Nighttime dissolution in a temperate coastal ocean ecosystem increases under acidification: Supplementary material

Lester Kwiatkowski¹*, Brian Gaylord², Tessa Hill², Jessica Hosfelt², Kristy J. Kroeker^{2,3}, Yana Nebuchina¹, Aaron Ninokawa², Ann Russell², Emily B. Rivest², Marine Sesboüé¹, Ken Caldeira¹

¹ Department of Global Ecology, Carnegie Institution for Science, 260 Panama Street, Stanford, California, 94305, USA;

² Bodega Marine Laboratory, University of California, Bodega Bay, California, 94923, USA;
³ Center for Ocean Health, 100 Shaffer Road, University of California, Santa Cruz, California, 95064, USA.

Abbreviations

A _T	Total alkalinity
CT	Dissolved Inorganic Carbon
G _{net}	Net community calcification
P _{net}	Net community production
Ω_{arag}	Aragonite saturation state
PAR	Photosynthetically active
	radiation
PAR _{mm}	Michaelis-Menten function of
	PAR
T _f	Gaussian function of
	temperature
F _{CO2}	Air-sea flux of CO ₂
ρ	Sea water density
d	Mean tide pool depth

Collinearity between explanatory variables

Table S1. Variance Inflation factors (VIFs) for the potential explanatory variables in each tide

pool during the day.

	PAR _{mm}	P _{net}	T _f	Ω_{arag}
Pool 1	5.48	2.00	4.32	1.28
Pool 2	2.49	1.22	1.64	2.15
Pool 3	6.45	2.25	5.04	4.00
Pool 4	3.07	2.69	2.11	2.26

Table S2. Variance Inflation factors (VIFs) for the potential explanatory variables in each tide

pool during the night.

	P _{net}	T _f	Ω_{arag}
Pool 1	1.55	1.52	2.15
Pool 2	2.12	1.21	2.34
Pool 3	1.97	1.72	2.53
Pool 4	1.58	1.61	2.03

Table S3. Pearson correlation coefficients between explanatory variables in each tide pool during the day.

		PAR _{mm}	P _{net}	T _f	Ω_{arag}
	PAR _{mm}	1			
Pool 1	P _{net}	0.70	1		
	T _f	0.87	0.58	1	
	Ω_{arag}	0.43	0.29	0.46	1
	PAR _{mm}	1			
Pool 2	P _{net}	-0.09	1		
	T _f	0.58	0.18	1	
	Ω _{arag}	0.70	-0.29	0.37	1
	PAR _{mm}	1			
Pool 3	P _{net}	0.40	1		
	T _f	0.88	0.33	1	
	Ω _{arag}	0.71	-0.15	0.71	1
	PAR _{mm}	1			
Pool 4	P _{net}	0.53	1		
	T _f	0.37	0.71	1	
	Ω_{arag}	0.61	-0.03	-0.12	1

Table S4. Pearson correlation coefficients between explanatory variables in each tide pool

during the night.

		P _{net}	T _f	Ω_{arag}
Pool 1	P _{net}	1		
	T _f	-0.09	1	
	Ω _{arag}	-0.55	0.53	1
	P _{net}	1		
Pool 2	T _f	-0.02	1	
	Ω _{arag}	-0.70	0.31	1
	Pnet	1		
Pool 3	T _f	0.09	1	
	Ω _{arag}	-0.57	0.48	1
Pool 4	P _{net}	1		
	T _f	0.12	1	
	Ω _{arag}	-0.46	0.48	1

Figure S1. G_{net} (mmol C⁻¹ m⁻² h⁻¹) against a, P_{net} (mmol C⁻¹ m⁻² h⁻¹), b, Photosynthetically Active Radiation (µmol m⁻² s⁻¹), c, Aragonite saturation state (Ω_{arag}) and d, Temperature (°C) in each of the tide pools during the day.

Nutrients

The concentration of NO₂⁻⁺ NO₃⁻ is found to generally decrease between the first and last bottle samples on a given sample day (daylight hours; Fig. S2). Although this may be representative of net community nutrient NO₂⁻⁺ NO₃⁻ uptake, the magnitude of changes are orders of magnitude lower than changes in ΔA_T and therefore any corresponding net community release of anions^{1,2,3} would have negligible influence on G_{net}. The rate of change of NH₃ + NH₄⁺ concentration between first and last daily bottle samples is shown to be highly variable (Fig. S2). However measured Δ (NH₃ + NH₄⁺) explains none of the variance in ΔA_T (Fig. S3). As such, sporadic high concentrations are interpreted as a consequence of local animal excretion and not a result of net community uptake. The release of H⁺ associated with the latter would have had a strong influence on measured $A_T^{1,2,3}$. We therefore conclude that ΔA_T is primarily driven by community calcification. Nutrient concentrations were not measured for nighttime samples.

Figure S2. Rate of a, $NO_2^- + NO_3^-$ and b, $NH_3 + NH_4^+$ concentration change between first and last daily sampling times in each tide pool (µmol L⁻¹ min⁻¹). All samples were taken during the daytime.

Figure S3. $\delta NH_3 + NH_4^+$ (µmol L⁻¹ min⁻¹) against δA_T (µmol kg⁻¹ min⁻¹) in each tide pool. There is no significant relationship between $\delta NH_3 + NH_4^+$ and δA_T in any of the tide pools.

PAR and temperature functions

Figure S4. G_{net} (mmol C⁻¹ m⁻² h⁻¹) against a, PAR (µmol m⁻² s⁻¹) and b, temperature (°C) in each of the tide pools. Michaelis-Menten and Gaussian functions are derived for G_{net} -PAR and G_{net} -temperature relationships respectively. Michaelis-Menten (V=V_{max}[S]/(K_m+ [S])) coefficients with associated standard errors are given however as the Gaussian temperature functions are produced using locally weighted regression methods (LOESS)⁴ they cannot be represented by a simple mathematical equation.

Alkalinity-dissolved inorganic carbon relationships

Figure S5. Total least squares regressions between alkalinity (A_T) and dissolved inorganic carbon (C_T) in each of the tide pools.

Figure S6. Nighttime G_{net} (mmol $C^{-1} m^{-2} h^{-1}$) against a, P_{net} (mmol $C^{-1} m^{-2} h^{-1}$), and b, Temperature (°C) in each of the tide pools. Regression lines of variables significant at the p<0.05 level are shown. Dashed grey lines show the separation between net community calcification and net community dissolution.

References

- Brewer, P. G. & Goldman, J. C. Alkalinity changes generated by phytoplankton growth1. Limnol. Oceanogr. 21, 108–117 (1976).
- 2. Goldman, J. C. & Brewer, P. G. Effect of nitrogen source and growth rate on phytoplanktonmediated changes in alkalinity1. *Limnol. Oceanogr.* **25**, 352–357 (1980).
- Wolf-Gladrow, D. A., Zeebe, R. E., Klaas, C., Körtzinger, A. & Dickson, A. G. Total alkalinity: The explicit conservative expression and its application to biogeochemical processes. *Mar. Chem.* 106, 287–300 (2007).
- Cleveland, W. S. & Loader, C. in *Statistical Theory and Computational Aspects of Smoothing* (eds. Härdle, P. D. W. & Schimek, P. D. D. M. G.) 10–49 (Physica-Verlag HD, 1996). at http://link.springer.com/chapter/10.1007/978-3-642-48425-4_2