Small activating RNA binds to the genomic target site in a seed-region-dependent manner

Xing Meng¹, Qian Jiang¹, Nannan Chang¹, Xiaoxia Wang¹, Chujun Liu¹, Jingwei Xiong¹, Huiqing Cao^{1,*}, and Zicai Liang^{1,2,*}

¹Institute of Molecular Medicine, Peking University, Beijing, 100871, PR China ²Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, PR China

* To whom correspondence should be addressed.

Zicai Liang, Tel: +86 10 62769862; Fax: +86 10 62769862; E-mail: liangz@pku.edu.cn

Correspondence may also be addressed to Huiqing Cao, Tel: +86 10 62769861; Fax: +86 10 62769861; E-mail: caohuiqing@pku.edu.cn

Present Address: Institute of Molecular Medicine, Peking University, 5 Yiheyuan Rd, Beijing, 100871, PR China.

MIQE checklist and additional information regarding the qPCR experiments: Information of the performed qPCR experiments of PR mRNA and AT-2 expression based on the MIQE (Minimum Information for Publication of Quantitative Real-Time PCR Experiments) guidelines.

ITEM TO CHECK	IMPORTANCE	CHECKLIST
EXPERIMENTAL DESIGN		
Definition of experimental and control groups	E	\checkmark
Number within each group	E	\checkmark
Assay carried out by core lab or investigator's lab?	D	\checkmark
Acknowledgement of authors' contributions	D	
SAMPLE		
Description	E	\checkmark
Volume/mass of sample processed	D	\checkmark
Microdissection or macrodissection	E	NA
Processing procedure	E	\checkmark
If frozen - how and how quickly?	E	\checkmark
If fixed - with what, how quickly?	E	NA
Sample storage conditions and duration (especially for FFPE samples)	E	~

Experimental and control groups were defined in the figure legends of each figure, as well as the number of experimental repeats. All qPCR experiments were carried out by the investigator's lab. RNA samples were total RNA extracted from MCF-7, HEK293A or mutated cells treated with saRNA or non-specific small RNA (NC). The total volume of each sample ranges from 30 μ l to 50 μ l, and the total mass ranges 5 μ g to 25 μ g. After extracted, the RNA samples were frozen in -80°C and reverse transcribed in 2 days.

NUCLEIC ACID EXTRACTION		
Procedure and/or instrumentation	E	\checkmark
Name of kit and details of any modifications	Е	\checkmark
Source of additional reagents used	D	\checkmark
Details of DNase or RNAse treatment	Е	\checkmark
Contamination assessment (DNA or RNA)	E	\checkmark
Nucleic acid quantification	Е	\checkmark
Instrument and method	E	\checkmark
Purity (A260/A280)	D	\checkmark
Yield	D	\checkmark
RNA integrity method/instrument	E	\checkmark
RIN/RQI or Cq of 3' and 5' transcripts	E	\checkmark

Electrophoresis traces	D	√
Inhibition testing (Cq dilutions, spike or other)	E	\checkmark
REVERSE TRANSCRIPTION		
Complete reaction conditions	E	\checkmark
Amount of RNA and reaction volume	E	\checkmark
Priming oligonucleotide (if using GSP) and concentration	E	~
Reverse transcriptase and concentration	E	~
Temperature and time	E	\checkmark
Manufacturer of reagents and catalogue numbers	D	~
Cqs with and without RT	D*	\checkmark
Storage conditions of cDNA	D	~

Total RNA was isolated using 0.5 ml per sample $(1 \times 10^{5} \cdot 1 \times 10^{6} \text{ cells})$ TRI Reagent (Sigma-Aldrich) following the manufacturer's protocol. The primer pairs used in qPCR were designed to target different exons of mature mRNA, which ensured that genomic DNA could not be detected. We checked the PCR product by gel, melting curve analysis and sequencing to make sure there was only one expected amplicon. These ensured that DNA template won't be detected even if there was residual DNA in total RNA. Therefore, it is unnecessary in our system to digest total RNA with DNase. RNA concentrations and qualities were determined using a NanoDrop spectrophotometer (ND-1000, Nanodrop). RNA samples with 260/280 ratio from 1.9 to 2.1 and 260/230 ratio from 1.8 to 2.2 were considered qualified in our experiment. The integrity of RNA was determined by the electrophoresis of 0.5 µg RNA on 1% agarose gel. Different dilutions of cDNA were demonstrate by different primers and observed decreases in Cqs that consistent with the anticipated result.

Reverse transcription was performed using oligo dT primer (Transgene) and TransScript reverse transcriptase (Transgene) following the manufacturer's protocol. A 20 μ l reverse transcription reaction contained 1 μ g of total RNA, 4 μ l 5×RT-Buffer, 1 μ l oligo dT primer (0.5 μ g/ul), 1 μ l dNTP Mix (25 mM, Promega), 0.5 μ l RNasin (40 U/ μ l, Tiangen), 1 μ l TransScript reverse transcriptase (200 U/ μ l)and RNase-free water. The conditions of reverse transcription were 42°C for 30 min, followed by 85°C for 5 min. cDNA was stored in -80°C. In samples without RT, no amplification was detected.

qPCR TARGET INFORMATION		
If multiplex, efficiency and LOD of each assay.	Ε	NA
Sequence accession number	Ε	\checkmark
Location of amplicon	D	\checkmark
Amplicon length	Ε	\checkmark

In silico specificity screen (BLAST, etc)	Ε	\checkmark
Pseudogenes, retropseudogenes or other homologs?	D	\checkmark
Sequence alignment	D	\checkmark
Secondary structure analysis of amplicon	D	
Location of each primer by exon or intron (if applicable)	Ε	\checkmark
What splice variants are targeted?	Ε	NA
qPCR OLIGONUCLEOTIDES		
Primer sequences	Ε	\checkmark
RT Primer DB Identification Number	D	NA
Probe sequences	D**	NA
Location and identity of any modifications	Ε	NA
Manufacturer of oligonucleotides	D	\checkmark
Purification method	D	\checkmark

Detail information of targets and amplicons for each target gene was list in the table below:

Gene name	Amplicon length	NCBI accession No.	Primer sets	Primers locations according to Gene
PR	106 bp	NM_000926.4 &	PR-3/4-RT-F	exon 3
(PR-B & PR-A)	190.00	NM_001202474.3	PR-3/4-RT-R	exon 4
AT 2 150 bp		ND 072144 1	AT2-2/3-F	exon 1/2 junction
AT-2	1-2 150 bp NR_073144.1		AT2-2/3-R	exon 3
		NIM 002046 F	GAPDH-F	exon 1
GAPDH	черні Пор	11101_002046.5	GAPDH-R	exon 2/3 junction

The primer sets of each target were analyzed with NCBI Blast to ensure specificity. The sequences of primers were listed in Table S1. DNA oligonucleotides were from Biosune (Beijing) and purified with PAGE method.

qPCR PROTOCOL		
Complete reaction conditions	Ε	\checkmark
Reaction volume and amount of cDNA/DNA	Ε	\checkmark
Primer, (probe), Mg++ and dNTP concentrations	Ε	~
Polymerase identity and concentration	Ε	\checkmark
Buffer/kit identity and manufacturer	Ε	\checkmark
Exact chemical constitution of the buffer	D	
Additives (SYBR Green I, DMSO, etc.)	Ε	\checkmark
Manufacturer of plates/tubes and catalog number	D	\checkmark

Complete thermocycling parameters	Ε	\checkmark
Reaction setup (manual/robotic)	D	\checkmark
Manufacturer of qPCR instrument	Ε	\checkmark
qPCR VALIDATION		
Evidence of optimisation (from gradients)	D	
Specificity (gel, sequence, melt, or digest)	Ε	\checkmark
For SYBR Green I, Cq of the NTC	Ε	\checkmark
Standard curves with slope and y-intercept	Ε	\checkmark
PCR efficiency calculated from slope	Ε	\checkmark
Confidence interval for PCR efficiency or standard error	D	\checkmark
r ² of standard curve	Ε	\checkmark
Linear dynamic range	Ε	\checkmark
Cq variation at lower limit	Ε	\checkmark
Confidence intervals throughout range	D	
Evidence for limit of detection	Ε	\checkmark
If multiplex, efficiency and LOD of each assay.	Ε	NA

qPCR analyses were performed in optical 96-well plates (Axygen) with StepOnePlusTM Instrument (ABI). The cycling conditions were 95°C for 2 min, followed by 40 cycles of 95°C for 15 s, and 65°C for 15 s, 68°C for 20 s, and followed by a melting curve analysis (95 °C for 15 s, 55 °C for 15s, 1 °C increases for 30 s up to 95 °C). A 20 µl reaction contained 1 µl of 5×SYBR Green (ThermoFisher), 0.25 µl of each primer (20 µM), 1 µl of dNTP mix (2.5 mM, Promega), 0.25 µl of HotMaster Taq (5 U/µl, Tiangen) and 2 µl of cDNA template (diluted from 20 µl to 50 µl). Reactions were set up manually in a sterile bench using designated equipment.

The primer sets was checked for the specificity by gel, melting curve analysis and sequencing. Primers used in qPCR were demonstrated to have good linear correlation and equal priming efficiency for the different dilutions compared to the Ct values. We considered a PCR efficiency range from 90%-110% as acceptable in our study. The informations in detail were listed in the table below.

Gene	Efficiency	Slope	R ²	Cq of lower limit	NTC
PR	105.35%	-3.16	0.9996	28.27	NA
AT-2	96.60%	-3.43	0.9964	31.82	NA
GAPDH	96.49%	-3.40	0.9942	17.82	NA

DATA ANALYSIS		
qPCR analysis program (source, version)	Ε	\checkmark
Cq method determination	Ε	\checkmark
Outlier identification and disposition	Ε	\checkmark

Results of NTCs	${f E}$	\checkmark
Justification of number and choice of reference genes	Ε	\checkmark
Description of normalisation method	Έ	\checkmark
Number and concordance of biological replicates	D	\checkmark
Number and stage (RT or qPCR) of technical replicates	Ε	\checkmark
Repeatability (intra-assay variation)	Е	\checkmark
Reproducibility (inter-assay variation, %CV)	D	
Power analysis	D	
Statistical methods for result significance	E	\checkmark
Software (source, version)	E	\checkmark
Cq or raw data submission using RDML	D	

Raw data of qPCR was analyzed using StepOne[™] Software v2.2.2 (ABI) and the determination of Cqs and outlier was performed automatically. The relative expression of each target gene was determined using the formula 2^{-∆∆Ct}. For NTC, we did not observed any specific amplicon. GAPDH was chose as reference gene and used as the internal control. Numbers of biological replicates were stated in figure legends, and three technical replicates of qPCR were performed for each sample. qPCR assay in our study has good repeatability (SD=0.19). All data are shown as mean ± SEM. Statistical analysis was performed with Student's t-test to evaluate single-factor differences between two sets of data, or with ANOVA followed by the Bonferroni post-hoc test for multiple comparisons.

Supplementary Data

Table S1

Primers used in these studies.

Primer	Sequence	
PR-3/4-RT-F	TGGAAGAAATGACTGCATCG	
PR-3/4-RT-R	TAGGGCTTGGCTTTCATTTG	
GAPDH-RT-F	GCTCTCTGCTCCTCCTGTTC	
GAPDH-RT-R	ACGACCAAATCCGTTGACTC	
1611T7E1-F1	GGCATTAGCCATCAGGAAAA	
1611T7E1-R1	AATCTCCCAGCAGCCACTAA	
1611T7E1-F2	GGCAATGCTGTCCTGATTTT	
1611ST7E1-R2	AAATCTCCCAGCAGCCACTA	
1611pulldown-6-F	CATGTGGAACATGGATGAACCT	
1611pulldown-6-R	AATCTCAATACCCACTAGCAGTT	
1611pulldown-36-F	AATAGCCAAATCACAGGTACAAAA	
1611pulldown-36-R	TGACTCTAAAATCTCAATACCCACT	
ATEx2/3-F	CGGACCTCAAGGTCTAGCTG	
ATEx2/3-R	CCAAGAGGAGCACAAGACATC	
Sequences are listed 5' to 3'.		

Table S2

Wild type saRNAs used in these studies.

vilu type sakinas us		
RNA	site	strand sequence
PR+1	+1/ +19	AGUCCACAGCUGUCACUAA
PR+2	+2/ +20	GUCCACAGCUGUCACUAAU
PR+4	+4/ +22	CCACAGCUGUCACUAAUCG
PR+23	+23/ +41	GGGUAAGCCUUGUUGUAUU
PR+56	+56/ +74	GCAUUCUCAAUGAGAACUA
PR-1	-1/ +18	CAGUCCACAGCUGUCACUA
PR-38	-38/ -19	CCCUAGAGGAGGAGGCGUU
PR-120	-120/-101	CAGAAUAACGGGUGGAAAU
PR-214	-214/-195	CCAAUUAGAUAGGGCAUAA
PR-520	-520/-501	GCACACAACAUCCAAACUU
PR-532	-532/-513	AAUCGAAGUGUGGCACACA
PR-549	-549/-530	ACACAUUCCUUAAGACAAA
PR-808	-808/-789	CCCAAUGGUCUUGGGUCAA
PR-891	-891/-872	GCUAGACCUUGAGGUCCUA
PR-1042	-1042/-1023	CCUAACAUGAUAAAGGUUU
PR-1056	-1056/-1037	CCAAAUCCUAGUAACCUAA
PR-1060	-1060/-1041	AACUCCAAAUCCUAGUAAC
PR-1382	-1382/-1363	UUGAGUGAGCUGUAUGAUA
PR-1484	-1484/-1465	GCUAGUGGGUAUUGAGAUU
PR-1596	-1596/-1577	AGUACUGAUUCAUGUGGAA
PR-1597	-1597/-1578	AAGUACUGAUUCAUGUGGA
PR-1598	-1598/-1579	GAAGUACUGAUUCAUGUGG
PR-1599	-1599/-1580	UGAAGUACUGAUUCAUGUG
PR-1600	-1600/-1581	GUGAAGUACUGAUUCAUGU
PR-1601	-1601/-1582	AGUGAAGUACUGAUUCAUG
PR-1602	-1602/-1583	GAGUGAAGUACUGAUUCAU
PR-1603	-1603/-1584	GGAGUGAAGUACUGAUUCA
PR-1604	-1604/-1585	AGGAGUGAAGUACUGAUUC
PR-1605	-1605/-1586	AAGGAGUGAAGUACUGAUU
PR-1606	-1606/-1587	GAAGGAGUGAAGUACUGAU
PR-1607	-1607/-1588	UGAAGGAGUGAAGUACUGA
PR-1608	-1608/-1589	GUGAAGGAGUGAAGUACUG
PR-1609	-1609/-1590	AGUGAAGGAGUGAAGUACU
PR-1610	-1610/-1591	GAGUGAAGGAGUGAAGUAC
PR-1611	-1611/-1592	GGAGUGAAGGAGUGAAGUA
PR-1612	-1612/-1593	AGGAGUGAAGGAGUGAAGU
PR-1613	-1613/-1594	AAGGAGUGAAGGAGUGAAG
PR-1614	-1614/-1595	AAAGGAGUGAAGGAGUGAA
PR-1615	-1615/-1596	AAAAGGAGUGAAGGAGUGA
PR-1616	-1616/-1597	AAAAAGGAGUGAAGGAGUG
PR-1617	-1617/-1598	UAAAAAGGAGUGAAGGAGU

PR-1618	-1618/-1599	AUAAAAAGGAGUGAAGGAG
PR-1619	-1619/-1600	AAUAAAAAGGAGUGAAGGA
PR-1620	-1620/-1601	CAAUAAAAAGGAGUGAAGG
PR-1621	-1621/-1602	UCAAUAAAAAGGAGUGAAG
PR-1622	-1622/-1603	GUCAAUAAAAAGGAGUGAA
PR-1623	-1623/-1604	UGUCAAUAAAAAGGAGUGA
PR-1624	-1624/-1605	UUGUCAAUAAAAAGGAGUG
PR-1625	-1625/-1606	UUUGUCAAUAAAAAGGAGU
PR-1626	-1626/-1607	AUUUGUCAAUAAAAAGGAG

Only the sense strands are shown (The sense strand is in the same orientation of the coding strand of target gene). Sequences are listed 5' to 3'. The other strands of the RNA duplex are complementary and not include two thymidine bases at the 3' termini as indicated.

Table S3

RNA	Sense strand	Antisense strand
PR-11M2	GCUGUCUGGCCAGUCCAGA	U <mark>C</mark> UGGACUGGCCAGACAGC
PR-11M4	GCUGUCUGGCCAGUC <mark>G</mark> ACA	UGU <mark>C</mark> GACUGGCCAGACAGC
PR-11M6	GCUGUCUGGCCAG <mark>G</mark> CCACA	UGUGG <mark>C</mark> CUGGCCAGACAGC
PR-11M8	GCUGUCUGGCC <mark>C</mark> GUCCACA	UGUGGAC <mark>G</mark> GGCCAGACAGC
PR-11M10	GCUGUCUGG <mark>G</mark> CAGUCCACA	UGUGGACUG <mark>C</mark> CCAGACAGC
PR-11M12	GCUGUCU <mark>U</mark> GCCAGUCCACA	UGUGGACUGGC <mark>A</mark> AGACAGC
PR-11M14	GCUGU <mark>G</mark> UGGCCAGUCCACA	UGUGGACUGGCCA <mark>C</mark> ACAGC
PR-11M16	GCU <mark>U</mark> UCUGGCCAGUCCACA	UGUGGACUGGCCAGAAAGC
PR-11M17	GC <mark>G</mark> GUCUGGCCAGUCCACA	UGUGGACUGGCCAGAC <mark>C</mark> GC
PR-11M18	G <mark>G</mark> UGUCUGGCCAGUCCACA	UGUGGACUGGCCAGACA <mark>C</mark> C
PR-1611M2	GGAGUGAAGGAGUGAAG <mark>G</mark> A	UCCUUCACUCCUUCACUCC
PR-1611M4	GGAGUGAAGGAGUGA <mark>C</mark> GUA	UAC <mark>G</mark> UCACUCCUUCACUCC
PR-1611M6	GGAGUGAAGGAGU <mark>U</mark> AAGUA	UACUU <mark>A</mark> ACUCCUUCACUCC
PR-1611M8	GGAGUGAAGGA <mark>U</mark> UGAAGUA	UACUUCAAUCCUUCACUCC
PR-1611M10	GGAGUGAAG <mark>U</mark> AGUGAAGUA	UACUUCACUACUUCACUCC
PR-1611M12	GGAGUGA <mark>C</mark> GGAGUGAAGUA	UACUUCACUCC <mark>G</mark> UCACUCC
PR-1611M14	GGAGU <mark>U</mark> AAGGAGUGAAGUA	UACUUCACUCCUU <mark>A</mark> ACUCC
PR-1611M16	GGA <mark>U</mark> UGAAGGAGUGAAGUA	UACUUCACUCCUUCAAUCC
PR-1611M17	GG <mark>C</mark> GUGAAGGAGUGAAGUA	UACUUCACUCCUUCAC <mark>G</mark> CC
PR-1611M18	G <mark>U</mark> AGUGAAGGAGUGAAGUA	UACUUCACUCCUUCACUAC
PR-1611senseM4	GGAGUGAAGGAGUGA <mark>C</mark> GUA	UGUGGACUGGCCAGACAGC
PR-1611senseM6	GGAGUGAAGGAGU <mark>U</mark> AAGUA	UGUGGACUGGCCAGACAGC
PR-1611senseM8	GGAGUGAAGGAUUGAAGUA	UGUGGACUGGCCAGACAGC
PR-1611antisenseM4	GGAGUGAAGGAGUGAAGUA	UACGUCACUCCUUCACUCC
PR-1611antisenseM6	GGAGUGAAGGAGUGAAGUA	UACUUAACUCCUUCACUCC
PR-1611antisenseM8	GGAGUGAAGGAGUGAAGUA	UACUUCAAUCCUUCACUCC

Sequences are listed 5' to 3'. Two thymidine bases at the 3' termini are not shown as indicated. Mutate bases are shown in red.

Table S4

Targets of gRNAs used in these studies.			
gRNA target sequence			
PR-G1	AATATTATTTGTCAATAAAA		
PR-G2	TTGTCAATAAAAAGGAGTGA		
PR-G3	AAGGAGTGAAGTACTGATTCATG		
PR-G4	GAAGTACTGATTCATGTGGAACA		
Sequences are listed 5' to 3'.			

Table S5

siRNA used in these studies.				
RNA	target mRNA	strand sequence		
PR-si1	PR	GCACAAUUACCCAAGAUAU		
AT2-si1	AT-2	CCAGGACACCACAUUUAAU		
AT2-si2	AT-2	CCUGCCUUGACGUUCGAAA		
-				

Only the sense strand is shown (The sense strand is in the same orientation of the coding strand of target gene). Sequences are listed 5' to 3'. The other strand of the RNA duplex is complementary and not includes two thymidine bases at the 3' termini as indicated.

FIGURES LEGENDS

Figure S1. The activity of mutated PR-1611 in reporter assay.

(A) Schematic representation of the construction of luciferase reporter gene. A new start codon (red) and restriction enzyme cutting sites (blue) were inserted adjacent to the luciferase gene (yellow). Targets of indicate small RNAs (light blue) are inserted between the restriction enzyme cutting sites to form a modified luciferase gene. (B) Schematic representation of the working model of the Dual luciferase assay. Targets of sense (green) or antisense strand (red) of indicate small RNA are cloned in the reporter, and sense strand-loaded Ago2 or antisense strand-loaded Ago2 can recognize and inhibit the expression of reporters containing their targets. Thus the luciferase readout will reflect the Ago2 loading level of each strand. (C and D) HEK293A cells were co-transfected with reporter carrying the target of antisense strands (C) or sense strand (D) of PR-1611 and mutated PR-1611. The relative luciferase levels of reporters were assessed by Dual-Luciferase Reporter Assay System.

Figure S2. Sequencing diagram of Clone-5.

Sequencing diagram of Clone-5 with an 8-bp deletion in one allele and a 1-bp insertion in the other allele of the PR-1611 target site in the PR promoter region.

Figure S3. Semi-quantitative analysis of promoter DNA binding with saRNA.

(**A** and **B**) PR promoter DNA was demonstrated by semi-quantitative PCR (31 cycles) after streptavidin purification from WT HEK293A (A) or Clone-5 cells (B).

Figure S4. Correlation between PR mRNA and AT-2.

(**A** and **B**) Plots of PR mRNA (A) and AT-2 (B) expression in MCF-7 cells transfected with PR-si1 for 24 h. (**C** and **D**) Plots of PR mRNA (C) and AT-2 (D) expression in MCF-7 cells treated with AT2-si1 or AT2-si2 for 24 h. (**E**) Plot of AT-2 mRNA expression in MCF-7 cells with co-transfection of siRNAs of AT-2 and saRNAs of PR. mRNA expression level were assessed by qPCR. In the co-transfection experiments, cells were harvested 72 h after the second transfection. **P <0.01; ***P <0.001.

Figure S5. A working model of RNAa induced by PR-1611.

A promoter-targeted saRNA (PR-1611) is loaded in an Ago2 protein, using the antisense strand (red) as the guide strand. The saRNA-loaded Ago2 targets the complementary sequence of the saRNA at distal PR promoter. The bind between saRNA-loaded Ago2 and promoter DNA results in the recruitment of various chromatin modifying or remodeling complexes, which together mediate the transcriptional activation of PR gene.

FIGURES

Luciferase Reporter

Figure S2

Figure S3

Figure S4

