

Herestraat 49, 3000 Leuven tel: 016 34 59 03 fax: 016 34 60 60 ${\rm erk.} \#{:}8{\text{-}}24990{\text{-}}92{\text{-}}996$

Patient identification

Surname XXXX First name XXXX Gender X **EADnr** 00000000 Birth date 00/00/0000 Sampling time 00/00/0000 00:00 Sample type blood Sample number XXXX **GC code** GC000000 (A_GC000000) Project code MD1-MT260-Genpanel-14

Subpanel HCM \subseteq gene panel HCM_LQT (v1.0)

Annex 1 General specifications of the test and analysis

The general characteristics of the full HCM_LQT panel are described below. The subpanel HCM consists of a subset of the captured genes. Please refer to Annex 2 for the specific statisitics of the application of the subpanel *HCM* on sample *GC000000*.

List of the 75 genes available in gene panel $HCM_{-}LQT$. In total the gene panel $HCM_{-}LQT$ covers a maximum of 100% of the combined coding regions $\pm 2bp$ intronic sequence of the following genes:

ABCC9	CASQ2	GPD1L	KCNJ5	MYLK2	SCN2B	TMEM43
ACTC1	CAV3	HCN4	KCNJ8	MYOZ2	SCN3B	TMPO
ACTN2	CSRP3	JPH2	KCNQ1	NKX2-5	SCN4B	TNNC1
AKAP9	DES	JUP	LAMP2	NOS1AP	SCN5A	TNNI3
ANK2	DMD	KCNA5	LDB3	NPPA	SGCD	TNNT2
ANKRD1	DSC2	KCNE1	LMNA	NUP155	SNTA1	TPM1
CACNA1C	DSG2	KCNE1L	MYBPC3	PKP2	TAZ	TRPM4
CACNA1D	DSP	KCNE2	MYH6	PLN	TBX3	VCL
CACNA2D1	DTNA	KCNE3	MYH7	PRKAG2	TBX5	WWTR1
CACNB2	GJA5	KCNH2	MYL2	RYR2	TCAP	
CALR3	GLA	KCNJ2	MYL3	SCN1B	TGFB3	

- Method For each sample 2 μ g of genomic DNA was sonicated in fragments of 300bp on average. The TruSeq DNA Sample Preparation kit of Illumina was used to make the library. After library preparation 6 samples were pooled for *in-solution* capturing with the Nimblegen SeqCap EZ kit (Lot No. xxxxx). The enriched fragments were then amplified and sequenced on the HiSeq2500 rapid mode, 2x 100bp paired-end sequencing. This was performed in the Genomics Core facility (UZ Leuven).
- Analysis (v1.6) After demultiplexing, the reads were aligned to the human reference genome hg19 (human_g1k_v37.fasta) using BWA (0.7.8). Duplicate reads were removed with PICARD MARKDUPLICATES (1.118), local realignment around indels was performed with GATK REALIGNERTARGETCREATOR (3.2.2), base scores were recalibrated with GATK BaseRecalibrator (3.2.2), and then variants were called with GATK HAPLOTYPECALLER (3.2.2). Variants were annotated using REFSEQ (release 65) and CARTAGENIA (Cartagenia Bench Lab NGS 3.1.2).

Sanger sequencing Mutations retained as pathogenic were confirmed by Sanger sequencing.

General limitations of the technique The analysis was optimised to identify base pair substitutions with a high sensitivity. The sensitivity for small insertions and deletions was lower. Deep-intronic mutations, mutations in the promoter region, repeats, large exonic deletions and duplications, and other structural variants were not detected by this test.

Annex 2 Quality parameters

Gene panel HCM_LQT applied to sample GC000000

- The data satisfy the proposed quality criteria.
- 99.06% \blacksquare of the gene panel HCM_LQT is genotyped
- Total number of variants $HCM_{-}LQT$: 1595

Subpanel HCM applied to sample GC000000

• 99.99% \blacksquare of subpanel *HCM* is genotyped; the 26 genes transcripten of subpanel *HCM* are completely genotyped unless it is indicated otherwise (e.g. $\blacksquare = 75\%$):

• The table below shows the incomplete exons for some subpanel *HCM* genes that are not entirely genotyped:

Gene	Transcript	List of incomplete exons	% gene genotyped
MYH6	NM_002471.3	ex29	99.9

The variants are assigned to one of the following classes: (1) benign, (2) likely benign, (3) variants of unknown significance, (4) likely pathogenic, or (5) pathogenic. Variants of class (1) and (2) are not included below.

There is no (likely) pathogenic mutation associated with the phenotype.

Annex v_0000_00_00_00_00_00

There is no variant of unkown significance that could be associated with the phenotype.