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Model Formulation 

The steady-state one-dimensional oxygen mass balance within the avascular region of a spherical 

granuloma yields: 
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The volumetric net oxygen source term QO2 within the tissue is given by 

 QO2
=ψBCO2,b −

kCO2
1+KCO2

 (2) 

where the second term on the right hand side is the Michaelis-Menten (MM) form of cellular 

oxygen consumption, and the first term on the right represents the source of oxygen supply from 

the blood vessels, where  is the volumetric rate of oxygen delivery from the vasculature to the 

tissue 2.  

 Next, the following additional assumptions are made: 

1) In the perfused region, i.e., in the sub-region between  and (Figure 2A), blood 

vessels exist so that the vascular source term, , in Eq. (2) is dominant in this sub-

region, i.e., , 
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2) There are no blood vessels in the avascular region, i.e., for , ψB = 0 , so that

QO2
= −

kCO2
1+KCO2

, i.e., QO2 is simply a term for oxygen consumption. 

3) Any bacilli present in the granuloma are undergoing anaerobic respiration; therefore, 

MTB does not contribute to oxygen consumption in this model. 

Thus the mass balance of oxygen takes the form: 

  (3) 

subject to the boundary conditions:  

  (4) 

which require further discussion. When the oxygen concentration drops due to cellular 

consumption to  at some (as yet unknown) value of (B.C. 2), the cells become 

hypoxic. When the oxygen concentration drops further to  at some (also unknown) 

value of  (B.C. 4), the cells die and the oxygen consumption rate becomes zero throughout 

the necrotic core. Since the MM kinetics in its usual form is inconsistent with this last fact of 

zero cellular consumption at a finite oxygen concentration (Figure 3), it must be accounted for in 

the model by artificial means, i.e., B.C. 5, in which the concentration gradient at the boundary of 

the necrotic core, , is forced to be zero.  
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The final boundary condition, B.C. 3, i.e., at , the flux  = continuous, implies 

that the concentration gradient is continuous. This guarantees that even though  marks the 

start of hypoxia, and, as assumed here, a change in cellular metabolism, there is no discontinuity 

in the concentration profile at this location, ascertained by matching the concentration gradient at 

this location between the different sub-regions (Figure 2B). This boundary condition also allows 

the estimation of the MM kinetic parameter K, as discussed below in the model parameters.  

For ease of equation manipulation and subsequent numerical calculations, non-

dimensionalization is applied based on the following dimensionless variables:  

  (5) 

where  is the so-called Thiele Modulus 6, and is a measure of the ratio of the intrinsic rates of 

oxygen consumption and diffusion. Note that because constant physical properties are assumed 

in the idealized spherical granuloma, the only parameter in the definition of the Thiele Modulus 

that can vary is , the radius of the avascular region.  In other words, because  and  are 

constant, the Thiele Modulus can be considered to be a dimensionless form of the avascular 

radius (and, by extension, a representation of unitless avascular granuloma size, where a large 

Thiele Modulus indicates a large granuloma).   

 In terms of the dimensionless parameters, thus, Eq. (3) may be written in the 

dimensionless form: 

  (6) 

This is subject to the boundary conditions in Eq. (4), written as follows in dimensionless form 
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 Equation (6) represents the dimensionless second-order nonlinear ordinary differential 

equation for oxygen concentration in the avascular region within the granuloma with the full 

Michaelis-Menten (MM) form of oxygen consumption kinetics. It can be solved only 

numerically subject to two boundary conditions. The least restrictive boundary conditions are 

B.C. 1 and B.C. 5 (Eq. 7), i.e., the specification of bulk concentration of oxygen, and the 

concentration gradient being zero at the granuloma center ( y = yC ). Using Mathematica® 

(Version 6.0, Wolfram Research, Inc., Champaign, IL) for the numerical solution of Eq. 6 

subject to these two boundary conditions, the result is shown in Figure 3, with  and 

other parameters listed in Table 1 for various values of the Thiele Modulus, , a representation 

of granuloma size. 

 Since Eq. (6) can be solved only numerically, more insights can be gained by considering 

the zero- and first-order limiting cases of the MM kinetics that describe the approximate oxygen 

consumption in sub-regions I and II in a granuloma (Figure 2B), which allow for explicit 

solutions that can analytically describe the concentration profile.   

Because predicting the emergence of hypoxia and necrosis in TB granulomas is of central 

importance in understanding the course of disease progression, it is desired to use this model to 

predict the corresponding radii,  and , or, in dimensionless terms,  and 
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. The determination of these radii and the limiting solutions of the sub-regions I and 

II are discussed fully in the following sections. 

Derivation of the Limiting Solutions 

As shown in Figure 2B, the avascular region is further subdivided sub-regions I and II. It is 

assumed here that the change from zero- to first-order kinetics occurs at , where 

, rationalized on the basis of altered cell metabolism in response to local oxygen 

concentration. This concentration, , is taken as that indicated by a positive pimonidazole 

stain (Figure 1).  

 Avascular Sub-Region II with First-Order Kinetics, RC ≤ r ≤ RH 

For the region where first-order kinetics is presumed to exist, , i.e., QO2
= −kCO2 , Eq. (6) 

becomes  

  (8) 

This linear second-order ordinary differential equation is subject to the boundary conditions  

  (9) 

The resulting solution for the dimensionless concentration profile subject to B.C. 4 and B.C. 5, 

after considerable manipulation and use of identities of hyperbolic functions, is 

  (10) 

This solution is valid in the region .  However, in Eq. (10),  is still unknown and 

is, in fact, a key goal.   
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Further, using B.C. 2 in Eq. (10) 

  (11) 

which interrelates  and  for known  and , and for a 

given value of the Thiele Modulus, , which is essentially the dimensionless particle radius.   

If  could be determined, i.e., via zero-order analysis of sub-region I, as discussed in 

the following section, then the dimensionless necrotic core radius, , can be determined.    

Avascular Sub-Region I with Zero-Order Kinetics, RH ≤ r ≤ R 

For sub-region I, where zero-order kinetics is presumed to exist, , so that 1 in the 

denominator of Eq. (6) may be neglected, hence reducing it to 

  (12) 

Integrating twice and using B.C. 1 to determine one of the two constants of integration 

  (13) 

However, the constant C1 is yet to be determined, for which B.C. 3 may be used, i.e., 

 = continuous, or that the concentration gradient is continuous for the first-order 

and zero-order solutions. Thus, we need to equate at  the dimensionless concentration 

gradient of the zero-order solution for sub-region I 

  (14) 

with the corresponding concentration gradient for first-order solution for sub-region II obtained 

by differentiating Eq. (10) and using at  
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(15) 

Equating the above two expressions to find C1 and the using it in Eq. (13) provides the 

concentration profile for sub-region II 

 (16) 

However, we are primarily interested in determining  and , for which one relation (Eq. 11) 

is already available. To obtain a second relation between these unknown quantities, we evaluate 

Eq. (16) at y =  and rearrange 

 (17) 

In summary, Eqs. (11) and (17) provide the relations between  and , and these two 

equations can be analytically solved simultaneously to find the roots  and for known  

and , and for a given Thiele Modulus,  (using Mathematica®), as shown in Figure 4.  With 

the value of (i.e., minimum granuloma size with necrosis), determined as described below in 

kinetic parameters,  and  are plotted as a ratio of  (i.e., dimensionless normalized 

granuloma size) in Figure 4. Figure 4 also includes the theoretical values for , or the 

dimensionless thickness of the hypoxic region, versus . 

The theoretical dimensionless values of  and  from Figure 4 can be converted to 

dimensional values from the avascular granuloma radius, , using the definition of the Thiele 
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Modulus ( ), and the parameter values of  and , given in Table 1.  These 

results are compared to experimentally measured values of  and  in Figure 5, quantified 

via image analysis methods discussed below. Furthermore, oxygen concentration profiles can be 

plotted for various values of , as shown in Figure 6, by solving Eqs. (10) and (16). 

Model Parameters 

Physical Parameters  

The two main relevant physical parameters (which are assumed to be constant) are the 

effective diffusivity of oxygen in the interstitial fluid of the granuloma tissue, , and the 

Henry’s Law constant for the solubility of oxygen in the interstitial fluid (i.e., the medium in 

which cells and extracellular matrix materials exist in the interstitial space, which is often 

estimated to be roughly identical to plasma),  (where ). Here, we adopt 

mol O2/cm3-mmHg as an appropriate value for the Henry’s Law constant for 

oxygen 9. 

In biological tissues, further, the value of  does not appear to vary widely; literature 

values of oxygen diffusivity in various tissues ranges from  cm2/s 3, 7, 9.  

Consequently, a middle-range value of  cm2/s has simply been adopted here; based on 

the range, the chosen value is within a ~ 20% error margin.   

Relevant Oxygen Concentrations in Granulomas  

We have published oxygen tension values measured with an oxygen-sensitive electrode in the 

normal (uninfected) lung tissue and granuloma necrotic cores of TB-infected rabbit lungs 10, and 

have assumed here that the hypoxic regions of correspond to the literature value of known pO2,H; 

these values are employed here as: 1) pO2,b = 60 mmHg, 2) pO2,H = 10 mmHg, and 3) pO2,C = 2 
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mmHg. As discussed below in the experimental procedures, the hypoxic partial pressure pO2,H = 

10mmHg is well documented in the literature as the oxygen tension at which positive 

pimonidazole stain occurs, which is used here as the indicator of tissue hypoxia. 

Adopting the interstitial fluid Henry’s law constant mol O2/cm3-mmHg 

9, these correspond to the following concentrations: 1) mol O2/cm3, 2) 

mol O2/cm3, and 3) mol O2/cm3.  Consequently, the 

corresponding dimensionless concentrations , and 

. 

Kinetic Parameters 

The remaining MM kinetic parameters, k and K, are determined as follows. The model 

permits prediction of the minimum size of the avascular granuloma particle, Rmin , which would 

have the beginnings of a necrotic core within it. Clearly, when the granuloma is small enough, 

the oxygen concentration throughout remains above . At a particular granuloma size, Rmin , 

the oxygen concentration at  (r = 0) reaches . Experimental evidence from an 

independent cohort of tissues from untreated TB-infected rabbits (unpublished) provides an 

Rmin = 0.308mm.  

As further mentioned above, since and  are fixed based on the assumption of 

constant physical properties, the Thiele Modulus  represents dimensionless granuloma size; 

therefore, a dimensionless minimum granuloma size with an emerging necrotic core can be 

defined as .  When the modulus is small , there is no necrosis, as is known 
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experimentally. At a particular granuloma size, , necrosis first appears; for such a granuloma, 

. With this, Eq. (11) reduces to 

  (18) 

which has two unknowns, , corresponding to Rmin , and . Thus, a second relation is needed 

between  and , which may be obtained from Eq. (17) with , which reduces to 

  (19) 

Thus  and  may be obtained from these two relations for given  and .  This 

value was determined to be . Using the corresponding experimental Rmin = 0.308  mm, 

along with the assumed  cm2/s, the value of k =1.09  s-1 may be calculated from 

φm = Rmin k /De
O2

.   The accuracy in this value is also thus the same as that in value of , i.e., 

± 20%. 

Finally, the MM kinetic parameter K is obtained as follows. It is hypothesized here that 

the change from zero- to first-order oxygen consumption kinetics occurs when the cells become 

hypoxic, i.e., at . From the physiological (and mathematical) boundary condition at this 

oxygen concentration (B.C. 3), and the limiting forms of the MM kinetics, the rate of oxygen 

consumption is continuous at this point, i.e., 
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Therefore, , the MM constant. This is a physiologically relevant way 

to estimate , and the value calculated is cm3/mol O2, which is similar to a range of 

values observed for various tissues 3, 7. The model parameters thus estimated are summarized in 

Table 1. 

 

Experimental Procedures 

Animal Experiments 

The experimental results reported in this paper were gathered from historical control tissues from 

female New Zealand White rabbits from our previously performed animal studies 4; as described 

above, the kinetic parameter k was calculated from an independent cohort of tissues 

(unpublished). Briefly, female rabbits were infected with Mycobacterium tuberculosis HN878 

through an aerosol inoculation system that delivered approximately 200 colony-forming units 

(CFU)/liter PBS (phosphate buffered saline) diluting solution to each rabbit. The rabbits were 

allowed to undergo natural disease progression for about 10 weeks until a chronic infection state 

was established. During early infection, it is common for many small granulomas to emerge and 

then resorb quickly due to the robustness of the rabbit immune system; by the late stage of 

infection, most of the initial granulomas have disappeared, while those that remain during 

chronic infection are relatively static in size and activity. Thus, the granulomas used for 

comparison to the theoretical model are assumed to be at steady-state, i.e., there is no change in 

granuloma size at this time point in the infection. Post-treatment, animals were sedated, 

euthanized and necropsied, and full lung sections and/or individual granulomas were resected 

and stored in either paraffin wax or frozen blocks 4. 

 

K =1/CO2,H =1/KM

K 7.46×107



Pimonidazole Stain 

Rabbit lung sections were then sectioned and stained with pimonidazole. Pimonidazole 

hydrochloride (HypoxyprobeTM-1; Hypoxyprobe, Inc., Burlington, MA) is an imaging agent that 

is bioreductively activated under hypoxic conditions in mammalian tissues; a positive stain for 

hypoxia stains dark brown in immunohistochemical (IHC) staining, i.e., brightfield, images. 

Pimonidazole is able to diffuse across cell membranes and, depending on the amount of local 

oxygen, will undergo conjugation, oxidation, or reduction.  In mammalian tissues with partial 

pressures of pO2 ≤ 10 mmHg, pimonidazole is bioreductively activated by nitroreductases, after 

which is binds to and forms stable covalent adducts with thiol (sulfhydryl) groups on proteins 1, 5, 

8.  Rat experiments by Arteel et al. (1998) demonstrate that the rate of reductive metabolism of 

pimonidazole is regulated by cellular oxygen tension. 

Pimonidazole residing in tissues at the time of necropsy remains bound thiol-containing 

molecules when the dissected tissues become anoxic, and are then detected by antibodies that 

bind to the pimonidazole protein adduct.  In the animal experiments, the rabbits were given 30 

mg/kg i.v. pimonidazole for 16 to 20 hours prior to necropsy.  For detection of pimonidazole 

adducts in the tissues, paraffin sections were deparaffinized, incubated with the HypoxyprobeTM-

1 antibody, followed by a biotin-conjugated goat antimouse immunoglobulin G antibody, and the 

DAB (3,3-diaminobezidine) labeling system, as described previously 4. 

 

Image Analysis 

Image analysis was performed in ImageJ (open-source software, National Institutes of Health), 

from IHC images were scanned using a Nanozoomer 2.0 HT C9600 Series at a resolution 

matching a micron to pixel ratio of 0.23 (40x magnification equivalent). Once the granuloma 



images were obtained, the next issue was to find an appropriate descriptor of the equivalent 

radius R for transport modeling in a spherical equivalent of a non-spherical granuloma particle. 

From among the various descriptors considered for this, it was determined here that the radius  

of the largest circle that can be completely enclosed within a granuloma is the most relevant 

descriptor of the equivalent sphere model for diffusion and reaction, as it represents the 

maximum depth of penetration of a diffusing solute. Therefore, largest enclosed circles were 

drawn to determine four relevant radii: 1) outer granuloma radius, , 2) avascular radius, , 3) 

hypoxic radius, , and 4) necrotic radius, .From the control (untreated) animals of our 

previous experiment4, there were 11 granulomas that were well-defined and necrotic, and thus, 

applicable to this type of analysis. The measured radii are summarized in Supplementary Table 

1.   

  

R

R0 R

RH RC



Supplementary Table 

Table S1.Radial measurements of necrotic ( ), hypoxic ( ), avascular ( ), and total ( ) 

granuloma radii, as well as the hypoxic region thickness ( ), from the experimental rabbit 

model (mm). 

 

     

0.393 0.296 0.206 0.162 0.045 

0.466 0.299 0.213 0.163 0.050 

0.482 0.322 0.223 0.165 0.058 

0.498 0.434 0.375 0.339 0.036 

0.543 0.404 0.258 0.146 0.112 

0.579 0.477 0.276 0.187 0.090 

0.615 0.428 0.219 0.119 0.100 

0.629 0.542 0.312 0.220 0.092 

0.666 0.570 0.419 0.364 0.055 

0.695 0.613 0.501 0.420 0.080 

0.742 0.543 0.390 0.332 0.058 

 

  

RC RH R R0
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Glossary of Terms 

Nomenclature 

  concentration of oxygen (mol/cm3) 

  constant bulk concentration of oxygen in the perfused region   

  (mol/L) 

 constant critical concentration of oxygen at the boundary of and throughout the 

necrotic core (mol/L) 

  concentration of oxygen at which the pimonidazole stain is positive, indicating 

  hypoxia (mol/L) 

  effective diffusion coefficient of oxygen in the interstitial fluid (mm2/s) 

  dimensionless concentration of oxygen  

  dimensionless critical concentration of oxygen 

  dimensionless hypoxic concentration of oxygen 

  Henry’s law constant for oxygen solubility (mol/cm3-mmHg) 

  first-order rate constant for oxygen consumption (s-1) 

  inverse of the half-saturation Michaelis-Menten constant (L/mol) 

  partial pressure of oxygen (mmHg) 

  bulk partial pressure of oxygen (mmHg) 

  critical partial pressure of oxygen (mmHg) 

  hypoxic partial pressure of oxygen (mmHg) 

QO2   oxygen generation rate (mol/mm3 s) 

CO2

CO2,b

CO2,C

CO2,H

De
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f

fC

fH

HO2

k

K

pO2

pO2,b

pO2,C

pO2,H



  radial position in the granuloma 

  radius of avascular region (mm) 

  radius of the granuloma (mm) 

Rmin   minimum granuloma particle size at which necrosis emerges (mm) 

  radius of the necrotic core (mm) 

  radius of the hypoxic region (mm) 

  dimensionless radial position in the avascular region 

  dimensionless radius of the necrotic core  

  dimensionless radius of the hypoxic region  

Greek Symbols 

  dimensionless Michaelis-Menten kinetic factor 

  Thiele modulus  

  volumetric rate of oxygen delivery from the vasculature into the tissue (mm3/s) 

  dimensionless minimum granuloma particle size at which necrosis emerges 

  

r

R

R0

RC

RH

y

yC

yH

χ

φ

ψB

φm
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