## **Supplementary Information**

# Multiple rod-cone and cone-rod photoreceptor transmutations in snakes – evidence from visual opsin gene expression

Bruno F. Simões, Filipa L. Sampaio, Ellis R. Loew, Kate L. Sanders, Robert N. Fisher, Nathan S. Hart, David M. Hunt, Julian C. Partridge and David J. Gower

Email: bruno.simoes@me.com

#### METHODS

#### mRNA and gDNA extraction and cDNA synthesis

Single specimens of each sampled snake species were obtained through fieldwork or commercially. Snakes were euthanized using approved (UK Home Office Schedule 1; University of Adelaide Animal Ethics Committee approval S-2014\_033) procedures and the eyes were extracted, lenses discarded and the remainder coarsely macerated and stored in RNAlater (Ambion) at -80°C until RNA extraction. Total RNA was extracted using TRIzol® followed by purification with PureLink<sup>TM</sup> RNA Mini Kit (Life Technologies/Ambion) following the manufacturer's protocol. First-strand complementary DNA (cDNA) was synthesized with a Transcriptor First Strand cDNA Synthesis Kit (Roche) with 500ng of total RNA according to manufacturer's instructions. RNA complementary to the cDNA was removed using 2 units of *E. coli* RNase H (Ambion) followed by incubation at 37°C for 20 minutes to leave pure cDNA. Genomic DNA was extracted from each sample using the DNA layer in Trizol of the RNA extraction following the Trizol manufacturer's instructions, and/or from muscle tissue stored in ethanol using the Qiagen blood and tissue kit.

#### Opsin sequence generation

We amplified visual opsin genes *sws1, lws* and *rh1* using universal primers previously used to amplify these genes in snakes [1]. All fragments were amplified in 25 µl polymerase chain reactions (PCRs) containing: 1x PCR buffer (Invitrogen), 1.5 mmol (mM) of MgCl<sub>2</sub> (Invitrogen), 50 µmol/L of deoxynucleotides (Bioline), 0.4 µmol/L of each primer and 1 unit Platinum Taq Polymerase (Invitrogen) and 100ng of cDNA. Amplification was by touchdown PCR with the following cycling parameters: initial denaturation at 95°C for 5 minutes; 20 cycles of 1 minute at 95°C (denaturation), 30 seconds at 60°C (annealing), and 1 minute at 72°C (extension) with a decrease of 0.5°C per cycle; 15 cycles of 1 minute at 95°C (denaturation), 30 seconds at 50°C (annealing), and 1 minute at 72°C for 5 minutes. PCR products were run on a 1% agarose gel, excised in a Blue Light Transilluminator (Safe Imager, Invitrogen) and purified with a PureLink Quick Gel Extraction Kit (Invitrogen). PCR fragments were cloned with a StrataClone PCR Cloning Kit (Agilent) and corresponding chemically competent cells following the manufacturer's protocol. Transformed cells were grown overnight on agar media treated with 100 mg/ml of Ampicilin (Bioline) and 1ml of 2% X-GAL at 37°C. Sixteen white colonies

were picked and used as DNA template in 25µl PCR reactions: 1x PCR buffer (Bioline), 1 mmol (mM) of MgCl<sub>2</sub> (Bioline), 80 µmol/L of deoxynucleotides (Bioline), 0.2 µmol/L of M13F and M13R vector primers and 1 unit of BioTAQ Polymerase (Bioline) and 2µl of DNA (1 colony twirled in 50µl of ultra-pure water). The PCR had the following cycling parameters: initial denaturation at 95°C for 10 minutes; 30 cycles of 15 seconds at 95°C (denaturation), 30 seconds at 58°C (annealing), and 1 minute and 30 seconds at 72°C (extension) and a final extension at 72°C for 1.5 minutes. Between four and eight positive clones per gene per species were sequenced in both directions with M13 universal primers in an automated DNA sequencer. Vector regions were trimmed and sequences were assembled in Geneious R8.

#### Voucher barcodes

We generated mitochondrial *16s rRNA* 'barcodes' for each specimen using universal primers [2] in 25 µl PCR reactions: 1x PCR buffer (Invitrogen), 1 mmol (mM) of MgCl<sub>2</sub> (Invitrogen), 50 µmol/L of deoxynucleotides (Bioline), 0.4 µmol/L of each primer and 1 unit Platinum Taq Polymerase (Invitrogen) and 100ng of gDNA. The PCR cycling parameters were: initial denaturation at 95°C for 10 minutes; 30 cycles of 15 seconds at 95°C (denaturation), 30 seconds at 55°C (annealing), and 1 minute at 72°C (extension) and a final extension at 72°C for 1 minute. All successfully amplified products were sequenced in both directions using the same primers used for PCR, in an automated DNA sequencer. The barcodes were assembled in Geneious R8.

#### Microspectrophotometry

All procedures were performed under dim red light. Eyes were enucleated from dark-adapted snakes killed using approved procedures. Retinas were mounted in saline containing 10% (w/v) dextran and compressed between two coverslips sealed with wax. A single beam microspectrophotometer was used following the methods reported by Sillman *et al.* [3]. MSP data from the visual pigments were recorded every 1nm from 350 to 750nm. Selection criteria followed [4]. The data were normalized by estimating the spectral maximum by eye and fitting a Gaussian function to the data points 20nm either side of the wavelength. The peak absorbance ( $\lambda_{max}$ ) of each pigment was estimated by methods developed by [5] and [6] with the templates from [7].

**Table S1.** GenBank accession codes for the sequences used in this study. Taxa highlighted in bold are those for which data were newly generated in this study. Voucher specimen details for these samples as follows: *Telescopus fallax*: Natural History Museum of Crete, Greece, NHMC 80.3.38.116; *Hypsiglena jani*: University of Texas, Arlington, USA, UTA R 62966; *Phyllorhynchus decurtatus*: Los Angeles County Museum of Natural History LACM187402; *Hydrophis peronii*: Western Australian Museum, Perth, Australia WAMR174263; *Notechis scutatus*: no voucher.

| Higher     | Course iter      | Currier                      | Accession Numbers |             |             |           |          |          |  |  |  |  |
|------------|------------------|------------------------------|-------------------|-------------|-------------|-----------|----------|----------|--|--|--|--|
| Таха       | Family           | Species                      | 16S               | rh1         | sws1        | lws       | rh2      | sws2     |  |  |  |  |
| Squamata - | Typhlopidae      | Amerotyphlops brongersmianus | KR815889          | KR336737    | -           | -         | -        | -        |  |  |  |  |
| Serpentes  | Leptotyphlopidae | Epictia collaris             | KR815892          | KR336735    | -           | -         | -        | -        |  |  |  |  |
|            | Anomalepididae   | Liotyphlops beui             | KR815891          | KR336734    | -           | -         | -        | -        |  |  |  |  |
|            | Anomalepididae   | Typhlophis squamosus         | KR815890          | KR336733    | -           | -         | -        | -        |  |  |  |  |
|            | Aniliidae        | Anilius scytale              | KR815894          | KR336736    | -           | -         | -        | -        |  |  |  |  |
|            | Tropidophiidae   | Tropidophis feicki           | KR815893          | KR336738    | KR336723    | KR336709  | -        | -        |  |  |  |  |
|            | Xenopeltidae     | Xenopeltis unicolor          | NA                | J49723      | FJ497234    | FJ497235  | -        | -        |  |  |  |  |
|            | Pythonidae       | Python regius                | NA                | FJ497236    | FJ4977237   | FJ4977238 | -        | -        |  |  |  |  |
|            | Pythonidae       | Python bivittatus            | NA                |             | PRJNA238085 |           |          |          |  |  |  |  |
|            | Lamprophiidae    | Polemon collaris             | KR815896          | KR336739    | KR336724    | KR336710  | -        | -        |  |  |  |  |
|            | Elapidae         | Ophiophagus hannah           | NA                |             | PRJNA201683 |           | -        | -        |  |  |  |  |
|            |                  | Hydrophis peronii            | KU323976          | KU324001    | KU323991    | KU323990  | -        | -        |  |  |  |  |
|            |                  | Notechis scutatus            | KU323981          | KU324000    | KU323999    | KU323989  | -        | -        |  |  |  |  |
|            | Colubridae       | Pseustes poecilonotus        | KR815895          | KR336741    | KR336725    | KR336711  | -        | -        |  |  |  |  |
|            |                  | Actractus flamigerus         | KR815897          | KR336740    | KR336726    | KR336712  | -        | -        |  |  |  |  |
|            |                  | Lampropeltis californiae     | KU323980          | KU324004    | KU323992    | KU323987  | -        | -        |  |  |  |  |
|            |                  | Hypsiglena jani              | KU323975          | KU324007    | KU323998    | KU323988  | -        | -        |  |  |  |  |
|            |                  | Telescopus fallax            | KU323974          | KU324005    | KU323995    | KU323984  | -        | -        |  |  |  |  |
|            |                  | Phyllorhynchus decurtatus    | KU323979          | -           | KU323996    | KU323985  | -        | -        |  |  |  |  |
|            |                  | Arizona elegans              | KU323973          | KU324006    | KU323997    | KU323986  | -        | -        |  |  |  |  |
|            |                  | Thamnophis sirtalis          | KU323978          | KU324003    | KU323994    | KU323983  | -        | -        |  |  |  |  |
|            |                  | Natrix maura                 | KU323977          | KU324002    | KU323993    | KU323982  | -        | -        |  |  |  |  |
| Other      | Amphisbaenidae   | Amphisbaena infraorbitale    | KR815886          | KR336730    | KR336719    | KR336704  | KR336755 | KR336746 |  |  |  |  |
| Squamata   | Amphisbaenidae   | Amphisbaena alba             | KR815887          | KR336729    | KR336720    | KR336705  | KR336756 | KR336745 |  |  |  |  |
|            | Amphisbaenidae   | Amphisbaena sp.              | KR815888          | KR336728    | KR336721    | KR336706  | KR336756 | KR336747 |  |  |  |  |
|            | Lacertidae       | Takydromus sexlineatus       | KR815885          | KR336727    | KR336722    | KR336707  | KR336757 | KR336744 |  |  |  |  |
|            | Gymnophthalmidae | Bachia cf. flavescens        | KR815884          | KR336731    | KR336715    | KR336703  | -        | KR336748 |  |  |  |  |
|            | Scincidae        | Melanoseps occidentalis      | KR815882          | KR336743    | KR336718    | KR336713  | KR336753 | KR336750 |  |  |  |  |
|            | Scincidae        | <i>Feylinia</i> sp.          | KR815883          | KR336742    | KR336717    | KR336714  | KR336754 | KR336751 |  |  |  |  |
|            | Diploglossidae   | Ophiodes striatus            | KR815881          | KR336732    | KR336716    | KR336708  | KR336752 | KR336749 |  |  |  |  |
|            | Dactyloidae      | Anolis carolinensis          | NA                |             | Ensembl v75 |           |          |          |  |  |  |  |
|            | Phrynosomatidae  | Uta stansburiana             | DQ100323          | DQ100325    | DQ129869    | DQ100324  | DQ100326 | DQ100323 |  |  |  |  |
| Testudines | Trionychidae     | Pelodiscus sinensis          |                   | Ensembl v75 | 5           |           |          |          |  |  |  |  |
|            | Emydidae         | Chrysemys picta              | NA                | Ensembl v75 | 5           |           |          |          |  |  |  |  |

| Crocodylia | Alligatoridae     | Alligator mississippiensis | NA | UCS genome   |           |             |          |   |
|------------|-------------------|----------------------------|----|--------------|-----------|-------------|----------|---|
| Aves       | Columbidae        | Columba livia              | NA |              |           | Ensembl v75 |          |   |
| Aves       | Falconidae        | Falco cherug               | NA |              |           | PRJNA168071 |          |   |
| Aves       | Falconidae        | Falco peregrinus           | NA |              |           | PRJNA159791 |          |   |
| Aves       | Muscicapidae      | Ficedula albicolabris      | NA |              |           | Ensembl v75 |          |   |
| Aves       | Estrildidae       | Taeniopygia guttata        | NA |              |           | Ensembl v75 |          |   |
| Mammalia   | Bovidae           | Bos taurus                 | NA | NM_001014890 | NM_174567 | NM_174566   | -        | - |
|            | Ornithorhynchidae | Ornithorhynchus anatinus   | NA | EF050076     | -         | EU624413    | EU624412 | - |

**Table S2.** Known amino acid spectral tuning sites for *rh1* ([8,9]) and predicted peak absorbance ( $\lambda_{max}$ ) of RH1-based visual pigment for snakes. Site values in first row represent amino acid positions numbered with respect to bovine rhodopsin. Underline indicates amino acids with stronger effects on spectral tuning [16-19]. All  $\lambda_{max}$  values are predicted based on amino acid sequences (for a review see [8]) except those in parentheses (measured using MSP or *in vitro* expression).

|                             | Amino acid residues |    |     |     |     |     |     |     |     |     |     |     |     |                         |
|-----------------------------|---------------------|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-------------------------|
| Species                     | 83                  | 90 | 113 | 118 | 122 | 164 | 180 | 261 | 265 | 269 | 285 | 292 | 308 | λmax                    |
| Anolis carolinensis         | Ν                   | G  | E   | Т   | E   | А   | Р   | F   | W   | А   | Р   | А   | L   | 493 (491 <sup>1</sup> ) |
| Amerotyphlops brongersianus | Ν                   | G  | Е   | Т   | Е   | А   | Р   | F   | W   | А   | Р   | А   | L   | 493                     |
| Typhlophis squamosus        | Ν                   | G  | Е   | Т   | Е   | А   | Р   | F   | W   | А   | Р   | А   | L   | 493                     |
| Liotyphops beui             | Ν                   | G  | Е   | Т   | Е   | А   | Р   | F   | W   | А   | Р   | А   | L   | 493                     |
| Epictia collaris            | Ν                   | G  | Е   | Т   | Е   | А   | Р   | F   | W   | А   | Р   | А   | L   | 493                     |
| Anilius scytale             | Ν                   | G  | Е   | Т   | Е   | А   | Р   | F   | W   | А   | Р   | А   | L   | 493 (493 <sup>2</sup> ) |
| Python regius               | Ν                   | G  | Е   | Т   | Е   | А   | Р   | F   | W   | А   | Р   | А   | V   | 493 (494 <sup>3</sup> ) |
| Python bivittatus           | Ν                   | G  | Е   | Т   | Е   | А   | Р   | F   | W   | А   | Р   | А   | V   | 493                     |
| Xenopeltis unicolor         | Ν                   | G  | Е   | Т   | Е   | А   | Р   | F   | W   | А   | Р   | А   | V   | 493 (497 <sup>4</sup> ) |
| Ophiophagus hannah          | Ν                   | G  | Е   | Т   | Е   | А   | Р   | F   | W   | А   | Р   | S   | V   | ?                       |
| Tropidophis feickii         | Ν                   | G  | Е   | Т   | Е   | А   | Р   | F   | W   | А   | Р   | А   | L   | 493                     |
| Polemon collaris            | Ν                   | G  | Е   | Т   | Е   | А   | Р   | F   | W   | А   | Р   | S   | V   | ?                       |
| Pseustes poecilonotus.      | Ν                   | G  | Е   | Т   | Е   | А   | Р   | F   | W   | А   | Р   | S   | V   | ?                       |
| Atractus flammigerus        | Ν                   | G  | Е   | Т   | Е   | А   | Р   | F   | W   | А   | Р   | А   | V   | 493                     |
| Hydrophis peronii           | Ν                   | G  | Е   | Т   | Е   | А   | Р   | F   | W   | А   | Р   | А   | V   | 493(496 <sup>5</sup> )  |
| Notechis sculatus           | Ν                   | G  | Е   | Т   | Е   | А   | Р   | F   | W   | А   | Р   | А   | V   | 493                     |
| Thamnophis sirtalis         | Ν                   | G  | Е   | Т   | Е   | А   | Р   | F   | W   | А   | Р   | S   | V   | ? (485 <sup>6</sup> )   |
| Natrix maura                | Ν                   | G  | Е   | Т   | Е   | А   | Р   | F   | W   | А   | Р   | S   | V   | ?                       |
| Lampropeltis californiae    | D                   | G  | Е   | Т   | Е   | А   | Р   | F   | W   | А   | Р   | А   | V   | 499                     |
| Telescopus fallax           | D                   | G  | Е   | Т   | Е   | А   | Р   | F   | W   | А   | Р   | А   | V   | 499                     |
| Hypsiglena jani             | Ν                   | G  | Е   | Т   | Е   | А   | Р   | F   | W   | А   | Р   | А   | V   | 493                     |
| Arizona elegans             | Ν                   | G  | Е   | Т   | Е   | А   | Р   | F   | W   | А   | Р   | S   | V   | ? (484)                 |

<sup>1</sup>[10]; <sup>2</sup>[1]; <sup>3</sup>[11]; <sup>4</sup>[12]; <sup>5</sup>[13] <sup>6</sup>[14]

**Table S3.** Known amino acid spectral tuning sites for *sws1* [15] and predicted peak absorbance ( $\lambda_{max}$ ) of SWS1-based visual pigment for snakes. Site values in first row represent amino acid positions numbered with respect to bovine opsin. Underline indicates amino acids with stronger effects on spectral tuning [16-19]. All  $\lambda_{max}$  values are predicted based on amino acid sequences (for a review see [20]) except those in parentheses (measured using MSP or *in vitro* expression).

|                           | Amino acid residues |    |    |    |    |           |    |     |     |     |     |     |                         |
|---------------------------|---------------------|----|----|----|----|-----------|----|-----|-----|-----|-----|-----|-------------------------|
| Species                   | 46                  | 49 | 52 | 86 | 90 | <u>93</u> | 97 | 113 | 114 | 116 | 118 | 265 | λmax                    |
| Anolis carolinensis       | F                   | F  | Т  | F  | S  | Т         | Α  | Е   | Α   | L   | S   | Y   | 360 (359 <sup>1</sup> ) |
| Tropidophis feickii       | L                   | F  | Т  | F  | Α  | А         | S  | Е   | А   | L   | S   | Y   | 360                     |
| Python regius             | L                   | F  | Т  | F  | Α  | Т         | А  | Е   | А   | L   | S   | Y   | 360 (361 <sup>2</sup> ) |
| Xenopeltis unicolor       | L                   | F  | Т  | F  | А  | Т         | А  | Е   | А   | L   | S   | Y   | 360 (360 <sup>3</sup> ) |
| Python bivittatus         | L                   | F  | Т  | F  | А  | Т         | А  | Е   | А   | L   | S   | Y   | 360                     |
| Ophiophagus hannah        | L                   | F  | Т  | F  | А  | V         | S  | Е   | А   | L   | Т   | Y   | ?                       |
| Atractus flammigerus      | L                   | F  | Т  | F  | А  | Т         | S  | Е   | А   | L   | Т   | Y   | 358                     |
| Polemon collaris          | L                   | F  | Т  | F  | А  | V         | S  | Е   | А   | L   | S   | Y   | ?                       |
| Pseustes poecilonotus     | L                   | F  | Т  | F  | А  | V         | S  | Е   | А   | L   | Т   | Y   | ?                       |
| Hydrophis peronii         | L                   | F  | Т  | Y  | А  | V         | S  | Е   | А   | L   | Т   | Y   | 426 (430 <sup>4</sup> ) |
| Notechis sculatus         | L                   | F  | Т  | F  | R  | V         | S  | Е   | А   | L   | Т   | Y   | ?                       |
| Thamnophis sirtalis       | L                   | F  | Т  | F  | А  | Т         | S  | Е   | А   | L   | S   | Y   | 360 (360 <sup>5</sup> ) |
| Natrix maura              | L                   | F  | Т  | L  | А  | Т         | S  | Е   | А   | L   | S   | Y   | ?                       |
| Lampropeltis californiae  | L                   | F  | Т  | F  | А  | V         | S  | Е   | А   | L   | Т   | Y   | ?                       |
| Telescopus fallax         | L                   | F  | Т  | F  | А  | V         | С  | Е   | А   | L   | Т   | Y   | ?                       |
| Phyllorhynchus decurtatus | L                   | F  | Т  | F  | А  | V         | S  | Е   | А   | L   | S   | Y   | ?                       |
| Hypsiglena jani           | L                   | F  | Т  | F  | А  | Т         | S  | Е   | А   | L   | Т   | Y   | 358                     |
| Arizona elegans           | L                   | F  | Т  | F  | А  | V         | S  | Е   | А   | L   | Т   | Y   | ? (366)                 |

<sup>1</sup>[10]; <sup>2</sup>[11]; <sup>3</sup>[12]; <sup>4</sup>[13]; <sup>5</sup>[14]

**Table S4.** Known amino acid spectral tuning sites for *lws* [21] and predicted peak absorbance ( $\lambda_{max}$ ) of LWSbased visual pigment for snakes. Site values in first row represent amino acid positions numbered with respect to bovine rhodopsin. Underline indicates amino acids with stronger effects on spectral tuning [16-19]. All  $\lambda_{max}$  values are predicted based on amino acid sequences (for a review see [20]) except those in parentheses (measured using MSP or *in vitro* expression).

| Species                   | 180 | 197 | 277 | 285 | <u>308</u> | λmax                    |
|---------------------------|-----|-----|-----|-----|------------|-------------------------|
| Anolis carolinensis       | S   | Н   | Y   | Т   | А          | 560 (560 <sup>1</sup> ) |
| Python bivittatus         | S   | Н   | Y   | Т   | А          | 560                     |
| Python regius             | S   | Н   | Y   | Т   | А          | 560 (551 <sup>2</sup> ) |
| Xenopeltis unicolor       | S   | Н   | Y   | Т   | А          | 560 (560 <sup>3</sup> ) |
| Polemon collaris          | S   | Н   | Y   | Т   | А          | 560                     |
| Tropidophis feickii       | А   | Н   | Y   | Т   | А          | 555                     |
| Pseustes poecilonotus     | S   | Н   | Y   | Т   | А          | 560                     |
| Atractus flammigerus      | А   | Н   | Y   | А   | А          | 543                     |
| Ophiophagus hannah        | S   | н   | Y   | Т   | А          | 560                     |
| Hydrophis peronii         | S   | н   | Y   | Т   | А          | 560 (559 <sup>4</sup> ) |
| Notechis sculatus         | S   | н   | Y   | Т   | А          | 560                     |
| Thamnophis sirtalis       | А   | н   | Y   | Т   | А          | 555(554 <sup>5</sup> )  |
| Natrix maura              | А   | н   | Y   | Т   | А          | 555                     |
| Lampropeltis californiae  | А   | н   | Y   | Т   | А          | 555                     |
| Telescopus fallax         | А   | н   | Y   | А   | А          | 536                     |
| Phyllorhynchus decurtatus | А   | Н   | Y   | Т   | А          | 536                     |
| Hypsiglena jani           | S   | Н   | Y   | А   | А          | 536                     |
| Arizona elegans           | А   | Н   | Y   | Α   | Α          | 536                     |

<sup>1</sup>[10]; <sup>2</sup>[11]; <sup>3</sup>[12]; <sup>4</sup>[13]; <sup>5</sup>[14]

**FIGURE S1.** Microspectrophotometry data showing pre-bleach absorbance spectra for visual pigments for four species of colubrid snakes. Each spectrum (circles, squares, triangles) is overlaid with a vitamin-A<sub>1</sub> (rhodopsin) visual pigment template (lines). Peak absorbance ( $\lambda_{max}$ ) values (and standard deviations) are shown for each spectrum. See Table 3 for number of cells measured, and main text for further details. An SWS1 pigment was detected for *Lampropeltis getula* ( $\lambda_{max}$  = c. 370 nm) but none of the six readings passed selection criteria so the spectrum is not shown here.



### References

- 1. Simões, B. F. et al. 2015 Visual system evolution and the nature of the ancestral snake. *J. Evol. Biol.* **28**, 1309–1320. (doi:10.1111/jeb.12663)
- 2. Palumbi, S. R. 1996 The Polymerase Chain Reaction. In *Molecular Systematics* (eds D. M. Hillis C. Moritz & B. K. Mable), pp. 205–247. Sunderland, MA.
- 3. Sillman, A. J., Johnson, J. L. & Loew, E. R. 2001 Retinal photoreceptors and visual pigments in *Boa constrictor imperator*. *J. Exp. Zool.* **290**, 359–365. (doi:10.1002/jez.1076)
- 4. Loew, E. R. 1994 A third, ultraviolet-sensitive, visual pigment in the Tokay gecko (*Gekko gekko*). *Vision Res.* **34**, 1427–1431. (doi:10.1016/0042-6989(94)90143-0)
- 5. Mansfield, R. J. W. 1985 Primate Photopigments and Cone Mechanisms. In *The Visual system* (eds A. Fein & J. S. Levine), pp. 198. New York: Alan R. Liss.
- 6. MacNichol, E. F. 1986 A unifying presentation of photopigment spectra. *Vision Res.* **26**, 1543–1556.
- 7. Lipetz, L. E. & Cronin, T. W. 1988 Application of an invariant spectral form to the visual pigments of crustaceans: implications regarding the binding of the chromophore. *Vision Res.* **28**, 1083.
- Yokoyama, S., Tada, T., Zhang, H. & Britt, L. 2008 Elucidation of phenotypic adaptations: Molecular analyses of dim-light vision proteins in vertebrates. *Proc. Natl. Acad. Sci.* 105, 13480–13485. (doi:10.1073/pnas.0802426105)
- 9. Hunt, D. M., Dulai, K. S., Partridge, J. C., Cottrill, P. & Bowmaker, J. K. 2001 The molecular basis for spectral tuning of rod visual pigments in deep-sea fish. *J Exp Biol* **204**, 3333–3344.
- Yokoyama, S. 2000 Molecular Evolution of Vertebrate Visual Pigments. *Prog. Retin. Eye Res.* 19, 385–419.
- Davies, W. L., Cowing, J. A., Bowmaker, J. K., Carvalho, L. S., Gower, D. J. & Hunt, D. M. 2009 Shedding Light on Serpent Sight: The Visual Pigments of Henophidian Snakes. *J. Neurosci.* 29, 7519–7525. (doi:10.1523/jneurosci.0517-09.2009)
- 12. Sillman, A. J., Carver, J. K. & Loew, E. R. 1999 The Photoreceptors and Visual Pigments in the Retina of a Boid Snake, the Ball Python (*Python regius*). *J. Exp. Biol.* **202**, 1931–1938.
- 13. Hart, N. S., Coimbra, J. P., Collin, S. P. & Westhoff, G. 2012 Photoreceptor types, visual pigments, and topographic specializations in the retinas of hydrophiid sea snakes. *J. Comp. Neurol.* **520**, 1246–1261. (doi:10.1002/cne.22784)
- Sillman, A. J., Govardovskii, V. I., Rohlich, P., Southard, J. A. & Loew, E. R. 1997 The photoreceptors and visual pigments of the garter snake (*Thamnophis sirtalis*): a microspectrophotometric, scanning electron microscopic and immunocytochemical study. *J. Comp. Physiol. A* 181, 89.

- Yokoyama, S., Starmer, W. T., Takahashi, Y. & Tada, T. 2006 Tertiary structure and spectral tuning of UV and violet pigments in vertebrates. *Gene* 365, 95–103. (doi:10.1016/j.gene.2005.09.028)
- Cowing, J. A., Poopalasundaram, S., Wilkie, S. E., Robinson, P. R., Bowmaker, J. K. & Hunt, D. M. 2002 The molecular mechanism for the spectral shifts between vertebrate ultravioletand violet-sensitive cone visual pigments. *Biochem. J.* 367, 129. (doi:10.1042/BJ20020483)
- Babu, K. R., Dukkipati, A., Birge, R. R. & Knox, B. E. 2001 Regulation of Phototransduction in Short-Wavelength Cone Visual Pigments via the Retinylidene Schiff Base Counterion. *Biochemistry* 40, 13760–13766. (doi:10.1021/bi015584b)
- 18. Asenjo, A. B., Rim, J. & Oprian, D. D. 1994 Molecular determinants of human red/green color discrimination. *Neuron* **12**, 1131–1138.
- 19. Fasick, J. I., Applebury, M. L. & Oprian, D. D. 2002 Spectral tuning in the mammalian shortwavelength sensitive cone pigments. *Biochemistry* **41**, 6860–6865.
- 20. Yokoyama, S. 2008 Evolution of Dim-Light and Color Vision Pigments. *Annu Rev Genomics Hum Genet* **9**, 259–282. (doi:10.1146/annurev.genom.9.081307.164228)
- 21. Yokoyama, S. & Radlwimmer, F. B. 1998 The 'five-sites' rule and the evolution of red and green color vision in mammals. *Mol. Biol. Evol.* **15**, 560–567.