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1 SplitHMC

Here, we show how to solve Hamiltonian dynamics defined by (13) using the “splitting” strategy. Denote

z := (f, p), V := C−1
in eτ , and A :=

[
0 I
−V 0

]
. The dynamics (14a) can be written as

ż = Az. (1)

We then have the analytical solution to (1) as

z(t) = eAtz(0), (2)

where eAt is a matrix defined as eAt := ∑∞
i=0

ti

i! Ai, which in turn can be written as follows:

eAt =

[
I− t2

2! V + t4

4! V
2 + · · · It− t3

3! V + t5

5! V
2 + · · ·

−Vt + t3

3! V
2 − t5

5! V
3 + · · · I− t2

2! V + t4

4! V
2 + · · ·

]

=

[
cos(
√

Vt) V−
1
2 sin(

√
Vt)

−V
1
2 sin(

√
Vt) cos(

√
Vt)

]

=

[
V−

1
2 0

0 I

] [
cos(
√

Vt) sin(
√

Vt)
− sin(

√
Vt) cos(

√
Vt)

] [
V

1
2 0

0 I

]
.

For positive definite matrix V, we can use the spectral decomposition V = UΣU−1, where U is orthogonal
matrix, i.e. U−1 = UT. Therefore we have

eAt =

[
U 0
0 U

] [
Σ−

1
2 0

0 I

] [
cos(
√

Σt) sin(
√

Σt)
− sin(

√
Σt) cos(

√
Σt)

]
·
[

Σ
1
2 0

0 I

] [
U−1 0

0 U−1

]
. (3)

In practice, we only need to diagonalize C−1
in once: C−1

in = UΛU−1, then Σ = Λeτ . If we let f∗ :=√
Λeτ/2U−1f, p∗−D := U−1p−D, we have the solution (15) as follows[

f∗(t)
p∗−D(t)

]
=

[
cos(
√

Λeτ/2t) sin(
√

Λeτ/2t)
− sin(

√
Λeτ/2t) cos(

√
Λeτ/2t)

] [
f∗(0)

p∗−D(0)

]
.

We then apply leapfrog method to the remaining dynamics.
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2 Effect of precision matrix on efficiency of ES2

For all experiments in the paper, we use the intrinsic precision matrix C−1
in with small number added to its

(1, 1) element in order to make C−1
in invertible for ES2. Since ES2 is designed explore the dominant Gaussian

component of posterior, it is inevitably affected by the structure Gaussian prior. We found indeed that the
sampling efficiency depend on the precision matrix of Gaussian process in various example.

We implement ES2 with the following 3 type of precision matrices:

• precision matrix (tri-diagonal) of a Brownian motion, C−1
BM, denoted as ’bmC’.

• intrinsic precision matrix C−1
in with nugget to the whole diagonal elements, denote as ’diagnugget’.

• intrinsic precision matrix C−1
in with nugget at (1,1) element (used in the paper), denoted as ’11nugget’.

We compare sampling efficiency of ES2 under 3 different settings in Tables S1 and S2.

simulation setting cond s/iter Eff(f) minEff(f)/s Eff(τ) Eff(τ)/s
bmC 7.01E+04 1.46E-03 (35,88,180) 1.60 12.95 0.59

logistic diagnugget 1.48E+06 1.56E-03 (26,56,174) 1.13 8.86 0.38
11nugget 1.80E+08 1.62E-03 (5,15,50) 0.19 6.58 0.27
bmC 8.39E+04 1.52E-03 (21,64,145) 0.91 16.38 0.72

exp diagnugget 5.14E+06 1.54E-03 (36,69,118) 1.55 10.60 0.46
11nugget 5.48E+08 1.68E-03 (6,14,58) 0.22 7.14 0.28
bmC 8.09E+04 1.57E-03 (20,52,119) 0.84 12.98 0.55

boombust diagnugget 4.13E+06 1.53E-03 (33,67,122) 1.45 8.90 0.39
11nugget 4.48E+08 1.67E-03 (5,14,38) 0.21 8.23 0.33
bmC 6.79E+04 1.43E-03 (81,169,435) 3.78 24.44 1.14

bottleneck diagnugget 1.32E+07 1.57E-03 (15,34,75) 0.66 7.15 0.31
11nugget 1.35E+09 1.66E-03 (6,16,83) 0.25 3.47 0.14

Table S1: Sampling Efficiency of ES2 in modeling simulated population trajectories. cond is the condition
number (ratio of the largest and the smallest eigenvalues) of the precision matrix. s/iter is the seconds per
sampling iteration. Eff includes the (min,med, max) of the effective sample size, and minEff/s is the time
normalized the effective sample size.

setting cond s/iter Eff(f) minEff(f)/s Eff(τ) Eff(τ)/s
bmC 1.10E+05 1.74E-03 (5,25,99) 0.20 11.00 0.42
diagnugget 4.20E+04 1.76E-03 (9,30,111) 0.32 7.86 0.30
11nugget 2.01E+07 1.88E-03 (4,15,98) 0.15 15.89 0.57

Table S2: Sampling Efficiency of ES2 in Influenza problem

As one can see that in general the larger condition number (ratio of the largest and the smalles eigen-
values) is, the lower sampling efficiency (measured by minEff/s) ES2 will have. This is because the more
ill-conditioned the precision matrix is, the higher autocorrelated are these states traversed by ES2 on the el-
lipsis. Our proposed splitHMC performs uniformly well with different precision matrices without suffering
from ill condition.

3 Simulation of four genealogies

Our four simulated genealogies are displayed in Figure S1. To simulate our data under heterochronous
sampling, we selected 10 of our samples to have sampling time 0 and the rest of our 40 samples had sampling
times assigned uniformly at random. Our four simulated genealogies were generated in R and our code is
available online.
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Figure S1: Simulated genealogies of I) logistic, II) exponential growth, III) boombust and IV) bottleneck
population size trajectories.

4 Comparison with other methods

Figure 4 shows the estimated population size trajectory for the four simulations using our splitHMC, Bayesian
Skyline Plot (Drummond et al., 2005) and Bayesian Skyride (Minin et al., 2008). In Figure S2, we show the
trace plots of the posterior distributions of the results displayed in Figure 4 to asses convergence of the
posterior estimates.

5 Effect of grid size on estimation accuracy by splitHMC

To study the effect of grid size on the accuracy of inference, we implement the proposed splitHMC algorithm
on the bottleneck example. Population size trajectories are estimated with posterior samples generated by
splitHMC using 20, 50, 100 and 200 grid points respectively. As seen in Figure S3, these estimates are quite
close to each other given sufficient grid points, e.g. 50 points in this example, and their accuracy is not
sensitive to the grid size.
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Figure S2: Trace plots of log posterior distributions of results displayed in Figure 4.
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Figure S3: INLA vs splitHMC in estimating bottleneck population size trajectory. Shaded region shows
95% credible interval given by INLA and dotted lines show 95% credible intervals estimated with MCMC
samples given by splitHMC.
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6 Eigen decomposition vs Cholesky decomposition in splitHMC

For our splitHMC method, we use the eigen decomposition of C−1
in with O(D2) computational complexity.

As discussed in the paper, we could instead use the Cholesky decomposition, C−1
in = RTR, to reduce the

complexity to O(D). To this end, we could use change of variables f∗ = Rf, which results in a simpler
Hamiltonian dynamics compared to (14a) (Pakman and Paninski, 2014). Denote θ∗ := (f∗, τ). Then, the
Hamiltonian in equation (13) can be rewritten as

H(θ∗, p) =
−l − [(D− 1)/2 + α]τ + βeτ

2
+

(f∗)Tf∗eτ + pTp
2

+
−l − [(D− 1)/2 + α]τ + βeτ

2
. (4)

Note that the resulting Hamiltonian is defined in terms of f∗ and τ. Consequently, the dynamics defined by
the middle term of Equation (4) can be split as follows:{

ḟ∗|τ = p−D,
ṗ−D = −f∗eτ .

(5a)
{

τ̇|f∗ = pD,
ṗD = −(f∗)Tf∗eτ/2,

(5b)

The solution of equation (5a) is

f∗(t) = f∗(0) cos(eτ/2t) + p−D(0)e−τ/2 sin(eτ/2t)

p−D(t) = − f∗(0)eτ/2 sin(eτ/2t) + p−D(0) cos(eτ/2t)
(6)

Algorithm 1 can be easily modified according to this alternative dynamics. Because R is tridiagonal, back-
ward solving f from f∗ takes O(D) operations. Therefore, in theory the overall computational complexity
could be reduced to O(D). In practice, however, we found that this approach would work well in cases
where the middle term in Equation (4) dominates the Hamiltonian. In such cases, the residual energy, i.e.,
the first and last term in equation (4), is negligible so scaling its corresponding gradient by the Cholesky
factor obtained from the middle part (as required by the change of variable),

s∗ := ∇f∗ l(f) =
dfT

df∗
∇fl(f) = R−Ts, where s := ∇fl(f) (7)

will not have a substantial effect on the overall trajectory. Because this condition does not hold for examples
discussed in this paper, we found that using the Cholesky decomposition would lead to low acceptance
rates since the corresponding approximation error for simulating trajectories would be relatively high. To
increase acceptance rate, we could reduce the stepsize, but this would negatively affect the overall efficiency
of our splitHMC method. Therefore, as discussed in the paper, we used the eigen decomposition instead.

7 Adaptive MALA algorithm

We now show that the joint block updating in Knorr-Held and Rue (2002) can be recognized as an adaptive
MALA algorithm. First, we sample κ∗|κ ∼ p(κ∗|κ) ∝ κ∗+κ

κ∗κ on [κ/c, κc] for some c > 1 controlling the step
size of κ. Denote w := {Ai,k∆α}D+m+n−4

1 and use the following Taylor expansion for log p(f|κ) about f̂:

log p(f|κ) = −yTf−wT exp(−f)− 1
2

fTκC−1
in f

≈ −yTf− (w exp(−f̂))
T
[1− (f− f̂) + (f− f̂)2/2]− 1

2
fTκC−1

in f

= (−y + w exp(−f̂)(1 + f̂))
T

f +
1
2

fT[κC−1
in + diag(w exp(−f̂))]f

=: bTf− 1
2

fTGf = −1
2
(f−G−1b)

T
G(f−G−1b) + const

where b(f̂) := −y + w exp(−f̂)(1 + f̂), G(f̂, κ) := κC−1
in + diag(w exp(−f̂)). Setting f̂ to the current state, f,

and propose f∗|f, κ∗ from the following Gaussian distribution:

f∗|f, κ∗ ∼ N (µ, Σ)

µ = G(f, κ∗)−1b(f) = f + G(f, κ∗)−1∇f log p(f|κ∗)
Σ = G(f, κ∗)−1
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Algorithm 1 Adaptive MALA (aMALA)
Given current state θ = (f, κ) calculate potential energy U(θ)
repeat

z ∼ Unif[1/c, c], u ∼ Unif[0, 1]
until u < z+1/z

c+1/c
update precision parameter κ∗ = κz
Sample momentum p ∼ N (0, G(f, κ∗)−1)

Calculate log of proposal density log p(f∗|f, κ∗) = − 1
2 pTG(f, κ∗)p + 1

2 log det G(f, κ∗)
update momentum p← p− ε/2G(f, κ∗)−1∇U(f, κ∗)
update latent variables f∗ = f + εp
update momentum p← p− ε/2G(f∗, κ)−1∇U(f∗, κ)

Calculate log of reverse proposal density log p(f|f∗, κ) = − 1
2 pTG(f∗, κ)p + 1

2 log det G(f∗, κ)
Calculate new potential energy U(θ∗)
Accept/reject the proposal according to log α = −U(θ∗) + U(θ) − log p(f∗|f, κ) + log p(f|f∗, κ) for the
next state θ′

which has the same form as Langevin dynamical proposals. Interestingly, G(f̂, κ) is exactly the (observed)
Fisher information. That is, this approach is equivalent to Riemannian MALA (Girolami and Calderhead,
2011).

Finally, θ∗ = (f∗, κ∗) is jointly accepted with the following probability:

α = min
{

1,
p(θ∗|data)
p(θ|data)

p(κ|κ∗)p(f|f∗, κ)

p(κ∗|κ)p(f∗|f, κ∗)

}
= min

{
1,

p(θ∗|data)
p(θ|data)

p(f|f∗, κ)

p(f∗|f, κ∗)

}
where p(κ∗|κ) is a symmetric proposal. The steps of adaptive MALA are summarized in algorithm (1).
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