Supplementary figure S1

Supplementary figure S1. Comparison of the relative position of the bridging helix $\alpha 1$ ($\alpha 4$ in full-length structures) between RopB-CTD and the full-length structures of RRNPP family regulators. Superposition of RopB-CTD dimer (blue) with the analogous structural elements from PrgX (A) from *E. faecalis* (PDB code: 2AXZ), Rgg-like protein (B) from *L. monocytogenes* (PDB code: 4RYK), and Rgg2 (C) from *S. dysgalactiae* (PDB code: 4YV9). The dimeric structures of RopB structural homologs are colored in grey. The helix $\alpha 1$ of RopB-CTD is colored in red, whereas the bridging helices of the structural homologs are colored in green. The helix $\alpha 1$ from the symmetry mates in RopB crystal are shown and colored in pink. The N-and C-termini of RopB-CTD are marked as N and C, respectively. Structural superposition was performed with "LSQKAB". D) The interdomain interactions between the bridging helix of one subunit and the C-terminal domain of the second subunit of a dimer, as observed in the full-length structure of PrgX from *E. faecalis* (PDB code: 2AXZ). Individual subunits of a PrgX

dimer is colored in light and dark grey and the N-terminal DNA-binding and C-terminal oligomerization/regulatory domain are labeled. The bridging helices of each subunit are color-coded (in blue and pink).

Supplementary figure S2

Supplementary figure S2. Assessment of the oligomerization state of RopB-CTD in solution by size exclusion chromatography. A) The linear fit of the elution volumes (K_{Ave}) of five protein molecular weight standards, cytochrome c (12.4 kDa), carbonic anhydrase (29 kDa), bovine serum albumin (BSA, 66 kDa), alcohol dehydrogenase (150 kDa), and β -amylase (200 kDa), to their log molecular weight is shown as a black line on the graph. The elution volume (K_{Ave}) of the purified RopB-CTD was plotted on the graph (green rectangle). B) RopB-CTD exists as a dimer in solution. The theoretical molecular weights of different oligomeric states of RopB-CTD were calculated based on their amino acid sequence, and the experimentally calculated molecular weight of RopB-CTD based on the elution profile in a superdex-200 size exclusion chromatography are shown.

Supplementary figure S3. Structural homology shared by RopB-CTD with the structurally characterized members of RRNPP family regulators. Superposition of RopB-CTD dimer with the analogous structural elements from PrgX (A) from *E. faecalis* (PDB code: 2AXZ), PlcR (B) from *B. thuringiensis* (PDB code: 2QFC), Rgg2 (C) from *S. dysgalactiae* (PDB code: 4YV9) and Rgg-like protein (D) from *L. monocytogenes* (PDB code: 4RYK). Structural superposition was performed with "LSQKAB" program. Individual subunits of RopB-CTD dimer are colored in dark blue and pink, whereas the subunits of structural homologs are shaded in light blue and pink.

Supplementary figure S4

Supplementary figure S4. Conserved asparagines in the ligand-binding pocket of structurally characterized members of RRNPP family regulators. A) Amino acid sequence alignment of RopB, PlcR from *B. thuringiensis*, and PrgX from *E. faecalis*. The positions of TPR motifs derived from the RopB-CTD structure are indicated above the alignment. The conserved asparagines that interact with the cognate peptides in the co-crystal structures of peptide-bound PrgX and PlcR are boxed and marked in red. The alignment was carried out with ClustalW. Structural superposition of the C-terminal domain of RopB with the analogous residues from the

structures of PrgX (PDB code: 2AXZ), PlcR (PDB code: 2QFC), Rgg2 (PDB code: 4YV9), and Rgg-like protein from *L. monocytogenes* (PDB code: 4RYK). The location of the side chains of asparagines, Asn 192 (**B and C**) and Asn 152 (**C**) is highlighted in pink and green, respectively, and labeled. The side chains are displayed as ball and stick representation. The N- and C-termini of RopB-CTD are labeled as N and C, respectively. Structural superposition was performed with LSQKAB.

Supplementary figure S5. Growth curve of indicated strains in THY broth.

Supplementary table S1.

Selected crystallographic data and statistics.

Data Collection and Phasing						
Dataset	SeM	let	Native			
Wavelength (1)	0.97971	0.957	1.12			
Resolution (Å)	50.0 -	3.8	81.0 - 3.5			
$\mathbf{R}_{\mathrm{sym}}^{a}$	$0.097 (0.5)^{\rm b}$	0.094 (0.5)	0.070 (0.98)			
I/s(I)	10.7 (3.7)	11.6 (3.9)	14.7 (2.2)			
Total Reflections (#)	76335	75984	61325			
Unique Reflections (#)	9357	9337	11346			
Completeness (%)	100 (99.9)	100 (99.9)	97.8 (95.3)			
Selenium sites						
(identified/total no of site	es) 10/1	2				
Overall Figure of Merit ^c	0.3	5				
Refinement Statistics						
Resolution Range (Å)			81.0-3.5			
$R_{work}/R_{free}(\%)^d$			27.6/31.3			
<u>Atoms (#)</u>						
Protein			3704			
B factors ($Å^2$)		130.5				
<u>rmsd</u>						
Bond lengths (Å)			0.004			
Bond angles (°)			0.865			
Ramachandran analysis						
Most favoured (%)			96.33			
Add. allowed (%)			3.67			
Gen. allowed (%)			0.0			
Disallowed (%)			0.0			

 ${}^{a}R_{sym} = \sum |I_{hkl} - I_{hkl(j)}| / \sum I_{hkl}$, where $I_{hkl(j)}$ is the observed intensity and I_{hkl} is the final average intensity value. ${}^{b}Values$ in parentheses are for the highest resolution shell. Figure of Merit = $\langle SP(a)e^{ia}/SP(a)| \rangle$, where a is the phase and P(a) is the phase probability distribution. ${}^{d}R_{work} = S||F_{obs}| - |F_{calc}||/S|F_{obs}|$ and $R_{free} = S||F_{obs}| - |F_{calc}||/S|F_{obs}|$; where all reflections belong to a test set of 5% randomly selected reflections.

Strain or plasmid	Description	Reference	
Strains			
MGAS10870	Invasive isolate, serotype M3	(1)	
MGAS10870∆ropB	MGAS10870∆ropB::aad9	(2)	
MGAS10870∆speB	MGAS10870∆speB::aad9	(4)	
Plasmids			
pET21b	Overexpression vector for C-terminally hexa-		
	histidine tagged recombinant proteins		
pJL	Low-copy number plasmid capable of	(3)	
	replication in GAS and <i>Escherichia coli</i> , Cm ⁺		

Supplementary table S2. Bacterial strains and plasmids used in this study.

Primer	Sequence 5'-3'	Application
E59A Top	TGTGAACGTTGAC <u>GCT</u> TTTCTGTTCATCAG	Site directed
		mutagenesis to
		introduce E59A
E59A	CTGATGAACAGAAAAGCGTCAACGTTCACA	Site directed
Bottom		mutagenesis to
		introduce E59A
Y182A Top	AATACCCTAAGGTAT <u>GCT</u> GGGAATGAATCGATTC	Site directed
		mutagenesis to
		introduce Y182A
Y182A	GAATCGATTCATTCCCAGCATACCTTAGGGTATT	Site directed
Bottom		mutagenesis to
		introduce Y182A
N192A Top	ATTCGGATGTTTGTC <u>GCT</u> ATGTTGATTTTG	Site directed
		mutagenesis to
		introduce N192A
N192A	CAAAATCAACATAGCGACAAACATCCGAAT	Site directed
Bottom		mutagenesis to
		introduce N192A
C222A Top	ATCAGCTAAATGATGATGAT	Site directed
		mutagenesis to
		introduce C222A
C222A	CACCGTTCATATAAAGCATCATCATTTAGCTGAT	Site directed
Bottom		mutagenesis to
		introduce C222A
Y224A Top	ATGATGATTGCTTA <u>GCT</u> GAACGGTGTTGTG	Site directed
		mutagenesis to
		introduce Y224A
Y224A	CACAACACCGTTCAGCTAAGCAATCATCAT	Site directed
Bottom		mutagenesis to
		introduce Y224A
R226A Top	ATTGCTTATATGAA <u>GCT</u> TGTTGTGTGTCT	Site directed
		mutagenesis to
		introduce R226A
R226A	AGACACACAACAAGCTTCATATAAGCAAT	Site directed
Bottom		mutagenesis to
		introduce R226A
C227A Top	TGCITATATGAACGG <u>GCT</u> IGIGIGICTITITITG	Site directed
		mutagenesis to
G005.4		introduce C227A
C22/A		Site directed
Bottom		mutagenesis to
		introduce C22/A
1255A Top	TTCAAATTCTGGAA <u>GCC</u> TTTCAGCTGCTG	Site directed
		mutagenesis to

Supplementary table S3. Primers and probes used in this study

		introduce I255A
I255A	CAGCAGCTGAAAGGCTTCCAGAATTTGAA	Site directed
Bottom		mutagenesis to
		introduce I255A
tufA	CAACTCGTCACTATGCGCACAT	qRT-PCR analysis of
qRTFwd		tufA
<i>tufA</i> qRTRev	GAGCGGCACCAGTGATCAT	qRT-PCR analysis of
		tufA
<i>tufA</i> probe	CTCCAGGACACGCGGACTACGTTAAAAA	qRT-PCR analysis of
		tufA
speB	CAACTCGTCACTATGCGCACAT	qRT-PCR analysis of
qRTFwd		speB
speB	GAGCGGCACCAGTGATCAT	qRT-PCR analysis of
qRTRev		speB
speB probe	CTCCAGGACACGCGGACTACGTTAAAAA	qRT-PCR analysis of
		speB
ropB	CAACTCGTCACTATGCGCACAT	qRT-PCR analysis of
qRTFwd		ropB
ropB	GAGCGGCACCAGTGATCAT	qRT-PCR analysis of
qRTRev		ropB
<i>ropB</i> probe	CTCCAGGACACGCGGACTACGTTAAAAA	qRT-PCR analysis of
		ropB

- Beres, S. B., R. K. Carroll, P. R. Shea, I. Sitkiewicz, J. C. Martinez-Gutierrez, D. E. Low, A. McGeer, B. M. Willey, K. Green, and G. J. Tyrrell. 2010. Molecular complexity of successive bacterial epidemics deconvoluted by comparative pathogenomics. Proc. Natl. Acad. Sci. USA 107:4371-4376.
- Carroll, R. K., S. A. Shelburne III, R. J. Olsen, B. Suber, P. Sahasrabhojane, M. Kumaraswami, S. B. Beres, P. R. Shea, A. R. Flores, and J. M. Musser. 2011. Naturally occurring single amino acid replacements in a regulatory protein alter streptococcal gene expression and virulence in mice. J. Clin. Invest. 121:1956-1968.
- Li, J., D. L. Kasper, F. M. Ausubel, B. Rosner, and J. L. Michel. 1997. Inactivation of the α C protein antigen gene, *bca*, by a novel shuttle/suicide vector results in attenuation of virulence and immunity in group B *Streptococcus*. Proc. Natl. Acad. Sci. USA 94:13251-13256.
- Shelburne III, S. A., R. J. Olsen, N. Makthal, N. G. Brown, P. Sahasrabhojane, E. M. Watkins, T. Palzkill, J. M. Musser, and M. Kumaraswami. 2011. An aminoterminal signal peptide of Vfr protein negatively influences RopB-dependent SpeB expression and attenuates virulence in *Streptococcus pyogenes*. Mol. Microbiol. 82:1481-1495.