SUPPLEMENTARY DATA

Substrate recognition and cleavage-site selection by a single-subunit protein-only RNase P

Nadia Brillante^{1,†}, Markus Gößringer^{2,†}, Dominik Lindenhofer¹, Ursula Toth¹, Walter Rossmanith^{1,*} and Roland K. Hartmann^{2,*}

¹Center for Anatomy & Cell Biology, Medical University of Vienna, 1090 Vienna, Austria
²Institute of Pharmaceutical Chemistry, Philipps-University Marburg, 35037 Marburg, Germany

^{*}To whom correspondence should be addressed. Email: walter.rossmanith@meduniwien.ac.at Correspondence may also be addressed to Roland K. Hartmann. Email: roland.hartmann@staff.uni-marburg.de

[†]The authors wish it to be known that, in their opinion, the first 2 authors should be regarded as joint First Authors.

Amino acid substitution	Forward	Reverse
noneª	GGCTCTAGACCATGGCTGGTACTGAT	CGGCTCGAGTGAACTCTGCCTTGTA
T113S	CTAATGAATCATCTGTCTCTGCAGTTG CACGACTAG	CTAGTCGTGCAACTGCAGAGACAGAT GATTCATTAG
T113N	CTAATGAATCATCTGTCAATGCAGTTG CACGACTAG	CTAGTCGTGCAACTGCATTGACAGAT GATTCATTAG
R145N	GTGTATCGGTCCCTAATCTGAGAACTT ATGC	GCATAAGTTCTCAGATTAGGGACCGA TACAC
R145D	GTGTATCGGTCCCTGATCTGAGAACTT ATGC	GCATAAGTTCTCAGATCAGGGACCGA TACAC

Supplementary Table S1. Oligonucleotides used for cloning and site-directed mutagenesis of PRORP3.

^aPrimer pair used for the cloning of the *A. thaliana* wild-type PRORP3 cDNA.

RNA substrate	Forward	Reverse
U ₁ -A ₇₂ ^a	TAGGATTTTCCCTTTCTCGGGAGTAGCTCAGTC CAAGTCCCGTCTCCCGATCCAGTCACCGGATGTGC	GACTGAGCTACTCCCGAGAAAGGGAAAATCCTA GCACATCCGGTGACTGGATCGGGAGACGGGACTTG
U_{-1}	CTATAGGATTTTCCCTTTTGCGGGAGTAGCTCAGTCG	CGACTGAGCTACTCCCGCAAAAGGGAAAATCCTATAG
G ₋₁ , A ₇₃ ^a	TATAGGATTTTCCCTTTGGCGGGAGTAGCTCAGTCG CAAGTCCCGTCTCCCGCACCAGTCACCGGATGTGC	CGACTGAGCTACTCCCGCCAAAGGGAAAATCCTATA GCACATCCGGTGACTGGTGCGGGAGACGGGACTTG
A ₋₁ , A ₇₃ ^a	CTATAGGATTTTCCCTTTAGCGGGAGTAGCTCAGTCG CAAGTCCCGTCTCCCGCACCAGTCACCGGATGTGC	CGACTGAGCTACTCCCGCTAAAGGGAAAATCCTATAG GCACATCCGGTGACTGGTGCGGGAGACGGGACTTG
A ₇₃	CAAGTCCCGTCTCCCGCACCAGTCACCGGATGTGC	GCACATCCGGTGACTGGTGCGGGAGACGGGACTTG
G ₁₈ →A ₁₈	GCGGGAGTAGCTCAGTCAGTAGAGCACGACCTTGC	GCAAGGTCGTGCTCTACTGACTGAGCTACTCCCGC
G_{19} → A_{19} , C_{56} → U_{56}^{a}	TCGGGGTCGCGGGTTTAAGTCCCGTCTCCCG GGAGTAGCTCAGTCGATAGAGCACGACCTTGC	CGGGAGACGGGACTTAAACCCGCGACCCCGA GCAAGGTCGTGCTCTATCGACTGAGCTACTCC
C ₅₆ →U ₅₆	TCGGGGTCGCGGGTTTAAGTCCCGTCTCCCG	CGGGAGACGGGACTTAAACCCGCGACCCCGA
A ₅₇ →C ₅₇	GGTCGCGGGTTCCAGTCCCGTCTCC	GGAGACGGGACTGGAACCCGCGACC
U ₆₅ →C ₆₅ ^b	GGTTCAAGTCCCGCCTCCCGCTCCAGT	ACTGGAGCGGGAGGCGGGACTTGAACC
$Aa_{b1}T^{c}$	TTCCCTTTCGCGGGAGAGCGGGTTCAAGTC	GACTTGAACCCGCTCTCCCGCGAAAGGGAA
$Aa_{b4}T^{d}$	TTCCCTTTCGCGGGAGAGCTGCGGGTTCAAGTC GGAATTGTGAGCGGATAACA	GGTCTGCTTCAGTAAGCCAG GACTTGAACCCGCAGCTCTCCCGCGAAAGGGAA
Aa _{b9} T ^d	TTCCCTTTCGCGGGAGCCAGCTCCTGCGGGTTCAAGTC GGAATTGTGAGCGGATAACA	GGTCTGCTTCAGTAAGCCAG GACTTGAACCCGCAGGAGCTGGCTCCCGCGAAAGGG AA
AaT	AATTCGAGCTCGCCTAATACGACTCACTATAGGATTTT CCCTTTCGCGGGAGGCGGGTTCAAGTCCCGCCTCCCG CTCCAGTCACCGGATGTGCTTTCCGGTCTGATGAGTCC GTGAGGACGAAACTGGTATG	GATCCATACCAGTTTCGTCCTCACGGACTCATCAGACC GGAAAGCACATCCGGTGACTGGAGCGGGAGGCGGG ACTTGAACCCGCCTCCCGCGAAAGGGAAAATCCTATA GTGAGTCGTATTAGGCGAGCTCG
Aa _{-2bp} ^a	GTTCAAGTCCCGTCTCGCTCCAGTCACCG ACTATAGGATTTTCCCTTTCGCGAGTAGCTCAGTCGG	CGGTGACTGGAGCGAGACGGGACTTGAAC CCGACTGAGCTACTCGCGAAAGGGAAAATCCTATAGT
Aa _{+2bp} ^a	TCAAGTCCCGTCTCCGGCGCTCCAGTCACC TAGGATTTTCCCTTTCGCGCCCGGAGTAGCTCAGTC	GGTGACTGGAGCGCCGGAGACGGGACTTGA GACTGAGCTACTCCGGCGCGAAAGGGAAAATCCTA

Supplementary Table S2. Oligonucleotides used for site-directed mutagenesis and (PCR) cloning of RNA-substrate templates.

^aPrimer pairs for 2 rounds of site-directed mutagenesis.

^bUsed to generate the plasmid encoding pre-tRNA^{Gly}-U₆₅ \rightarrow C₆₅, used as a template for further mutagenesis only.

^cPlasmid encoding pre-tRNA^{Giy}-U₆₅ \rightarrow C₆₅ was used as a DNA template in the mutagenesis.

^dPrimer pairs to produce 2 overlapping PCR products from plasmid encoding pre-tRNA^{Gly}-U₆₅ \rightarrow C₆₅.

RNA substrate	Forward primer	Reverse primer
7-nt leader	AGGACGAAACGGTACCCGGTACCGTCCCCTTTC GCGGGAGTAGCTCAGTCGGTAGAGCACGACC	CACGGACTCATCAGCCCTTTCGCTCCTATAGTGAGTC GTATTAGGGCGAGCTCGAATTCGTAATCATGG
4-nt leader	AGGACGAAACGGTACCCGGTACCGTCTTTCGCG GGAGTAGCTCAGTCGGTAGAGCACGACC	CACGGACTCATCAGTTTCGCGGCTCCTATAGTGAGT CGTATTAGGGCGAGCTCGAATTCGTAATCATGG
2-nt leader	AGGACGAAACGGTACCCGGTACCGTCCCGCGG GAGTAGCTCAGTCGGTAGAGCACGACC	CACGGACTCATCAGCCGCGGGACTCCTATAGTGAGT CGTATTAGGGCGAGCTCGAATTCGTAATCATGG
1-nt leader	AGGACGAAACGGTACCCGGTACCGTCCGCGGG AGTAGCTCAGTCGGTAGAGCACGACC	CACGGACTCATCAGCGCGGGGAGCTCCTATAGTGAGT CGTATTAGGGCGAGCTCGAATTCGTAATCATGG

Supplementary Table S3. Oligonucleotides used for "inside-out" PCR mutagenesis of RNA-substrate templates.

RNA substrate	Forward primer	Reverse primer	
(mature) CCA ^a	CTCGAGTAATACGACTCACTATAGG	TGGAGCGGGAGACGGGACTT	
no trailer ^a	CTCGAGTAATACGACTCACTATAGG	AGCGGGAGACGGGACTT	
40-nt trailer ^a	CTCGAGTAATACGACTCACTATAGG	TCCTCACGGACTCATCAG	
ΔAc^{b}	TAATACGACTCACTATAGG	TATTGGAGCGGGAGACG	
ΔD^{b}	TAATACGACTCACTATAGG	TATTGGAGCGGGAGACG	
Aa _{b9} T-U ₅₄ →C ₅₄ ^c	CTCGAGTAATACGACTCACTATAGGATT TTCCCTTTCGCGGGAGCCAGCTCCTG	GACTGGAGCGGGAGGCGGGACTTGAG CCCGCAGGAGCTGGC	
Aa _{b9} T-U ₅₅ →C ₅₅ ^c	CTCGAGTAATACGACTCACTATAGGATT TTCCCTTTCGCGGGAGCCAGCTCCTG	GACTGGAGCGGGAGGCGGGACTTGGA CCCGCAGGAGCTGGC	
Aa _{b9} T-C ₅₆ →U ₅₆ ^c	CTCGAGTAATACGACTCACTATAGGATT TTCCCTTTCGCGGGAGCCAGCTCCTG	GACTGGAGCGGGAGGCGGGACTTAAA CCCGCAGGAGCTGGC	
Aa _{b9} T-A ₅₇ →G ₅₇ ^c	CTCGAGTAATACGACTCACTATAGGATT TTCCCTTTCGCGGGGAGCCAGCTCCTG	GACTGGAGCGGGAGGCGGGACTCGAA CCCGCAGGAGCTGGC	
Aa _{b9} T-A ₅₇ →C ₅₇ ^c	CTCGAGTAATACGACTCACTATAGGATT TTCCCTTTCGCGGGGAGCCAGCTCCTG	GACTGGAGCGGGAGGCGGGACTGGAA CCCGCAGGAGCTGGC	
Aa _{b9} T-A ₅₇ →U ₅₇ ^c	CTCGAGTAATACGACTCACTATAGGATT TTCCCTTTCGCGGGGAGCCAGCTCCTG	GACTGGAGCGGGAGGCGGGACTAGAA CCCGCAGGAGCTGGC	
Aa _{b9} T-A ₅₈ →G ₅₈ ^c	CTCGAGTAATACGACTCACTATAGGATT TTCCCTTTCGCGGGGAGCCAGCTCCTG	GACTGGAGCGGGAGGCGGGACCTGAA CCCGCAGGAGCTGGC	
Aa _{b9} T _{CCUUUUA} ^c	CTCGAGTAATACGACTCACTATAGGATT TTCCCTTTCGCGGGGAGCCAGCTCCTG	GACTGGAGCGGGAGGCGGGTAAAAGG CCCGCAGGAGCTGGC	
Aa _{+2bp b9} T ^c	CTCGAGTAATACGACTCACTATAGGATT TTCCCTTTCGCGCCGGAGCCAGCTCCTG	GACTGGAGCGCCGGAGGCGGGACTTG AACCCGCAGGAGCTGGC	
Aa _{b9} T _{+2bp} ^c	CTCGAGTAATACGACTCACTATAGGATT TTCCCTTTCGCGGGGAGCCAGCTCCTG	GACTGGAGCGGGAGGCGCCGGACTTG AACCGGCGCAGGAGCTGGC	
Aa _{-2bp b9} T _{+2bp} ^c	CTCGAGTAATACGACTCACTATAGGATT TTCCCTTTCGCGAGCCAGCTCCTG	GACTGGAGCGAGGCGCCGGACTTGAAC CGGCGCAGGAGCTGGC	
Aa _{b9} T _{4loop} ^c	CTCGAGTAATACGACTCACTATAGGATT TTCCCTTTCGCGGGGAGCCAGCTCCTG	GACTGGAGCGGGAGGCGGGTTTCCCCG CAGGAGCTGGC	
Aa _{+4bp} ^b	CTCGAGTAATACGACTCACTATAGG	GACTGGAGCGCGCCGGAGA	
Aa _{+m3GC} ^b	CTCGAGTAATACGACTCACTATAGG	GACTGGAGCGAGCCGGAGA	
Aa _{+m3AU} ^b	CTCGAGTAATACGACTCACTATAGG	GACTGGAATAAGCCGGAGA	
G_{-1} - C_{73}^{d}	CTCGAGTAATACGACTCACTATAGG	GACTGGGGCGGGAGA	
U ₋₁ -A ₇₃ ^e	CTCGAGTAATACGACTCACTATAGG	GACTGGTGCGGGAGA	
Aa _{+3AU} ^a	CGAGTAATACGACTCACTATAGGATTTT CCCTTTCAATGCGGGAGTAGC	GACTGGAAATGCGGGAGAC	

Supplementary Table S4. Oligonucleotides used to prepare RNA-substrate templates by PCR.

^aPlasmid pSBpt3'hh was used as a template.

^bOligonucleotide template listed in Supplementary Table S6.

^cOverlapping primers (no extra template).

 d Pre-tRNA Gly -G₋₁ was used as a template.

 e Pre-tRNA^{Gly}-U₋₁ was used as a template.

RNA substrate	Oligonucleotide template
Aa _{+4bp} & Aa _{+m3GC}	TAATACGACTCACTATAGGATTTTCCCTTTCGCGCGCGGAGTAGCTCAGTCGGTAGAGC ACGACCTTGCCAAGGTCGGGGTCGCGGGTTCAAGTCCCGTCTCCGGCGCGCTCCAGTC
Aa _{+m3AU}	TAATACGACTCACTATAGGATTTTCCCTTTCATACGCCGGAGTAGCTCAGTCGGTAGAGCA CGACCTTGCCAAGGTCGGGGGTCGCGGGTTCAAGTCCCGTCTCCGGCGTATTCCAGTC
ΔD	TAATACGACTCACTATAGGATTTTCCCTTTCGCGGGAGTAGACCGACC
ΔΑC	TAATACGACTCACTATAGGATTTTCCCTTTCGCGGGAGTAGCTCAGTCGGTAGAGCACCTT CGGGGGGTCGCGGGTTCAAGTCCCGTCTCCCGCTCCAATA

Supplementary Table S5. Oligonucleotide templates used for PCR of RNA-substrate templates.

Supplementary Figure S1. Single-turnover cleavage kinetics of representative substrates. First-order rate constants of cleavage (k_{obs}) obtained at different PRORP3 concentrations were plotted against the enzyme concentration and fit by nonlinear regression to a "Michaelis-Menten-like" enzyme kinetics model to derive the maximal rate constant k_{react} and the single-turnover Michaelis constant $K_{M(sto)}$. Data points represent the mean of at least 3 replicates with SEM (error bars display only if SEM exceeds the size of the data point in the graph). (A) Kinetic analysis of pre-tRNA^{GIV} cleavage by PRORP3 independently performed by the two labs. (B) Kinetic analysis of the cleavage of the stem-loop substrate Aa_{b9}T by PRORP3.

Supplementary Figure S2. Cleavage analysis of pre-tRNA^{Gly} variants with a short 5'-hydroxyl-end leader. (A) Unlabeled pre-tRNA^{Gly} variants with a 5'-hydroxyl-end leader of 1 or 2 nt were cleaved with PRORP3 under presumably enzyme-saturated conditions (80 nM). Aliquots of the reactions were withdrawn at indicated times, and the RNA ³²P-5'end labeled and resolved by denaturing PAGE. The panels show the substrate RNA remaining after the reaction time indicated. (B) Firstorder rate constants of cleavage (k_{obs} ; best-fit values ± standard error) for the two substrates were derived from the data of three experiments each. Individual data points are shown ("substrate remaining" converted to "fraction cleaved"; note: in the three replicate experiments some sampling time points differed).

Supplementary Figure S3. Nucleotide frequencies of the 5'-leader and **3'-trailer sequences of the nucleus-encoded pre-tRNAs of** *A. thaliana*. Nucleotides upstream of the 5' end and downstream of the 3' end of the mature tRNA, including the first base pair of the tRNAs' nucleotides 1 and 72, and the discriminator position 73, were aligned, and a logo derived from the alignment of the 598 sequences. An arrow indicates the canonical RNase P cleavage site.

Base-paired positions ^a	G-C/C-G bp	A-U/U-A/G-U/U-G bp	G-C/C-G as 1 st or 2 nd upstream bp ^b
+1 - 72	92.0%	7.0%	
-1 - 73	1.0%	22.9%	
-2 - 74 -1 - 73	0.0%	8.5%	1.5%
-3 - 75 -2 - 74 -1 - 73	0.0%	3.5%	0.4%
-4 - 76 -3 - 75 -2 - 74 -1 - 73	0.0%	1.8%	0.0%

Supplementary Table S6. Base-pair frequencies at the RNase P cleavage site of the nucleus-encoded pre-tRNAs of *A. thaliana*.

^aNumbering according to convention with the exception of positions 74–76, which do not indicate the CCA end of the mature tRNA, but the first 3 nt of the trailer of the pre-tRNA (see also Supplementary Figure S3); nucleotides of the 5' leader carry negative numbers starting from the nucleotide closest to the RNase P cleavage site with -1.

^bExtensions of the acceptor stem with a single G-C base pair at the first or second upstream position; the other base pairs of the extension are either A-U or G-U.