGGCATCTGGATCAGCAGT
GhBRC1	CotAD_02759	GACATCCGAGACCGAAGTGG	TTTCCCGTGCCTTTACCCTC
GhPCNA2	CotAD_04662	GATGATGAAATGTGCTGGTA	TGATACTCTGCCTCTGGAA
GhPRR5	CotAD_14148	CACATTTACCCTACCACCG	ATCGTCGTTCTTGCTGTC
GhRAV1	CotAD_22031	AAGCAGCATAGATGAAAGCACA	GCGGTAGAGGGAGTCAGGAG
GhEPR1	CotAD_30985	TACCGCCTCCTCGTCCTA	CCCATTGCGTCAGATAAA
GhLHY	CotAD_32839	GATGGAAGCCCAGGAACA	TCGCCCATAGGGTGAAAT
GhSVP	CotAD_47245	CCTCAAAAGGAAGGAAGTAGA	GGTAAGGTAACCCCAGTCTAA
GhBARD1	CotAD_54816	ATCAAGCATCCCTCAGCC	TGTCCCATAGTTCAACCTC
Actin	AY305733	ATCCTCCGTCTTGACCTTG	TGTCCGTCAGGCAACTCAT
UBQ7	DQ116441	GAAGGCATTCCACCTGACCAAC	CTTGACCTTCTTCTTCTTGTGCTTG

Supplement Table S8 | The primers list of DEGs used for qRT-PCR

Legend of supplementary Data set S1-S13

Supplement Data set S1 | The list of DEGs in compared group Gb1WT versus Gb1np. Supplement Data set S2 | The list of DEGs in compared group Gb2WT versus Gb2np. Supplement Data set S3 | The list of DEGs in compared group Gb3WT versus Gb3np. Supplement Data set S4 | The list of DEGs in compared group Gh1WT versus Gh1np. Supplement Data set S5 | The list of DEGs in compared group Gh2WT versus Gh2np. Supplement Data set S6 | The list of DEGs in compared group Gh3WT versus Gh3np. Supplement Data set S7 | The expression pattern of miRNA Supplement Data set S8 | The list of DEMs in compared group Gb1WT versus Gb1np. Supplement Data set S9 | The list of DEMs in compared group Gb2WT versus Gb2np. Supplement Data set S10 | The list of DEMs in compared group Gb3WT versus Gb3np. Supplement Data set S11 | The list of DEMs in compared group Gh1WT versus Gh1np. Supplement Data set S12 | The list of DEMs in compared group Gh2WT versus Gh2np.

Supplement Data set S13 | The list of DEMs in compared group Gh3WT versus Gh3np.