Title: Fluvoxamine, an anti-depressant, inhibits human glioblastoma invasion by disrupting actin polymerization

Authors: Keiichiro Hayashi^{1,2}, Hiroyuki Michiue^{1*}, Hiroshi Yamada³, Katsuyoshi Takata⁴, Hiroki Nakayama¹, Fan-Yan Wei⁵, Atsushi Fujimura¹, Hiroshi Tazawa^{6,7}, Akira Asai⁷, Naohisa Ogo⁷, Hiroyuki Miyachi⁹, Tei-ichi Nishiki¹, Kazuhito Tomizawa⁵, Kohji Takei³ and Hideki Matsui¹

Supplementary Document S1. (Doc. S1) Supplementary Materials and Methods.

Supplementary Figure 1. (Fig. S1) The inhibition of actin polymerization by fluvoxamine does not involve a direct effect on actin or Arp2/3.

Supplementary Figure 2. (Fig. S2) Fluvoxamine does not affect the phosphorylation levels of ezrin/radixin/moesin, vasodilator-stimulated phosphoprotein, or cofilin.

Supplementary Figure 3. (Fig. S3) All of the immunoblotting data in original forms

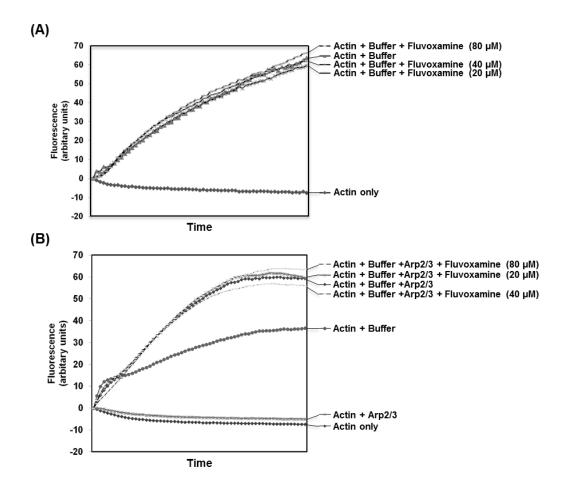
Supplementary Document S1. (Doc. S1)

Supplementary Materials and Methods

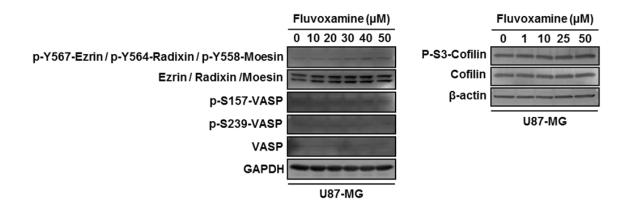
Antibodies.

The following primary antibodies were used in this study: anti-FAK (#3285, Cell Signaling Technology), anti-p-Y397-FAK (#3283, Cell Signaling Technology), anti-p-Y397-FAK (44-624G, Life Technologies), anti-p-Y576/577-FAK (#3281, Cell Signaling Technology), anti-p-Y925-FAK (#3284, Cell Signaling Technology), anti-p-Y118-Paxillin (#2541, Cell Signaling Technology), anti-Src (sc-18, Santa Cruz Biotechnology), anti-p-Y416-Src (#2101, Cell Signaling Technology), anti-p-Y527-Src (#2105, Cell Signaling Technology), anti-Akt (#4691, Cell Signaling Technology), anti-p-S473-Akt (#4060, Cell Signaling Technology), anti-p-T308-Akt (#2965, Cell Signaling Technology), anti-p-S380-PTEN (#9551, Cell Signaling Technology), anti-p-S241-PDK1 (#3438, Cell Signaling Technology), anti-mTOR (#2983, Cell Signaling Technology), anti-p-S2448-mTOR (#2971, Cell Signaling Technology), anti-p-S2481-mTOR (#2974, Cell Signaling Technology), anti-Ezrin/Radixin/Moesin (#3142, Cell Signaling Technology), anti-p-T567-Ezrin/p-T564-Radixin/p-T558-Moesin (#3149, Cell Signaling Technology), anti-VASP (#3132, Cell Signaling Technology), anti-p-S175-VASP (#3111, Cell Signaling Technology), anti-p-S239-VASP (#3114, Cell Signaling Technology), anti-Cofilin (#5175, Cell Signaling Technology), anti-p-S3-Cofilin (#3313, Cell Signaling Technology), anti-Actin (sc-1616-R, Santa Cruz Biotechnology), anti-β-actin (AC-74,

Sigma-Aldrich) and anti-GAPDH (sc-47724, Santa Cruz Biotechnology).


Cell lines and cell culture.

U/ml) and streptomycin (100 μg/ml). Human glioma-initiating cells (hGICs) were maintained in DMEM/Nutrient F-12 Ham (Sigma-Aldrich) supplemented with N-2 supplement (Life Technologies), L-glutamine (2 mM, Gibco), epidermal growth factor (20 ng/ml, Roche), basic fibroblast growth factor (20 ng/ml, PeproTech), leukemia inhibitory factor (10 ng/ml, Millipore), insulin sodium salt (1 ng/ml, Sigma-Aldrich) and heparin sodium salt (50 μg/ml, Sigma-Aldrich).


Western blotting. Cells grown on Matrigel were washed twice with ice-cold PBS and lysed with ice-cold cell lysis buffer (20 mM Tris-HCl, pH 7.5, 150 mM NaCl, 1 mM EGTA, 1% Triton X-100) containing the Complete protease inhibitor cocktail (Roche) and the PhosSTOP phosphatase inhibitor cocktail (Roche). The lysates were cleared by centrifugation at 15,000 rpm for 30 min at 4°C, separated on SDS-PAGE and transferred to PVDF membrane. The membrane was blocked with 5% BSA for 30 min and incubated with primary antibodies overnight at 4°C. The membrane was incubated with HRP-conjugated appropriate secondary antibodies for 1 h. The immunoreactive bands were visualized by the ECL Prime Western Blotting Detection Reagent (GE Healthcare) and the VersaDoc 5000 MP (Bio-Rad).

Histological analysis.

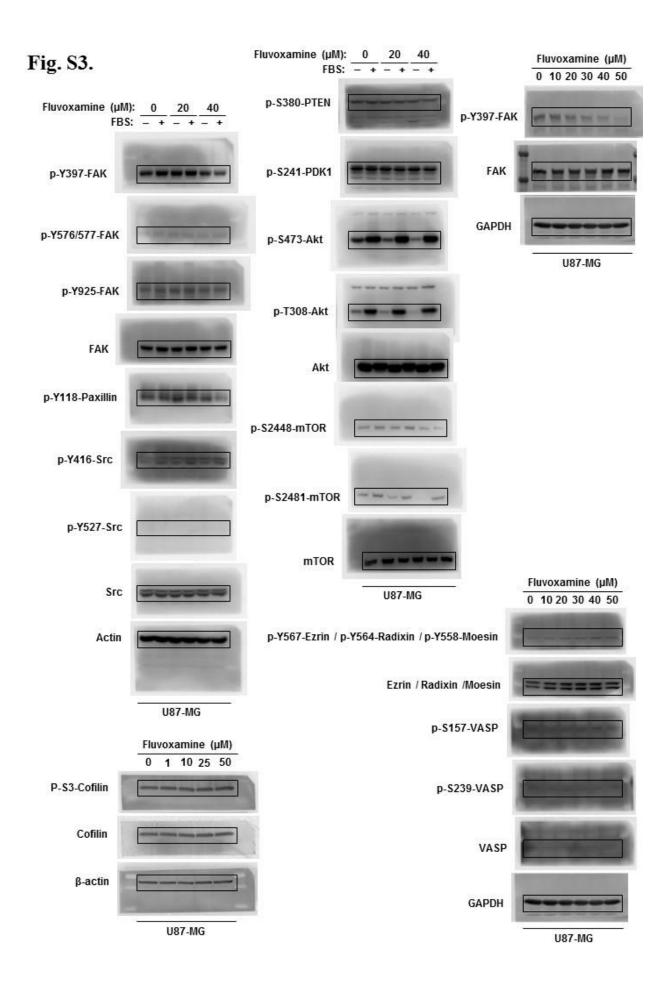

Mice were deeply anesthetized with pentobarbital and perfused transcardially with PBS, followed by ice-cold 4% PFA. The brains were removed, post-fixed in the same fixative for 24 h at 4°C and embedded in paraffin. Paraffin-embedded sections (4.5-µm thick) were deparaffinized, rehydrated and stained with H&E. Following dehydration and clearing, the sections were mounted with the VectaMount Permanent Mounting Medium (Vector Laboratories).

Fig. S1. Inhibition of actin polymerization by fluvoxamine does not involve a direct effect on actin or Arp2/3. (A) Fluvoxamine does not inhibit ion-dependent—actin polymerization. Pyrene-actin was polymerized with or without assay buffer. (B) Fluvoxamine does not inhibit Arp2/3-dependent actin polymerization. Pyrene-actin was polymerized with or without purified Arp2/3. Note that these experiments were performed in the absence of mouse brain cytosol.

Fig. S2. Fluvoxamine does not affect phosphorylation levels of ezrin/radixin/moesin (ERM) proteins, VASP and cofilin. U87-MG cells were treated with various doses of fluvoxamine for 1h and processed for Western blot analysis.

