## Programmable control of bacterial gene expression with the combined CRISPR and antisense RNA system

Young Je Lee, Allison Hoynes-O'Connor, Matthew C. Leong and Tae Seok Moon



**Supplementary Figure S1. The fluorescence and Abs**<sub>600</sub> **data without normalization.** The fluorescence and Abs<sub>600</sub> (absorbance at 600 nm) data without normalization are shown with various concentrations of sgRNA (A), dCas9 (B), and asRNA (C). GFP is under the control of the constitutive Bba J23104 promoter. The fluorescence (a.u.) was measured using a microplate reader. See Figure 1 for the genetic circuit and normalized fluorescence data (Figures 1A and 1B for Figures S1A and S1B; Figures 1C and 1D for Figures S1C). The dashed line represents the fluorescence or Abs<sub>600</sub> of cells grown without any inducer. The error bars represent the standard deviation of the measured values from three biological replicates performed on three different days.

## Α



**Supplementary Figure S2. Characterization of the CRISPR system.** (A) The repression efficiency of the CRISPR system is dependent on the target region of the sgRNA. A variety of sgRNAs were designed to bind to different regions within and surrounding a constitutive promoter (Bba J23104) in order to determine the repression efficiency of each target region. Only the sgRNAs targeting a region between -35 and +1 show repression efficiency greater than 90%. Blue and red lines correspond to sgRNAs that bind to non-template and template DNA strands, respectively. Black squares are PAM sites. For sequence information, see Supplementary Table 2. (B) Samples were grown either in the absence (white bar) or presence (gray bar) of 10 ng/mL aTc to control expression of dCas9. sgRNAs were under the control of the constitutive Bba J23119 promoter. The repression efficiency was calculated by  $[1 - (F_{CRISPR}/F_{positive control})] \times 100\%$  where  $F_{positive control}$  is the fluorescence of cells with GFP only (no plasmid containing the CRISPR system). Fluorescence (a.u.) was measured by flow cytometry. The error bars represent the standard deviation of the fluorescence values from three biological replicates performed on three different days.



Supplementary Figure S3. Characterization of the combined CRISPR and antisense RNA system. Each category (A-D) corresponds to that of Figure 2, and the experimental conditions are the same as that of Figure 2. (A) sgR14 was selected out of the pool of sgRNAs shown in

Supplementary Figure S2B because it had the highest repression efficiency. asR119-124 are antisense to the DNA binding sequence of sgR14. This initial set of asRNA molecules showed very low derepression efficiency (maximum 15%). (B) Binding affinity between sgR14 and asR119-124 was improved by introducing 10 additional nucleotides (annotated as sgR14A and asR119A-124A). This led to an increased derepression efficiency (up to 43%). (C) Different Hfq binding sites were tested to increase derepression efficiency. Higher derepression efficiency (up to 55%) was achieved by replacing the micF Hfq binding site with the Spot42 Hfq binding site. sgR14A and the target binding region from asR124A were used for this test. micFmicC and micFSpot42 are two Hfq binding sites in tandem. (D) A final increase in derepression efficiency (up to 95%) was observed when the asRNA target region was shifted to T1-8, artificially introduced linkers. asRS1-8 are antisense to T1-8. GFP is under the control of the constitutive Bba J23104 promoter. The fluorescence (a.u.) was measured using a microplate reader. The error bars represent the standard deviation of the fluorescence values from three biological replicates performed on three different days.



Supplementary Figure S4. A relationship between the number of target nucleotides and derepression efficiency. The length of artificial linkers (T1-T8) available for targeting with

corresponding asRNAs (asRS1-asRS8) affects the derepression efficiency. A linear increase in derepression efficiency was observed as the number of target nucleotides increased (up to T4, which contained 13 nucleotides). A saturation effect (with a change in the predicted secondary structure) was observed beyond 13 nucleotides. The sgRNA structures were predicted by NUPACK at 37°C (1). The black region (left to right) represents the DNA binding site, dCas9 binding site, and a part of the artificial linker. The red region represents the available nucleotides of the linker for targeting with corresponding asRNAs. GFP is under the control of the constitutive Bba J23104 promoter. Cells were grown in the presence of 0.2 ng/mL aTc, 0.25 mM IPTG, and with or without 5 mM Ara (see Figure 1C for the schematic). The error bars represent the standard deviation of the values from three biological replicates performed on three different days.



Supplementary Figure S5. Fluorescence results obtained from HT115(DE3), JTK165JK, and two rescue strains. Repression and derepression of GFP by sgR14-T6 and asRS6, respectively, in HT115(DE3), JTK165JK, and two rescue strains are shown. Cells were grown in the presence of 0.2 ng/mL aTc and 0.2 mM IPTG (+ for CRISPR); and for asRNA, without (-) or with (+) 5 mM Ara. + and – indicate cells induced and uninduced, respectively. The positive control cells (white bar) were grown without any inducer. See Figure 5 for the normalized transcript abundance of *gfp*, sgRNA, and asRNA in HT115(DE3), JTK165JK, and two rescue strains. For better comparison, the original strains HT115(DE3) and JTK165JK were also transformed using the backbone plasmid that does not contain the RNase III gene (the left two graphs). The fluorescence (a.u.) was measured using a microplate reader. The error bars represent the standard deviation of the fluorescence values from three biological replicates (two technical replicates each; total six replicates) performed on three different days.



**Supplementary Figure S6. Derepression of mCherry.** (A) A genetic circuit built by combining the CRISPR system with asRNA. Transcribed asRS4 binds to its target sgRM4-T4 and prevents the sgRNA-dCas9 complex from repressing mCherry. The output is "on" when asRS4 is present, and "off" when asRS4 is absent. (B) Response of the combined CRISPR and antisense RNA system (asRS4) shown in (A). mCherry is under the control of the constitutive Bba J23100 promoter. All samples were grown in the presence of 0.2 ng/mL aTc and 0.25 mM IPTG, and with different Ara concentrations (0, 0.005, 0.01, 0.05, 0.1, 0.25, 0.5, 1, 2.5, 5, 10, and 20 mM). The fluorescence (a.u.) was measured using a microplate reader and reported by calculating [(Fexperimental/Absexperimental) – (Fnegative control/Absnegative control)] where the negative control is JTK165JK with no plasmid. The dashed line represents the fluorescence of cells grown without any inducer. The error bars represent the standard deviation of the fluorescence values from three biological replicates performed on three different days.

| Name  | Parts                                                    |
|-------|----------------------------------------------------------|
| pRL01 | ColE1 ori; amp-R; Bba J23119-sgR5                        |
| pRL02 | ColE1 ori; amp-R; Bba J23119-sgR6                        |
| pRL03 | ColE1 ori; amp-R; Bba J23119-sgR7                        |
| pRL04 | ColE1 ori; amp-R; Bba J23119-sgR8                        |
| pRL05 | ColE1 ori; amp-R; Bba J23119-sgR10                       |
| pRL06 | ColE1 ori; amp-R; Bba J23119-sgR11                       |
| pRL07 | ColE1 ori; amp-R; Bba J23119-sgR13                       |
| pRL08 | ColE1 ori; amp-R; Bba J23119-sgR14                       |
| pRL09 | ColE1 ori; amp-R; Bba J23119-sgR15                       |
| pRL10 | ColE1 ori; amp-R; Bba J23119-sgR29                       |
| pRL11 | ColE1 ori; amp-R; Bba J23119-sgR30                       |
| pRL12 | ColE1 ori; amp-R; Bba J23119-sgR33                       |
| pRL13 | ColE1 ori; amp-R; Bba J23119-sgR35                       |
| pRL14 | ColE1 ori; amp-R; Bba J23119-sgR38                       |
| pRL15 | ColE1 ori; amp-R; PLAC-sgR14                             |
| pRL16 | ColE1 ori; amp-R; PLAC-sgR14; PBAD-asR119; micF Hfq      |
| pRL17 | ColE1 ori; amp-R; PLAC-sgR14; PBAD-asR120; micF Hfq      |
| pRL18 | ColE1 ori; amp-R; PLAC-sgR14; PBAD-asR121; micF Hfq      |
| pRL19 | ColE1 ori; amp-R; PLAC-sgR14; PBAD-asR122; micF Hfq      |
| pRL20 | ColE1 ori; amp-R; PLAC-sgR14; PBAD-asR123; micF Hfq      |
| pRL21 | ColE1 ori; amp-R; PLAC-sgR14; PBAD-asR124; micF Hfq      |
| pRL22 | ColE1 ori; amp-R; PLAC-sgR14A; PBAD-asR119A; micF Hfq    |
| pRL23 | ColE1 ori; amp-R; PLAC-sgR14A; PBAD-asR120A; micF Hfq    |
| pRL24 | ColE1 ori; amp-R; PLAC-sgR14A; PBAD-asR121A; micF Hfq    |
| pRL25 | ColE1 ori; amp-R; PLAC-sgR14A; PBAD-asR122A; micF Hfq    |
| pRL26 | ColE1 ori; amp-R; PLAC-sgR14A; PBAD-asR123A; micF Hfq    |
| pRL27 | ColE1 ori; amp-R; PLAC-sgR14A; PBAD-asR124A; micF Hfq    |
| pRL28 | ColE1 ori; amp-R; PLAC-sgR14A; PBAD-asR124A; micF7.4 Hfq |
| pRL29 | ColE1 ori; amp-R; PLAC-sgR14A; PBAD-asR124A; micC Hfq    |
| pRL30 | ColE1 ori; amp-R; PLAC-sgR14A; PBAD-asR124A; Spot42 Hfq  |

Supplementary Table 1. Plasmids used in this study.

| pRL31 | ColE1 ori; amp-R; PLAC-sgR14A; PBAD-asR124A; micFmicC Hfq                            |  |  |
|-------|--------------------------------------------------------------------------------------|--|--|
| pRL32 | ColE1 ori; amp-R; PLAC-sgR14A; PBAD-asR124A; micFmicC Hfq                            |  |  |
| pRL33 | ColE1 ori; amp-R; PLAC-sgR14T1; PBAD-asRS1; Spot42 Hfq                               |  |  |
| pRL34 | ColE1 ori; amp-R; PLAC-sgR14T2; PBAD-asRS2; Spot42 Hfq                               |  |  |
| pRL35 | ColE1 ori; amp-R; PLAC-sgR14T3; PBAD-asRS3; Spot42 Hfq                               |  |  |
| pRL36 | ColE1 ori; amp-R; PLAC-sgR14T4; PBAD-asRS4; Spot42 Hfq                               |  |  |
| pRL37 | ColE1 ori; amp-R; PLAC-sgR14T5; PBAD-asRS5; Spot42 Hfq                               |  |  |
| pRL38 | ColE1 ori; amp-R; PLAC-sgR14T6; PBAD-asRS6; Spot42 Hfq                               |  |  |
| pRL39 | ColE1 ori; amp-R; PLAC-sgR14T7; PBAD-asRS7; Spot42 Hfq                               |  |  |
| pRL40 | ColE1 ori; amp-R; PLAC-sgR14T8; PBAD-asRS8; Spot42 Hfq                               |  |  |
| pRL41 | ColE1 ori; amp-R; PLAC-sgR14-T6; PLAC-sgRM4-T4<br>-PBAD-asRS6; PLUX-asRS4 Spot42 Hfq |  |  |
| pRL42 | ColE1 ori; amp-R; PLAC-sgR14-T6; PBAD-asRS4; Spot42 Hfq                              |  |  |
| pRL43 | ColE1 ori; amp-R; PLAC-sgR14-T4; PBAD-asRS6; Spot42 Hfq                              |  |  |
| pRL44 | ColE1 ori; amp-R; PLAC-sgRM4-T4; PBAD-asRS4; Spot42 Hfq                              |  |  |
| pRL45 | p15A ori; cm-R; PTET-dCas9-Bba J23104-gfpmut3                                        |  |  |
| pRL46 | p15A ori; cm-R; P <sub>TET</sub> -dCas9                                              |  |  |
| pRL47 | R6K ori; kan-R; Bba J23104-gfpmut3                                                   |  |  |
| pRL48 | R6K ori; kan-R; Bba J23104-gfpmut3; Bba J23100-mCherry                               |  |  |
| pRL49 | pSC101* ori; kan-R; Prnc-rnc-era-recO-pdxJ-acpS                                      |  |  |
| pRL50 | pSC101* ori; kan-R                                                                   |  |  |

Supplementary Table 2. Genetic parts used in this study. ncRNA, noncoding RNA.

| Part Name | Туре  | DNA sequence         |
|-----------|-------|----------------------|
| sgR5      | ncRNA | ttgacagetagetcagteet |
| sgR6      | ncRNA | ctgagctagctgtcaactcg |
| sgR7      | ncRNA | gaattagatggtgatgttaa |
| sgR8      | ncRNA | catctaattcaacaagaatt |
| sgR10     | ncRNA | ggttaatgtcatgataataa |
| sgR11     | ncRNA | cgtgatacgcctatttttat |
| sgR13     | ncRNA | tgtaggctagcacaatacct |

| sgR14   | ncRNA             | ttatctgtcaccgactttgt                        |
|---------|-------------------|---------------------------------------------|
| sgR15   | ncRNA             | agtagtgcaaataaatttaa                        |
| sgR29   | ncRNA             | gtttettagaegtegatate                        |
| sgR30   | ncRNA             | cctgataaatgcttcaataa                        |
| sgR33   | ncRNA             | cattattgaagcatttatca                        |
| sgR35   | ncRNA             | agagcattacgctgacttga                        |
| sgR38   | ncRNA             | ataaaaataggcgtatcacg                        |
| sgR39   | ncRNA             | ggtaggatccgctaatctta                        |
| sgR14A  | ncRNA             | cttactcctgttatctgtcaccgactttgt              |
| asR119  | ncRNA             | aaaacacaaagtcggtgacagataa                   |
| asR120  | ncRNA             | aaaacacaaagtcggtgacagataa                   |
| asR121  | ncRNA             | aaacacaagtcgtgacagataa                      |
| asR122  | ncRNA             | gctctaaaacacaaagtcggtgacagataa              |
| asR123  | ncRNA             | gctctaaacacaagtcgtgacagataa                 |
| asR124  | ncRNA             | ttctagctctaaaacacaaagtcgtgacgataa           |
| asR119A | ncRNA             | aaaacacaaagtcggtgacagataacaggagtaag         |
| asR120A | ncRNA             | aaaacacaaagtcggtgacagataacaggagtaag         |
| asR121A | ncRNA             | aaacacaagtcgtgacagataacaggagtaag            |
| asR122A | ncRNA             | gctctaaaacacaaagtcggtgacagataacaggagtaag    |
| asR123A | ncRNA             | gctctaaacacaagtcgtgacagataacaggagtaag       |
| asR124A | ncRNA             | ttctagctctaaaacacaaagtcgtgacgataacaggagtaag |
| asR39   | ncRNA             | catatgtatatctccttcttaaagatcttttgaattcc      |
| T1      | artificial linker | acctaacttctcttttcttgcctt                    |
| T2      | artificial linker | acctaacttctctttcttgccttgtgac                |
| T3      | artificial linker | acctaacttctctttcttgccttgtgacccatg           |
| T4      | artificial linker | acctaacttctctttcttgccttgtgacccatgttcct      |
| T5      | artificial linker | aaggagatcccacctacactacacc                   |
| T6      | artificial linker | aaggagatcccacctacactacaccacacc              |
| Τ7      | artificial linker | aaggagatcccacctacactacaccacaccatga          |
| Т8      | artificial linker | aaggagatcccacctacactacaccacacccatgaccaca    |
| asRS1   | ncRNA             | ggtattgtgctagcctaca                         |

| asRS2                         | ncRNA                                                                                   | aaggcaagaaagagagaagttaggt                                                                                                                                                                                                                                                                                                                     |  |
|-------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| asRS3                         | ncRNA                                                                                   | gtcacaaggcaagaaagagaagttaggt                                                                                                                                                                                                                                                                                                                  |  |
| asRS4                         | ncRNA                                                                                   | catgggtcacaaggcaagaaagagagagttaggt                                                                                                                                                                                                                                                                                                            |  |
| asRS5                         | ncRNA                                                                                   | aggaacatgggtcacaaggcaagaaagagagaagttaggt                                                                                                                                                                                                                                                                                                      |  |
| asRS6                         | ncRNA                                                                                   | ggtgtagtgtaggtgggatctcctt                                                                                                                                                                                                                                                                                                                     |  |
| asRS7                         | ncRNA                                                                                   | ggtgtggtgtagtgtaggtgggatctcctt                                                                                                                                                                                                                                                                                                                |  |
| asRS8                         | ncRNA                                                                                   | tcatgggtgtggtgtgtgtgggggggggggggtctcctt                                                                                                                                                                                                                                                                                                       |  |
| micF                          | Hfq binding site (2)                                                                    | tcatttctgaatgtctgtttacccctatttcaaccggatgcctcgcattcggtttttttt                                                                                                                                                                                                                                                                                  |  |
| micF7.4                       | Hfq binding site (3)                                                                    | cgtcccgcaaggatgcgggtctgtttacccctatttcaaccggccgcctcgcggccggtttttt<br>ttt                                                                                                                                                                                                                                                                       |  |
| micC                          | Hfq binding site (2)                                                                    | tttctgttgggccattgcattgccactgattttccaacatataaaaagacaagcccgaacagtcg<br>tccgggctttttttctcgag                                                                                                                                                                                                                                                     |  |
| Spot42                        | Hfq binding site (3)                                                                    | atttggctgaatattttagccgccccagtcagtaatgactggggcgtttttta                                                                                                                                                                                                                                                                                         |  |
| micF micC                     | icC Hfq binding sites in tandem tcattletgaatgtetgtttacccetattteaaccggatgeetegatteggtttt |                                                                                                                                                                                                                                                                                                                                               |  |
| micF                          | Hfq binding sites in                                                                    | tcatttctgaatgtctgtttacccctatttcaaccggatgcctcgcattcggtttttttt                                                                                                                                                                                                                                                                                  |  |
| Spot42                        | tandem                                                                                  | aatattttagccgccccagtcagtaatgactggggcgtttttta                                                                                                                                                                                                                                                                                                  |  |
| dCas9                         | dCas9 binding site (4)                                                                  | gttttagagctagaaatagcaagttaaaataaggctagtccg                                                                                                                                                                                                                                                                                                    |  |
| Bba_J23104                    | Promoter<br>(http://parts.igem.org<br>/Part:BBa_J23104)                                 | ttgacagetagetcagtectaggtattgtgetage                                                                                                                                                                                                                                                                                                           |  |
| Bba_J23100                    | Promoter<br>(http://parts.igem.org/Pa<br>rt:BBa_J23100)                                 | ttgacggctagctcagtcctaggtacagtgctagc                                                                                                                                                                                                                                                                                                           |  |
| Bba_J23105                    | Promoter<br>(http://parts.igem.org/Pa<br>rt:BBa_J23105)                                 | tttacggctagctcagtcctaggtactatgctagc                                                                                                                                                                                                                                                                                                           |  |
| PLAC                          | Promoter (5)                                                                            | ataaatgtgagcggataacattgacattgtgagcggataacaagatactgagcac                                                                                                                                                                                                                                                                                       |  |
| P <sub>BAD</sub> Promoter (5) |                                                                                         | agaaaccaattgtccatattgcatcagacattgccgtcactgcgtcttttactggctcttctcgct<br>aaccaaaccggtaaccccgcttattaaaagcattctgtaacaaagcgggaccaaagccatga<br>caaaaacgcgtaacaaaagtgtctataatcacggcagaaaagtccacattgattatttgcacg<br>gcgtcacactttgctatgccatagcatttttatccataagattagcggatcctacctgacgcttttt<br>atcgcaactctctactgtttctccatac                                |  |
| P <sub>TET</sub>              | Promoter (4)                                                                            | taatteetaatttttgttgacaetetategttgatagagttattttaceaeteeetateagtgatagag<br>aaaa                                                                                                                                                                                                                                                                 |  |
| P <sub>LUX</sub>              | Promoter (5)                                                                            | acctgtaggatcgtacaggtttacgcaagaaaatggtttgttactttcgaataaa                                                                                                                                                                                                                                                                                       |  |
| Prnc                          | Promoter (6)                                                                            | gaagtttaaggttggcacctccagg                                                                                                                                                                                                                                                                                                                     |  |
| rnc                           | Gene (6)                                                                                | atgaaccccatcgtaattaatcggcttcaacggaagctgggctacacttttaatcatcaggaac<br>tgttgcagcaggcattaactcatcgtagtgccagcagtaaacataacgagcgtttagaattttta<br>ggcgactctattctgagctacgttatcgccaatgcgctttatcaccgtttccctcgtgtggatga<br>aggcgatatgagccggatgcgcgccacgctggtccgtggcaatacgctggcggaactggc<br>gcgcgaatttgagttaggcgagtgcttacgtttagggccaggtgaacttaaaagcggtggatt |  |

|          |          | tcgtcgtgagtcaattctcgccgacaccgtcgaagcattaattggtggggtattcctcgacagt<br>gatattcaaaccgtcgagaaattaatcctcaactggtatcaaactcgtttggacgaaattagcc<br>caggcgataaacaaaaagatccgaaaacgcgcttgcaagaatatttgcagggtcgccatctg<br>ccgctgccgacttatctggtagtccaggtacgtggcgaagcgcacgatcaggaatttactatc<br>cactgccaggtcagcggcctgagtgaaccggtggttggcacaggttcaagccgtcgtaagg<br>ctgagcaggcgcgacgacgacggcgtgaagcggagcgg                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| era      | Gene (6) | atgagcatcgataaaagttactgcggatttattgccatcgtcggacgtccgaacgttggcaaat<br>ccacattgttgaacaaactgctggggcagaaaatctccatcacttcccgcaaggcgcagaca<br>actcgtcaccgcattgtggggatccatactgaaggcgcgtatcaggcgatcacgtcggatc<br>accgggcctgcatatggaagaaaaacgcgccattaaccgcctgatgaacaaagcggcgag<br>cagctctattggcgatgttgagctggtgatttttgtcgttgaaggcacccgctggacgccgga<br>cgacgaaatggtgctcaacaaactgcgcgaaggcaaagcgccggtaatcctcgcggtgaa<br>caaagtggacaacgtgcaggagaaagccgatctgctgcgcacctgcagttcctggcaag<br>ccagatgaacttcctcgatatcgtgccaatctcgcgaaaccgggctgaatgttgaccatatt<br>gcggcaatcgtgcgtagcatcacctgaagcgaacaccgggtgaattacatcacc<br>gatcgctaccggtttatggcgtcgtgaatcaccggaaggcaaagcggctgaatgttgacactatt<br>gcggcaatcgtgcgtaagcatctacctgaagcgaacactgaaggttacatcacc<br>gatcgctcacagcgttttatggcgtcgaaatcatccggaaaaactgatgcgtttcctcggcg<br>ctgaactgccgtactccgtgaccgtggagatcgaacgttcgtctcaacgaacg |
| recO     | Gene (6) | atggaaggetggeageggegetttgteetggatetttaa<br>atggaaggetggeageggegetttgteetgeatetttaa<br>tgetggaegtetteaeggaggaategggggeggtgegtetggttgeeaaaggegeaegete<br>taaaegetetaeeetgaaaggtgeattaeageetteaeettetgetaegtttggeggge<br>gtggegaagteaaaaegetgegeagtgetgaageegtetegetgegetgeeattaagegg<br>tateaegetttaeageggtetgtaeateaaegaaetteeteegegaategggataeggagge<br>egettetetgaaettttttegattaettgeaetgeae                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| pdxJ     | Gene (6) | atggetgaattaetgttaggegteaacattgaceataetgetaegetgegegegggggggggg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| acpS     | Gene (6) | atggcaatattaggtttaggcacggatattgtggagatcgctgcatcgaagcggtgatcgcc<br>cgatccggtgatcgcctggcacgccgcgtattaagcgataacgaatgggctatctggaaaac<br>gcaccaccagccggtgcgttttctggcgaagcgttttgctgtgaaagaagccgcagcaaaa<br>gcgtttggcaccgggatccgcaatggtctggcgtttaatcaatttgaagtattcaatgatgagct<br>cggcaaaccacggctacggctatggggcgaggcattaaaactggcggaaaagctgggcgt<br>tgcaaatatgcatgtaacgctggcagtgaggcactatgcttgtgccacggtaattattgaa<br>agttaa                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| gfp-mut3 | Gene (7) | atgagtaaaggagaagaacttttcactggagttgtcccaattcttgttgaattagatggtgatgtt<br>aatgggcacaaattttctgtcagtggagagggtgaaggtgatgcaacatacggaaaacttac<br>ccttaaatttatttgcactactggaaaactacctgttccatggccaacacttgtcactactttgact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

|         |          | tatggtgttcaatgcttttcaagatacccagatcatatgaaacggcatgactttttcaagagtgcc<br>atgcccgaaggttatgtacaggaaagaactatatttttcaaagatgacgggaactataagaca<br>cgtgctgaagtcaagttgaaggtgatacacttgttaatagaatcgagttaaaaggtattgatttt<br>aaagaagatggaaacattcttggacacaagttggaatacaactataactcacacaatgtatac<br>atcatggcagacaaacaaagaatggaatcaagttaacttcaaaattagacacaacattgaa<br>gatggaagcgttcaactagcagaccattatcaacaaatactccaattggcgatggcctgtc<br>cttttaccagacaaccattacctgtccacacatcgcggattacacaggatgaaca<br>gaggaccacatggtccttcttgagtttgtaacagctgctgggattacacatggcatggaact<br>atcataggccgtcaactaccggttgaaccaattaccacacatggcatgaact<br>ctttaccagacaaccattacctgtccacacatcgccgtgggattacacatggcatggaact<br>atacaaaaggcctgcagcaaacgacgaaaactacgcttaagtagcttaa                                                                                                                                                                                                                                                                            |
|---------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| mCherry | Gene (8) | atggtgagcaagggcgaggaggataacatggccatcatcaaggagttcatgcgcttcaagg<br>tgcacatggagggctccgtgaacggccacgagttcgagatcgagggcgagggc<br>cgcccctacgagggcacccagaccgccaagctgaaggtgaccaagggtggccccctgcc<br>ettcgcctgggacatcetgtcccctcagttcatgtacggetccaaggeggaggcggg<br>tgaacttcgaggacggcggggtggtgaccgtggacccagggcttcaagtgggaggcggtg<br>agttcatctacaaggtgaagctgcggggagcctcetccgagggggggcccct<br>gaagggcgagatcaagcagggggggctgaaggtgaaggggggcccct<br>agagggcgagatcaagcaggggggggctgaaggtgaagggggggcccct<br>agagggcgagatcaagcagggggggggctgaaggtgaagggggggcccct<br>aagagggcgagatcaagcagggctgaagctgaagctgaaggacggcggc<br>atcaagttggacatcactccccacaagagccggaggcgcctacaacgtcaac<br>atcaagttggacatcacctcccacaacgaggactgaccacacatcacacgtcaac<br>atcaagttggacatcacctcccacaagggactgaagctgaagcagggcgg<br>ccgagggccgccactccccgggggggcatggacgaggagacagtacgaacggc<br>ccgagggccgccactccccgggcggcatggacgagctgtacaagtagaagcgg<br>ccgagggccgccactccaccggggggggcatggacgaggtgacaagtagaagcg<br>ccgagggccgccactccaccgggggggatgacgaggtgacaagtaag |

## Supplementary Table 3. RT-qPCR primers.

| Primer  | Sequence                       | Source     |
|---------|--------------------------------|------------|
| cysG-F  | ttgtcggcggtggtgatgtc           | (9)        |
| cysG-R  | atgcggtgaactgtggaataaacg       | (9)        |
| hcaT-F  | gctgctcggctttctcatcc           | (9)        |
| hcaT-R  | ccaaccacgctgaccaacc            | (9)        |
| idnT-F  | ctgtttagcgaagaggagatgc         | (9)        |
| idnT-R  | acaaacggcggcgatagc             | (9)        |
| gfp-F   | ctgtccacacaatctgccct           | (10)       |
| gfp-R   | gtttgctgcaggccttttgt           | (10)       |
| sgRNA-F | ttatctgtcaccgactttgtgttttagagc | this study |
| sgRNA-R | cggactagccttattttaacttgc       | this study |
| asRNA-F | tccttatttggctgaatattttagcc     | this study |
| asRNA-R | taaaaaacgccccagtcattactgac     | this study |

## References

- 1. Zadeh, J.N., Steenberg, C.D., Bois, J.S., Wolfe, B.R., Pierce, M.B., Khan, A.R., Dirks, R.M. and Pierce, N.A. (2011) NUPACK: Analysis and design of nucleic acid systems. *J Comput Chem*, **32**, 170-173.
- 2. Na, D., Yoo, S.M., Chung, H., Park, H., Park, J.H. and Lee, S.Y. (2013) Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs. *Nat Biotechnol*, **31**, 170-174.

- 3. Sakai, Y., Abe, K., Nakashima, S., Yoshida, W., Ferri, S., Sode, K. and Ikebukuro, K. (2014) Improving the gene-regulation ability of small RNAs by scaffold engineering in Escherichia coli. *ACS Synth Biol*, **3**, 152-162.
- 4. Qi, L.S., Larson, M.H., Gilbert, L.A., Doudna, J.A., Weissman, J.S., Arkin, A.P. and Lim, W.A. (2013) Repurposing CRISPR as an RNA-Guided Platform for Sequence-Specific Control of Gene Expression. *Cell*, **152**, 1173-1183.
- 5. Moon, T.S., Lou, C., Tamsir, A., Stanton, B.C. and Voigt, C.A. (2012) Genetic programs constructed from layered logic gates in single cells. *Nature*, **491**, 249-253.
- 6. Blattner, F.R., Plunkett, G., 3rd, Bloch, C.A., Perna, N.T., Burland, V., Riley, M., Collado-Vides, J., Glasner, J.D., Rode, C.K., Mayhew, G.F. *et al.* (1997) The complete genome sequence of Escherichia coli K-12. *Science*, **277**, 1453-1462.
- 7. Temme, K., Salis, H., Tullman-Ercek, D., Levskaya, A., Hong, S.H. and Voigt, C.A. (2008) Induction and relaxation dynamics of the regulatory network controlling the type III secretion system encoded within Salmonella pathogenicity island 1. *J Mol Biol*, **377**, 47-61.
- 8. Shaner, N.C., Campbell, R.E., Steinbach, P.A., Giepmans, B.N., Palmer, A.E. and Tsien, R.Y. (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. *Nat Biotechnol*, **22**, 1567-1572.
- 9. Zhou, K., Zhou, L., Lim, Q., Zou, R., Stephanopoulos, G. and Too, H.P. (2011) Novel reference genes for quantifying transcriptional responses of Escherichia coli to protein overexpression by quantitative PCR. *BMC Mol Biol*, **12**, 18.
- 10. Hoynes-O'Connor, A., Hinman, K., Kirchner, L. and Moon, T.S. (2015) De novo design of heatrepressible RNA thermosensors in E. coli. *Nucleic Acids Res*, **43**, 6166-6179.