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1 Supplementary Methods

1.1 Spectral envelope

1.1.1 Kernel smoothing of the periodogram

The calculation of sample spectral envelope (main text, Materials and Methods) involves estimating the power
spectral density using periodogram. It has been suggested that smoothing the periodogram using a modified
Daniell kernel provides a more stable estimate of the power spectral density [1]. We used a modified Daniell
kernel (0.125, 0.25, 0.25, 0.25, 0.125) for smoothing the periodogram in the calculation of sample spectral enve-
lope. Specifically, the R code included in [2] smoothed the periodogram in the following way. For a numerical
sequence of length L, the code calculated its periodogram I(j/L) at each fundamental frequency j/L, where
j = −bL/2c,−bL/2c + 1, . . . ,−1, 0, 1, . . . , bL/2c − 1, bL/2c. The code then replaced I(0) by 1

2(I(1/L) +
I(−1/L)) since I(0) could be inflated by the mean of the sequence. It smoothed the periodogram by calcu-
lating Î(j/L) = 0.125I( j−2L ) + 0.25I( j−1L ) + 0.25I( jL) + 0.25I( j+1

L ) + 0.125I( j+2
L ), where the arguments

of I lying outside its domain of definition correspond cyclically to values in the interval [−bL/2c, bL/2c]. Be-
cause of the symmetry of periodogram, only I(j/L) with j > 0 were retained in subsequent calculations. No-
tice that the smoothing introduced artifacts at the boundaries of the frequency space, specifically, at frequencies
1/L, 2/L, (bL/2c − 1)/L, and bL/2c/L. Thus the resulting sample spectral envelope might be inflated at these
four frequencies. We therefore removed these four frequencies (or the corresponding periods) in all of the figures
in frequency (period) space.

1.1.2 Empirical p-value

To assess the statistical significance of an observed periodic component from spectral envelope calculation, we
defined an empirical p-value in the following way. Denote the spectral envelope at angular frequency ω of a DNA
sequence st as λ(ω). We randomly permuted the sequence st 100 times and calculated the corresponding spectral
envelope for each of the 100 permuted sequences, denoted as λ̃i(ω), i = 1, 2, . . . , 100. We then defined the
empirical p-value as

p(ω) =

∑100
i=1 1λ̃i(ω)>λ(ω) + 1

100 + 1
, (S1)

where 1 is the indicator function. A pseudo-count 1 was added in both the numerator and denominator to avoid 0
p-values [3]. A small p-value indicates a significant periodic component.

To estimate the fraction of sequences that contained 10.5-bp periodicity, we fitted the distribution of empirical
p-values (for example, Fig. 2B, solid black curve) using the following beta-uniform mixture model:

Pr(p) = (1− π1) + π1Beta(p; 1, β), (S2)

where the first component is the null uniform distribution between 0 and 1 with mixing coefficient 1 − π1, and
the second component is a beta distribution with mixing coefficient π1. Beta(x;α, β) denotes the probability
density function of beta distribution with shape parameters α and β. We used the Expectation-Maximization (EM)
algorithm to estimate the mixing coefficient π1 and the shape parameter β. The estimated π̂1 characterizes the
fraction of sequences containing 10.5-bp periodicity.

To correct for multiple hypothesis testing, we first calculated the 99% Clopper-Pearson confidence interval of
each empirical p-value [4]. We then used the Monte Carlo Benjamini-Hochberg procedure to obtain an upper bound
on the fraction of sequences that may contain statistically significant periodicity at 5% False Discovery Rate (FDR)
[5, 6]. Specifically, the Clopper-Pearson confidence interval was defined as follows: for a specific DNA sequence,
denote the total number of permutations with pseudo-count 1 as n (in our case, n = 101), and the total number
of permuted sequences which have greater spectral envelope as k (in our case, k =

∑n
i=1 1λ̃i(ω)>λ(ω) + 1). The

lower and upper limits [p̂l, p̂u] of the two sided (1−α) ·100% Clopper-Pearson confidence interval of the empirical
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p-value were defined [7] as

[p̂l, p̂u] =

{ [
B(α2 ; k, n− k + 1), B(1− α

2 ; k + 1, n− k)
]
, 1 ≤ k < n[

α1/(n+1), 1
]
, k = n

(S3)

where B(q; a, b) is the qth quantile of the beta distribution with shape parameters a and b. We used α = 0.01
to obtain 99% confidence intervals. The traditional Benjamini-Hochberg procedure for controlling FDR works as
follows: given N p-values pi, i = 1, 2, . . . , N , denote their order statistic as p(1) ≤ p(2) ≤ . . . ≤ p(N). Suppose
j is the largest index i for which p(i) ≤ i

N θ; then, rejecting all the hypotheses corresponding to p(1), p(2), . . . , p(j)
guarantees that the FDR is at most θ. To obtain an upper bound on the fraction of rejected hypotheses at fixed FDR
θ, we compare the lower limits p̂l of the Clopper-Pearson confidence interval with the Benjamini-Hochberg line
i
N θ. Denote the lower limits of the Clopper-Pearson confidence intervals corresponding to the empirical p-values pi
as p̂l,i, and their order statistic as p̂l,(i). Suppose j is the smallest index i for which the condition p̂l,(k) > k

N θ holds
for all p̂l,(k) ≥ p̂l,(i). Then, at most j − 1 hypotheses corresponding to p̂l,(1), p̂l,(2), . . . , p̂l,(j−1) may be rejected at
this chosen FDR, and 1− j/N provides an upper bound on the fraction of rejected hypotheses at FDR θ. We used
FDR θ = 5%.

1.1.3 Computation details

We used a modified version of the R code included in [2] to compute the sample spectral envelope. The R code
was called from a Python wrapper using rpy2 (http://rpy.sourceforge.net/). Parallelization was im-
plemented using PP (http://www.parallelpython.com/). Clopper-Pearson confidence intervals were
calculated in R using the package GenBinomApps (https://cran.r-project.org/web/packages/
GenBinomApps/index.html).

1.2 Spurious periodicity

We simulated 10,000 147-bp random sequences with the expected frequency of A, C, G, and T set to 0.3, 0.2, 0.2,
and 0.3, respectively. We then converted these sequences into numerical sequences by setting A and T to 1, C and
G to 0, and took the average of these 10,000 numerical sequences at each of the 147 positions. Equivalently, we
were counting the average A/T frequency at each position of the center-aligned sequences (grey curve in Fig. 1B).

To create a spurious 10-bp periodicity in the average A/T frequency, we performed the following re-alignment
of the sequences [8]. For each of the 10,000 simulated sequences, we computed the mode of the discrete probability
distribution of the positions of A/T modulo 10, denoted as mi, where i = 1, . . . , 10, 000 is the index of sequences,
andmi ∈ {0, 1, . . . , 9}. We then cyclically shifted the ith sequence bymi+δi, where δi is a small noise introduced
to simulate imperfect alignment among nucleosomal sequences. We simulated δi as a discrete random variable
taking values −2,−1, 0, 1, 2 with probability 0.125, 0.25, 0.25, 0.25, 0.125, respectively. Finally, we computed the
average A/T frequency at each position in the alignment of shifted sequences (black curve in Fig. 1B).

A modification of this method can produce arbitrary periodicity in random sequences. These results demon-
strate that periodicity in average nucleotide frequency is not equivalent to periodicity in individual sequences.

1.3 Spectral decomposition

In this section, we describe in detail the spectral decomposition method for quantifying the origin of periodicity
observed in average nucleotide frequency of aligned nucleosomal sequences.

1.3.1 The decomposition equation

ConsiderN nucleosomal sequences sk(t) of lengthL (typicallyL = 147), for k = 1, 2, . . . , N and t = 0, 1, . . . , L−
1. The average nucleotide frequency (for example, as shown in Fig. 1A) can be calculated as follows. We may
choose a specific scaling function β and map the nucleosomal sequences to real-valued sequences, and then take
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the average across the N numerical sequences. For example, if we are interested in the average A/T frequency (as
in Fig. 1A), we may choose the scaling function to be β : (A, C, G, T) → (1, 0, 0, 1). The real-valued sequences
obtained using the scaling function is denoted as xk(t) = β(sk(t)). The average nucleotide frequency at location
t is simply the average of xk(t) across nucleosomes; i.e., x̄(t) = 1

N

∑N
k=1 xk(t). A dominant periodic component

in average nucleotide frequency can be indicated by a peak in the spectrum of spectral density of x̄(t), which is the
squared norm of the discrete Fourier transform of x̄(t)

|˜̄x(f)|2 =

∣∣∣∣∣ 1√
L

L−1∑
t=0

x̄(t)e−2πift

∣∣∣∣∣
2

, (S4)

where x̃ denotes the discrete Fourier transform of x, and f is the fundamental frequency, where f = j/L, j =
0, 1, 2, . . . , (L−1)/2 for odd L, and j = 0, 1, 2, . . . , L/2 for even L. Therefore, |˜̄x(f)|2 assesses the periodicity in
average nucleotide frequency of aligned nucleosomal sequences. We will decompose |˜̄x(f)|2 into several factors
that are easy to interpret.

Since Fourier transform is a linear operator, the order of taking average and taking discrete Fourier transform
in Equation S4 is exchangeable, and we can rewrite

|˜̄x(f)|2 =

∣∣∣∣∣ 1

N

N∑
k=1

x̃k(f)

∣∣∣∣∣
2

=
1

N2

N∑
k=1

N∑
l=1

|x̃k(f)| |x̃l(f)| ei(φk(f)−φl(f)), (S5)

where φk(f) = Arg(x̃k(f)) is the argument of the discrete Fourier transform. By simply multiplying terms on
both sides of Equation S5, we obtained the following decomposition equation

|˜̄x|2

1
N

1
N

∑
m E

[
|x̃m|2

] =
1
N

∑
m |x̃m|

2

1
N

∑
m E

[
|x̃m|2

] 1
N2

∑
k

∑
l e
i(φk−φl)

1
N2

∑
k

∑
l E
[
ei(φk−φl)

] 1
N2

∑
k

∑
l
|x̃k||x̃l|

1
N

∑
m|x̃m|

2 e
i(φk−φl)

1
N2

∑
k

∑
l e
i(φk−φl)

, (S6)

where the argument f 6= 0 was omitted for all variables for clarity, the summations over k, l,m are from 1 to
N , E denotes expectation over all possible independent permutations of the N nucleosomal sequences sk(t), i.e.
averaging over permuting sk(t) with independent uniformly sampled elements πk of the symmetric group SL, and
the following theorem has been used.

Theorem 1.1 Under the settings developed above, at frequency f 6= 0,

1

N2

∑
k

∑
l

E
[
ei(φk−φl)

]
=

1

N
. (S7)

Proof If k = l, then ei(φk−φl) = e0 = 1. Thus, E
[
ei(φk−φl)

]
= 1 if k = l. If k 6= l, since permutations

are carried out independently on sequences sk and sl, we have E
[
ei(φk−φl)

]
= E

[
eiφk

]
E
[
e−iφl

]
. If for any k,

E
[
eiφk

]
= E

[
e−iφk

]
= 0, then 1

N2

∑
k

∑
l E
[
ei(φk−φl)

]
= 1

N2

∑
k E
[
ei(φk−φk)

]
+ 1

N2

∑
k

∑
l 6=k E

[
ei(φk−φl)

]
=

1
N2N+0 = 1

N , and the theorem follows. The following lemma guarantees that for any k, E
[
eiφk

]
= E

[
e−iφk

]
= 0.

Lemma 1.2 Under the settings developed above, at frequency f 6= 0, for any k, E
[
eiφk

]
= E

[
e−iφk

]
= 0.

Proof Since E
[
e−iφk

]
is complex conjugate of E

[
eiφk

]
, we only need to show that E

[
eiφk

]
= 0. Let ZL ⊂ SL

be the cyclic subgroup that cyclically permutes a sequence. Then, we can partition SL into equivalence classes
defined by the right cosets ZLπ, π ∈ SL. We will show that the sum of the phases of the permuted sequences
obtained from each coset vanishes. For any sequence s, the action of the coset ZLπ on s is a constant translation of
the permuted sequence s′ = π(s), where the translation is defined on a periodic lattice of length L. Let g ∈ ZL be
the generator that translates the sequence by one unit; note that ZL = {g, g2, . . . , gL}. Let x′ denote the numerical
representation of s′, and x̃′ its Fourier transform. Since the Fourier dual of translation is a phase shift, the Fourier
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transform of the translated sequence gjs′ is (̃gjx′) = ωj x̃′, where ω = e−2πi/L is an L-th root of unity. Thus, for
any π ∈ SL, ∑

h∈ZLπ

h̃x =

L−1∑
j=0

g̃jx′ = x̃′
L−1∑
j=0

ωj = x̃′
1− ωL

1− ω
= 0,

for ω 6= 1, i.e. for f 6= 0. Since for any fixed π ∈ SL, h̃x have the same magnitude for all h ∈ ZLπ, the claim thus
follows.

1.3.2 Interpretation of each factor

We proceed to define aligned enrichment A as the left hand side of the decomposition Equation S6,

A =
|˜̄x|2

1
N

1
N

∑
m E

[
|x̃m|2

] , (S8)

individual enrichment I as the first factor on the right hand side of Equation S6,

I =
1
N

∑
m |x̃m|

2

1
N

∑
m E

[
|x̃m|2

] , (S9)

phasing enrichment P as the second factor on the right hand side of Equation S6,

P =
1
N2

∑
k

∑
l e
i(φk−φl)

1
N2

∑
k

∑
l E
[
ei(φk−φl)

] , (S10)

and the residual factor R as the third factor on the right hand side of Equation S6,

R =

1
N2

∑
k

∑
l
|x̃k||x̃l|

1
N

∑
m|x̃m|

2 e
i(φk−φl)

1
N2

∑
k

∑
l e
i(φk−φl)

. (S11)

The decomposition Equation S6 can be then simplified as

A = IPR, (S12)

which is reminiscent of Equation 2 in the main text.
Equation S9 can be further expressed as

I =
1
N

∑
m |x̃m|

2

E
[

1
N

∑
m |x̃m|

2
] , (S13)

since 1
N

∑
m E

[
|x̃m|2

]
= E

[
1
N

∑
m |x̃m|

2
]
. Similarly, Equation S10 can be further expressed as

P =
1
N2

∑
k

∑
l e
i(φk−φl)

E
[

1
N2

∑
k

∑
l e
i(φk−φl)

] , (S14)

because 1
N2

∑
k

∑
l E
[
ei(φk−φl)

]
= E

[
1
N2

∑
k

∑
l e
i(φk−φl)

]
. Equation S8 can be further expressed as

A =
|˜̄x|2

E
[
|˜̄x|2
] , (S15)

because of the following lemma.
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Lemma 1.3 Under the settings developed above, 1
N

1
N

∑
m E

[
|x̃m|2

]
= E

[
|˜̄x|2
]
, for frequency f 6= 0.

Proof Taking expectation of both sides of Equation S5, we have

E
[
|˜̄x|2
]

=
1

N2
E

[
N∑
k=1

N∑
l=1

|x̃k| |x̃l| ei(φk−φl)
]

=
1

N2

∑
k=l

E
[
|x̃k| |x̃l| ei(φk−φl)

]
+

1

N2

∑
k 6=l

E
[
|x̃k| |x̃l| ei(φk−φl)

]
=

1

N2

∑
m

E
[
|x̃m|2

]
+

1

N2

∑
k 6=l

E
[
|x̃k| |x̃l| ei(φk−φl)

]
.

(S16)

We shall show that 1
N2

∑
k 6=l E

[
|x̃k| |x̃l| ei(φk−φl)

]
= 0, from which the lemma follows. Due to the independence

of permutations for different sequences, we have

1

N2

∑
k 6=l

E
[
|x̃k| |x̃l| ei(φk−φl)

]
=

1

N2

∑
k 6=l

E [x̃k] E [x̃∗l ] , (S17)

where ∗ denotes complex conjugation. It thus suffices to show that for any k, E [x̃k] = E [x̃∗k] = 0, but they were
already proved in Lemma 1.2.

The aligned enrichment A (Equation S15, Lemma 1.3) is the spectral density of average nucleotide frequency
divided by its expectation. It thus quantifies the spectral density enrichment of average nucleotide frequency com-
pared to randomly permuted sequences.

The individual enrichment I (Equation S13) is the average spectral density of individual nucleosomal sequences
divided by its expectation. It thus quantifies the spectral density enrichment of individual nucleosomal sequences
compared to randomly permuted sequences.

The phasing enrichment P (Equation S14) is also of the form that the denominator is the expectation of the
numerator. Specifically, the numerator is 1 when all of the sequences are in phase with each other, i.e., φk = φl
for any k and l. When the sequences are not completely in phase with each other, the numerator is real and always
smaller than 1, because

1

N2

∑
k

∑
l

ei(φk−φl) =
1

N2

∑
k

∑
l

Re(ei(φk−φl))

=
1

N2

∑
k

∑
l

cos(φk − φl)

≤ 1

N2

∑
k

∑
l

1

= 1,

(S18)

where the equality holds if and only if φk = φl,∀k 6= l. Therefore, the numerator in Equation S14 is a measure of
the degree of phasing between nucleosomal sequences. The phasing enrichment P thus quantifies the enrichment
of phasing among nucleosomal sequences compared to randomly permuted sequences.

The residual factor R (Equation S11) is subjected to random noise and does not contain useful information
about the decomposition, as discussed in the main text.

1.3.3 Calculation details

Each factor in the decomposition Equation S6 can be calculated given a fixed scaling function β, without having
to generate all permutations of a nucleosomal sequence, if the term E

[
|x̃m|2

]
can be explicitly calculated. We
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calculate this term for the specific scaling function β : (A, C, G, T) → (1, 0, 0, 1) used in the main text. The
calculation can be generalized easily to cases where other scaling functions are used. We have

E
[
|x̃m|2

]
= E

[
1

L

L−1∑
t=0

L−1∑
t′=0

xm(t)xm(t′)e−2πif(t−t
′)

]

=
1

L

L−1∑
t=0

E
[
xm(t)2

]
+

1

L

∑
t6=t′

E
[
xm(t)xm(t′)

]
e−2πif(t−t

′).

(S19)

Under permutation, each position t = 0, 1, . . . , L − 1 is equivalent. Thus for any t, E
[
xm(t)2

]
= E

[
xm(0)2

]
.

Moreover, since each mono-nucleotide is independently mapped to a real number according to the scaling function
β : (A, C, G, T)→ (1, 0, 0, 1), we have for any t 6= t′, E [xm(t)xm(t′)] = E [xm(0)xm(1)]. Denote the number of
A and T’s in the nucleosomal sequence sm as rm, i.e., rm is the number of 1’s in the numerical sequence xm. When
rm ≥ 1, we have E

[
xm(0)2

]
= rm

L and E [xm(0)xm(1)] = rm
L
rm−1
L−1 . When rm = 0, we have E

[
xm(0)2

]
= 0 and

E [xm(0)xm(1)] = 0. Furthermore, for f 6= 0,

1

L

∑
t6=t′

e−2πif(t−t
′) =

1

L

∑
t,t′

e−2πif(t−t
′) − 1

L

∑
t=t′

e−2πif(t−t
′)

=
1

L

∣∣∣∣∣
L−1∑
t=0

e−2πift

∣∣∣∣∣
2

− 1

= −1.

(S20)

Therefore, for f 6= 0, we have shown

E
[
|x̃m|2

]
=
rm(L− rm)

L(L− 1)
,

where rm is the number of A and T’s in the nucleosomal sequence sm.

1.4 Circular-linear and circular-circular correlation

Given i.i.d. bivariate data (αk, xk), k = 1, 2, . . . , N , where αk is circular data in [0, 2π), and xk is linear data in R,
the circular-linear correlation between α and x is defined [9] as

r2 =
r2xc + r2xs − 2rxcrxsrcs

1− r2cs
, (S21)

where rxs = corr (x, sinα), rxc = corr (x, cosα), rcs = corr (cosα, sinα), and corr is the sample Pearson
correlation coefficient. This circular-linear correlation was used in Fig. 5B and Fig. S7B to characterize the
correlation between the strength of 10.5-bp periodicity in nucleosomal sequences and the degree of phasing among
these sequences. For this purpose, we first mapped each nucleosomal sequence sk to a real-valued sequence xk
using a fixed scaling function, which is β : (A, C, G, T) → (1, 0, 0, 1) in the main text. We then calculated
the discrete Fourier transform x̃k. The circular-linear correlation was calculated between the circular data φk =

Arg(x̃k) and linear data
√

2|x̃k|2
var(xk)

at some fixed frequency f , where var is the sample variance and 2|x̃k|2
var(xk)

is the
power spectral density normalized by total power. In Fig. 5A and Fig. S7A, we ranked the nucleosomes according
to the strength of 10.5-bp periodicity of their underlying sequences (the power spectral density normalized by total
power 2|x̃k|2

var(xk)
) and divided them into 5 quintiles of equal size (the five circular rings in Fig. 5A and Fig. S7A). We

then binned the phases of their discrete Fourier transform at period 10.5 bp (φk(f = 1/10.5)) into 20 equal intervals
in [0, 2π) (the 20 bins within each ring in Fig. 5A and Fig. S7A). The fraction of nucleosomes lying in each bin
within the corresponding quintile divided by the expectation under uniform distribution is indicated by the color.
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Notice that in Fig. 5A, Fig. S7A and Fig. S8, we chose to count the phase with respect to the dyad. Specifically,
the phase of nucleosomal sequence sk with respect to the dyad at frequency f was defined as Arg(x̃k(f)e2πif×73),
where the extra phase factor e2πif×73 was introduced to enforce the origin to be at the dyad. Equivalently, one may
calculate the discrete Fourier transform using a translated nucleotide index 1√

L

∑73
t=−73 xk(t)e

−2πift and then take
its argument. Note that the circular-linear correlation is invariant with respect to the choice of the origin of phase.

To determine whether the phase of A/T nucleotides in nucleosomal sequences agrees with the phase of histone-
DNA contact points, we created an indicator vector of length 147, where we put 1 at histone-DNA contact points
and 0 at other locations. The locations of histone-DNA contact points were taken to be the sites of primary bound-
phosphate groups that show conserved interaction with histones, as determined by the crystal structure of nucleo-
some [10]; the locations are at −55,−44,−34,−24,−13,−3, 3, 13, 24, 34, 44, 55 bp with respect to the dyad axis
(chosen to be 0). We then performed discrete Fourier transform of this indicator vector and determined its phase
at period 10.5 bp with respect to the dyad axis, as described in the previous paragraph. The phase of histone-DNA
contact points at period 10.5 bp with respect to the dyad axis was calculated to be 3.12.

Given i.i.d. bivariate data (αk, βk), k = 1, 2, . . . , N , where both αk and βk are circular data in [0, 2π), the
circular-circular correlation coefficient between α and β is defined [9] as

r =

∑N
k=1 sin(αk − ᾱ) sin(βk − β̄)√∑N
k=1 sin2(αk − ᾱ) sin2(βk − β̄)

, (S22)

where ᾱ and β̄ are the mean directions of αk and βk, respectively. The mean direction ᾱ of circular data αk is
defined [9] as

ᾱ = arctan∗(S/C) =


arctan(S/C), if C > 0, S ≥ 0,
π/2, if C = 0, S > 0,
arctan(S/C) + π if C < 0,
arctan(S/C) + 2π if C ≥ 0, S < 0,
undefined if C = 0, S = 0,

(S23)

where S =
∑N

k=1 sinαk and C =
∑N

k=1 cosαk. A similar definition holds for β̄. This circular-circular cor-
relation coefficient was used in Fig. 5C and Fig. S9 to characterize the phasing between nucleosome position
and the 10.5-bp periodicity of the underlying sequence. To do that, we first mapped each consensus nucleoso-
mal sequence sk centered at genomic location uk to a real-valued sequence xk using a fixed scaling function,
which is β : (A, C, G, T) → (1, 0, 0, 1) in the main text. We then calculated the discrete Fourier transform x̃k
and took the argument φk(f = 1/10.5) = Arg(x̃k(f = 1/10.5)) of the discrete Fourier transform at period
10.5 bp as one of the circular data sets (for example, αk in Equation S22). For the other circular data set (for
example, βk in Equation S22), we created an indicator vector yk(t), t = 0, 1, . . . , 146 of length 147 for each
consensus nucleosome sk, where yk(t) = 1 if there is a redundant nucleosome centered at genomic location
uk − 73 + t, and yk(t) = 0 otherwise. yk is thus a vector indicating all possible positions that the consensus
nucleosome may occupy in cell population. We then calculated the discrete Fourier transform ỹk and took its ar-
gument ψk(f = 1/10.5) = Arg(ỹk(f = 1/10.5)) at period 10.5 bp as the other circular data set (for example, βk
in Equation S22). The circular-circular correlation coefficient was calculated between the bivariate data (φk, ψk).
Specifically, we restricted ourselves to the consensus nucleosomes with at least 5 redundant nucleosomes lying
within ±73 bp of its dyad position, i.e.,

∑146
t=0 yk(t) ≥ 5 (34,020 out of 67,531 in S. cerevisiae and 41,957 out of

75818 in S. pombe. These numbers are different from those in section 1.5, because we used the window size ±60
bp in that section as suggested by [11], while here we used the window size±73 bp to obtain an indicator sequence
of the same length as a nucleosomal sequence). In Fig. 5C and Fig. S9, we first ranked the consensus nucleosomes
(which satisfy

∑146
t=0 yk(t) ≥ 5) by the strength of 10.5-bp periodicity of their underlying sequences (the power

spectral density normalized by total power 2|x̃k|2
var(xk)

), from small to large values. We then divided the consensus nu-
cleosomes into 10 groups of equal size and calculated the circular-circular correlation coefficient between φk and
ψk within each group. The correlation coefficient was plotted against the group index, with group 1 corresponding
to the smallest strength of 10.5-bp periodicity in nucleosomal sequences (black curves in Fig. 5C and Fig. S9). We

8



also performed the same analysis for other fundamental frequencies. For each group index 1, 2, . . . , 10, we plotted
the median correlation coefficient among all fundamental frequencies excluding 1/10.5, with whiskers showing the
range from the 5th percentile to the 95th percentile (blue curves in Fig. 5C and Fig. S9).

1.5 Fuzziness scores

Nucleosome positioning and nucleosome occupancy are two related but distinct concepts. Nucleosome positioning
can be further distinguished as translational and rotational positioning. We thus clearly define these concepts before
proceeding to define appropriate scores quantifying these different aspects.

Nucleosome occupancy refers to the probability that a given base pair in the genome is occupied by a nucle-
osome in cell population [12, 13], while nucleosome positioning quantifies the degree to which the position of an
individual nucleosome varies across the cell population [13, 14]. Thus, nucleosome occupancy characterizes the
level of nucleosome depletion at a genomic location, while nucleosome positioning measures how well positioned
a nucleosome is.

For an individual nucleosome, translational positioning refers to the degree to which the location of the 147-
bp DNA contacting histone octamer varies in cell population, while rotational positioning refers to the degree
to which the rotational orientation of DNA helix relative to the histone surface varies in cell population [12].
In this section, we define two scores termed the translational and rotational fuzziness to quantify translational
and rotational positioning, respectively. Previous studies utilizing the chemical cleavage method to map genome-
wide nucleosome locations [15, 11] yielded redundant maps of nucleosomes, representing all possible nucleosome
positions across cell population, along with unique maps representing consensus nucleosome positions. We will
now define the translational and rotational fuzziness of a consensus nucleosome in the unique map by assessing the
translational and rotational variance of redundant nucleosome positions associated with the consensus nucleosome.

1.5.1 Translational fuzziness

Denote the set of dyad positions of consensus nucleosomes from the unique map as NU , and the set of dyad
positions of redundant nucleosomes as NR. For a consensus nucleosome u ∈ NU , suppose there are nu redundant
nucleosomes r1, r2, . . . , rnu ∈ NR that are within ±60 bp of u, i.e., |ri − u| ≤ 60, i = 1, 2, . . . , nu. We assume
that these nu positions are all possible positions that the consensus nucleosome u may occupy in different cells.
Each position ri has a nucleosome center positioning (NCP) score kri [15, 16], measuring the relative number of
nucleosomes centered at ri in cell population. We should therefore think of all possible positions that the consensus
nucleosome u may occupy as r1 with probability proportional to kr1 , r2 with probability proportional to kr2 , and
so on. Denote the relative coordinates of ri with respect to u as xi,u = ri−u. We assume that the expectation value
of xi,u is 0, meaning that the expected position of the consensus nucleosome u is u. We define the translational
fuzziness F (trans.)

u of the consensus nucleosome u as the variance of the nu relative coordinates xi,u, weighted by
the NCP score,

F (trans.)
u =

∑nu
i=1 krix

2
i,u∑nu

i=1 kri
. (S24)

Therefore, small translational fuzziness indicates a high degree of translational positioning of a consensus nucleo-
some, and the nucleosome is said to be well positioned translationally in this case. Notice that when nu is small,
we are not able to obtain a good estimate of the variance. We thus calculated translational fuzziness for only those
consensus nucleosomes with nu ≥ 5 (30,628 out of 67,531 nucleosomes in S. cerevisiae and 40,384 out of 75,818
nucleosomes in S. pombe).

1.5.2 Rotational fuzziness

Using the same notation as above, the rotational fuzziness F (rot.)
u of a consensus nucleosome u can be defined as

follows. To capture the relative orientation of DNA helix relative to the histone surface, we converted the relative
coordinates xi,u to relative circular coordinates θ(h)i,u =

xi,u mod h
h × 2π, where h is the helical repeat length. The
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rotational fuzziness of the consensus nucleosome u is then defined as the circular variance [9] of these relative
circular coordinates, weighted by NCP score,

F̂ (rot.)
u (h) = 1− 1∑nu

i=1 kri

√√√√( nu∑
i=1

kri cos θ
(h)
i,u

)2

+

(
nu∑
i=1

kri sin θ
(h)
i,u

)2

. (S25)

Since the helical repeat length h within a nucleosome may vary across different locations and may be different
from that of a free DNA molecule [17], we finally defined the rotational fuzziness as

F (rot.)
u = min

h∈{9.5,9.6,...,11.5}
F̂ (rot.)
u (h). (S26)

Thus, small rotational fuzziness indicates a high degree of rotational positioning of a consensus nucleosome, and
the nucleosome is said to be well positioned rotationally in this case. Because of the same reason mentioned in
the definition of translational fuzziness, we defined rotational fuzziness for only those consensus nucleosomes with
nu ≥ 5.

1.6 Nucleosome occupancy

We followed [11] for the definition of nucleosome occupancy. For both S. cerevisiae and S. pombe, denote the set
of nucleosome dyad positions in the redundant map as NR. The nucleosome occupancy Oi of a genomic location
i is defined as the total NCP score of the redundant nucleosomes in the ±60-bp region of i,

Oi =
∑

|j−i|≤60, j∈NR

kj , (S27)

where kj is the NCP score of genomic location j. The NCP score kj can be interpreted as the relative number
of nucleosomes centered at genomic location j in cell population. Thus the nucleosome occupancy defined above
characterizes the relative probability of a genomic location being covered by a nucleosome in cell population.

We further define the occupancy of a nucleosome (used in Fig. 6C, Fig. S14-16) as the occupancy of its dyad
position.

1.7 Poly(dA:dT) content

The poly(dA:dT) content (for example, in Fig. S20) was calculated as follows: for each base pair i in the genome,
the local poly(dA:dT) content at i was defined as the poly(dA:dT) content of the 147-bp region si centered at i.
The poly(dA:dT) content of si was subsequently defined as the total length of poly(dA:dT) tracts within si divided
by 147, where poly(dA:dT) tract was defined as a homopolymer of A or T of length > 3. We chose si to be of
length 147, because when wrapping the sequence si around histone octamer, only poly(dA:dT) tracts contacting
the histone core would contribute to the DNA bending energy. In the same spirit, we defined the local strength of
10.5-bp mono-nucleotide periodicity at location i (for example, in Fig. 7) as the mono-nucleotide spectral envelope
at period 10.5 bp of the 147-bp sequence si centered at i, and the local strength of 10.5-bp di-nucleotide periodicity
at location i (for example, in Fig. S18) as the di-nucleotide spectral envelope at period 10.5 bp of the 148-bp
sequence si centered at i (from i− 74 to i+ 73).

1.8 Additional details

The distribution of p-values in Fig. 2B, Fig. S1B, Fig. S2B, D, Fig. S3B, D, Fig. S17B, D, F, H and the
distribution of spectral envelopes at period 10.5 bp in Fig. S12 were smoothed using a Gaussian kernel with
bandwidth determined by the Silverman’s rule and default settings in the function SmoothKernelDistribution of
Mathematica, where the kernel function was specified to account for the domain of the underlying density.

10



Supplementary References

[1] Peter Bloomfield. Fourier analysis of time series: an introduction. John Wiley & Sons, 2004.

[2] Robert H Shumway and David S Stoffer. Time series analysis and its applications. Springer Science &
Business Media, 2013.

[3] Belinda Phipson and Gordon K Smyth. Permutation p-values should never be zero: calculating exact p-values
when permutations are randomly drawn. Statistical applications in genetics and molecular biology, 9(1),
2010.

[4] CJ Clopper and Egon S Pearson. The use of confidence or fiducial limits illustrated in the case of the binomial.
Biometrika, pages 404–413, 1934.

[5] Yoav Benjamini and Yosef Hochberg. Controlling the false discovery rate: a practical and powerful approach
to multiple testing. Journal of the Royal Statistical Society. Series B (Methodological), pages 289–300, 1995.

[6] Axel Gandy and Georg Hahn. MMCTest–a safe algorithm for implementing multiple monte carlo tests.
Scandinavian Journal of Statistics, 41(4):1083–1101, 2014.

[7] Daniel Kurz, Horst Lewitschnig, and Jürgen Pilz. Decision-theoretical model for failures which are tackled
by countermeasures. Reliability, IEEE Transactions on, 63(2):583–592, 2014.

[8] Jun S Song and David E Fisher. Nucleosome positioning in promoters: significance and open questions.
Epigenomics: From Chromatin Biology to Therapeutics, pages 47–60, 2012.

[9] S Rao Jammalamadaka and Ambar Sengupta. Topics in circular statistics, volume 5. World Scientific, 2001.

[10] Timothy J Richmond and Curt A Davey. The structure of DNA in the nucleosome core. Nature,
423(6936):145–150, 2003.

[11] Georgette Moyle-Heyrman, Tetiana Zaichuk, Liqun Xi, Quanwei Zhang, Olke C Uhlenbeck, Robert
Holmgren, Jonathan Widom, and Ji-Ping Wang. Chemical map of Schizosaccharomyces pombe reveals
species-specific features in nucleosome positioning. Proceedings of the National Academy of Sciences,
110(50):20158–20163, 2013.

[12] Jonathan Widom. Role of DNA sequence in nucleosome stability and dynamics. Quarterly reviews of bio-
physics, 34(03):269–324, 2001.

[13] B Franklin Pugh. A preoccupied position on nucleosomes. Nature structural & molecular biology, 17(8):923–
923, 2010.

[14] Noam Kaplan, Timothy R Hughes, Jason D Lieb, Jonathan Widom, and Eran Segal. Contribution of histone
sequence preferences to nucleosome organization: proposed definitions and methodology. Genome Biol,
11(11):140, 2010.

[15] Kristin Brogaard, Liqun Xi, Ji-Ping Wang, and Jonathan Widom. A map of nucleosome positions in yeast at
base-pair resolution. Nature, 486(7404):496–501, 2012.

[16] Liqun Xi, Kristin Brogaard, Qingyang Zhang, Bruce Lindsay, Jonathan Widom, and Ji-Ping Wang. A locally
convoluted cluster model for nucleosome positioning signals in chemical maps. Journal of the American
Statistical Association, 109(505):48–62, 2014.
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Fig. S1: Only a small fraction of nucleosomal sequences contain significant 10.5-bp periodicity in mono-
nucleotides. (A) Average mono-nucleotide spectral envelope of nucleosomal sequences (blue curve) and randomly
permuted nucleosomal sequences (yellow curve) in S. pombe. (B) Distribution of p-values assessing the statisti-
cal significance of 10.5-bp periodicity in mono-nucleotides of nucleosomal sequences (blue curve) and randomly
permuted nucleosomal sequences (yellow curve) in S. pombe. (C) Distribution of p-values assessing the statistical
significance of 10.5-bp periodicity in mono-nucleotides of S. cerevisiae nucleosomal sequences (grey histogram)
and the fitted curve using the beta-uniform mixture model (Supplementary Methods section 1.1) (solid red curve).
Also shown are the fitted uniform component (dashed brown curve) and the fitted beta component (dashed green
curve). (D) Same as (C) for S. pombe.
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Fig. S2: Nucleosomal sequences in both S. cerevisiae and S. pombe have enriched 10.5-bp di-nucleotide periodicity
compared to randomly permuted sequences. (A) Average di-nucleotide spectral envelope of nucleosomal sequences
(blue curve) in S. cerevisiae and randomly permuted sequences (yellow curve). (B) Distribution of p-values assess-
ing the statistical significance of 10.5-bp di-nucleotide periodicity of nucleosomal sequences in S. cerevisiae (blue
curve) and randomly permuted sequences (yellow curve). (C,D) Same as (A,B) for S. pombe.
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Fig. S3: The strength of 10.5-bp periodicity is comparable among the E. coli, S. cerevisiae, and S. pombe genomes.
(A) Average mono-nucleotide spectral envelope of randomly selected 147-bp genomic regions from E. coli (25,971
sequences, about the same genome coverage as in S. cerevisiae and S. pombe), S. cerevisiae (67,531 sequences,
equal to the number of consensus nucleosomes), and S. pombe (75,818 sequences, equal to the number of consen-
sus nucleosomes). (B) Distribution of p-values assessing the statistical significance of 10.5-bp mono-nucleotide
periodicity of randomly selected 147-bp genomic regions from E. coli, S. cerevisiae, and S. pombe. (C,D) Same as
in (A,B) for di-nucleotides.

14



�

2 5 10 50
0

2000

4000

6000

8000

10000

Period (bp)

A
lig
ne
d
en
ric
hm
en
t

S. pombe

�

2 5 10 50

1.0

1.2

1.4

1.6

1.8

2.0

Period (bp)

S. pombe

In
di
vi
du
al
en
ric
hm
en
t

0

2000

4000

6000

8000
P
ha
si
ng
en
ric
hm
en
t

Fig. S4: Spectral decomposition of periodicity in average nucleotide frequency of dyad-aligned nucleosomal se-
quences in S. pombe, where A and T were set to 1 and C and G to 0. (A) The spectrum of aligned enrichment (see
main text) for nucleosomal sequences in S. pombe. (B) The spectrum of individual enrichment (blue curve) and
phasing enrichment (yellow curve) (see main text) in S. pombe.

15



�

2 5 10 50
0.5

1.0

1.5

2.0

Period (bp)

R
es
id
ua
lf
ac
to
r

S. cerevisiae
�

2 5 10 50

0.5

1.0

1.5

Period (bp)

R
es
id
ua
lf
ac
to
r

S. pombe

Fig. S5: Residual factor (see main text) of the spectral decomposition in S. cerevisiae and S. pombe, where A and
T were set to 1, and C and G to 0. (A) The spectrum of residual factor for nucleosomal sequences in S. cerevisiae.
(B) The spectrum of residual factor for nucleosomal sequences in S. pombe.

16



�

2 5 10 50
0

1000

2000

3000

4000

5000

Period (bp)

A
lig
ne
d
en
ric
hm
en
t

�

2 5 10 50

1.0

1.2

1.4

1.6

1.8

2.0

Period (bp)

In
di
vi
du
al
en
ric
hm
en
t

0

1000

2000

3000

4000

P
ha
si
ng
en
ric
hm
en
t

�

2 5 10 50
0.5

1.0

1.5

2.0

Period (bp)

R
es
id
ua
lf
ac
to
r

Fig. S6: Subsampling nucleosomal sequences yielded unstable spectrums of the residual factor, whereas the
aligned, individual, and phasing enrichments remained stable. We subsampled from nucleosomes in S. cerevisiae
by taking each nucleosome with probability 0.5, and calculated the spectral decomposition of the subsampled nucle-
osomal sequences, with A and T set to 1, and C and G to 0. Here we show the result of one instance of subsampling.
(A) Spectrum of aligned enrichment of the subsampled nucleosomal sequences. (B) Spectrum of individual enrich-
ment (blue curve) and phasing enrichment (yellow curve) of the subsampled nucleosomal sequences. (C) Spectrum
of residual factor of the subsampled nucleosomal sequences. The residual factor has clearly changed from Fig. S5.
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Fig. S7: Phases of nucleosomal sequences in S. pombe at 10.5-bp periodicity. For this analysis, A and T were set to
1, and C and G to 0. (A) Phasing of sequences is evident in the Fourier space at period 10.5 bp. Nucleosomes were
ranked according to the strength of 10.5-bp periodicity and divided into 5 quintiles (the five circular rings separated
by black circles). The phases (with respect to the dyad) of their discrete Fourier transform at period 10.5 bp were
then binned into 20 equal intervals (the 20 bins within each ring). Colors indicate the fraction of nucleosomes lying
in each bin divided by the expectation under a uniform null distribution (Supplementary Methods section 1.4). (B)
Circular-linear correlation between the phase and strength of 10.5-bp periodicity (Supplementary Methods section
1.4).

18



�
Probability density

0.10

0.15

0.20

0.25

�
Probability density

0.10

0.15

0.20

0.25

Fig. S8: Phasing among nucleosomal sequences is unique for period 10.5 bp and does not occur at any other peri-
ods. (A) Nucleosomal sequences in S. cerevisiae were converted to numerical sequences by setting A and T to 1,
and C and G to 0. We then calculated the discrete Fourier transform of the numerical sequences and obtained the
argument (phase) of the discrete Fourier transform with respect to the dyad at each fundamental frequency (Sup-
plementary Methods section 1.4). Figure shows the distribution of these phases, smoothed using a Gaussian kernel
with bandwidth determined by the Silverman’s rule, and default settings in the function SmoothKernelDistribution
of Mathematica. To remove boundary effects, we first augmented the phases to the range [−2π, 4π) by adding
θ ± 2π to the data for any phase θ ∈ [0, 2π). We then calculated the kernel density estimate f̂(θ) of the phase
distribution in [−2π, 4π). The kernel density estimate of the phase distribution in [0, 2π) was taken to be 3f̂(θ).
(B) Same as in (A), but for S. pombe.
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Fig. S9: Redundant nucleosome positions and underlying sequences are highly in phase with each other at pe-
riod 10.5 bp in S. pombe. Figure shows the circular-circular correlation between the phase of nucleotide Fourier
transform and the phase of nucleosome location Fourier transform at period 10.5 bp (black curve, Supplementary
Methods section 1.4). Consensus nucleosomes were first ranked according to the strength of their 10.5-bp nu-
cleotide periodicity and then divided into 10 groups of equal size. The x-axis represents the group index, with
group 1 having the smallest strength of 10.5-bp periodicity. Blue curve shows the median correlation coefficient
among all fundamental frequencies excluding 1/10.5, with whiskers showing the range from the 5th percentile to
the 95th percentile.
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Fig. S10: Spectral envelope of nucleosomes in S. pombe grouped by the level of (A) rotational positioning and
(B) translational positioning. Nucleosomes in S. pombe were ranked from small to large values by rotational
fuzziness and translational fuzziness, respectively. The average mono-nucleotide spectral envelope of nucleosomal
sequences within each quintile was then plotted, where the 1st quintile contains nucleosomes with the smallest
rotational fuzziness and translational fuzziness, respectively.
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Fig. S11: The slight correlation between translational fuzziness and 10.5-bp periodicity in S. cerevisiae (Fig. 6B)
results from the anti-correlation between translational and rotational fuzziness. In the top left panel, we ranked
the nucleosomes in S. cerevisiae by translational fuzziness and divided them into 5 groups of equal size. For
example, the (1,1) square represents the quintile with the smallest translational fuzziness. The squares were colored
by the average mono-nucleotide spectral envelope at period 10.5 bp within the corresponding groups. The size
of the black dot at the center of the squares represents the relative number of nucleosomes within that group.
The top left panel shows that the 5 quintiles have the same number of nucleosomes by definition, and there is
a slight correlation between 10.5 bp periodicity and translational fuzziness (blue to red color from (1,1) to (5,5)
square), consistent with Fig. 6B. The bottom right panel is like the top left panel, but the nucleosomes were
ranked by rotational fuzziness instead. The bottom right panel shows a distinct anti-correlation between 10.5-bp
periodicity and rotational fuzziness, consistent with Fig. 6A. In the bottom left panel, we ranked the nucleosomes
simultaneously by translational and rotational fuzziness, and binned the nucleosomes using the same intervals as
in the top left and bottom right panels. For example, the (1,1) square contains nucleosomes that lie in the (1,1)
square of the top left panel and the (1,1) square of the bottom right panel simultaneously, i.e. the nucleosomes
with the smallest rotational and translational fuzziness. The bottom left panel shows that as rotational fuzziness
increases (from 1 to 5), more and more nucleosomes contain small translational fuzziness, since, for example, the
size of black dots increases from (1,1) to (1,5) square. We therefore concluded that the observed slight correlation
between translational fuzziness and 10.5-bp periodicity (top left panel, Fig. 6B) is an indirect consequence of this
anti-correlation between translational and rotational fuzziness.
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Fig. S12: 10.5-bp periodicity facilitates rotational but not translational positioning. (A) The top panel shows the
distribution of the 10.5-bp mono-nucleotide spectral envelope of individual nucleosomes in S. cerevisiae. We
binned the 10.5-bp spectral envelope into 5 intervals of equal size, shown as different colors in the top panel. The
bottom panel is a box plot showing the distribution of rotational fuzziness of individual nucleosomes within each
bin. (B) Same as in (A), with the box plot showing the distribution of square root of translational fuzziness. (C)
Same as in (A), but for S. pombe. (D) Same as in (B), but for S. pombe.
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Fig. S13: Di-nucleotide spectral envelope of nucleosomes in S. cerevisiae and S. pombe grouped by the level of
rotational and translational positioning. (A) Nucleosomes in S. cerevisiae were ranked from small to large values
by rotational fuzziness. Figure shows the average di-nucleotide spectral envelope of nucleosomal sequences within
each quintile, where the 1st quintile contains the nucleosomes with the smallest rotational fuzziness. (B) Same as
in (A), but with nucleosomes ranked by translational fuzziness. (C) Same as in (A), but for S. pombe. (D) Same as
in (B), but for S. pombe.
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Fig. S14: Spectral envelope of nucleosomes in S. pombe grouped by the level of nucleosome occupancy. Nucle-
osomes in S. pombe were ranked from small to large values by nucleosome occupancy. Figure shows the average
mono-nucleotide spectral envelope of nucleosomal sequences within each quintile, where the 1st quintile contains
the nucleosomes with the smallest nucleosome occupancy.
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Fig. S15: A finer look at the contribution of 10.5-bp periodicity to nucleosome occupancy in S. cerevisiae and S.
pombe. (A) Nucleosomes in S. cerevisiae were ranked from small to large values of nucleosome occupancy, where
the occupancy was normalized to genome-wide average. We then divided the nucleosomes into 50 groups of equal
size and plotted the average mono-nucleotide spectral envelope at period 10.5 bp against the average nucleosome
occupancy within each group. (B) Same as in (A), but for S. pombe.
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Fig. S16: The contribution of 10.5-bp di-nucleotide periodicity to nucleosome occupancy is only modest. (A)
Nucleosomes in S. cerevisiae were ranked from small to large values of nucleosome occupancy. Figure shows
the average di-nucleotide spectral envelope of nucleosomal sequences within each quintile, where the 1st quintile
contains the nucleosomes with the smallest nucleosome occupancy. (B) Same as in (A), but for S. pombe. (C) Nu-
cleosomes in S. cerevisiae were ranked from small to large values by nucleosome occupancy, where the occupancy
is normalized to genome-wide average. We then divided the nucleosomes into 50 groups of equal size and plotted
the average di-nucleotide spectral envelope at period 10.5 bp against the average nucleosome occupancy within
each group. (D) Same as in (C), but for S. pombe.
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Fig. S17: Randomly selected genomic regions contain a comparable amount of 10.5-bp periodicity as nucleosomal
sequences, while nucleosome depleted regions (NDRs) contain much less periodicity. (A) The average mono-
nucleotide spectral envelope of 67,531 consensus nucleosomal sequences (blue curve), 67,531 randomly selected
147-bp genomic regions (green curve), and 4,113 linker regions with length greater than 147-bp (NDRs) (purple
curve) in S. cerevisiae. (B) The distribution of empirical p-value assessing the statistical significance of 10.5-bp
periodicity in mono-nucleotides for the same groups of sequences as in (A). (C,D) Same as (A,B), but for di-
nucleotides. (E) The average mono-nucleotide spectral envelope of 75,818 consensus nucleosomal sequences (blue
curve), 75,818 randomly selected 147-bp genomic regions (green curve), and 4,180 linker regions with length
greater than 147-bp (NDRs) (purple curve) in S. pombe. (F) The distribution of empirical p-value assessing the
statistical significance of 10.5-bp periodicity in mono-nucleotides for the same groups of sequences as in (E).
(G,H) Same as in (E,F), but for di-nucleotides.
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Fig. S18: Nucleosome-depleted regions in S. cerevisiae contain reduced 10.5-bp periodicity in di-nucleotides. (A)
For each genomic location i, we computed the di-nucleotide spectral envelope at period 10.5 bp of the 148-bp
region centered at that location (from i − 74 to i + 73), normalized to the genome-wide mean. Figure shows the
spectral envelope aligned at TSS of 3,005 genes (main text, Materials and Methods) in S. cerevisiae, normalized
to the genome-wide mean (red curve), together with aligned nucleosome occupancy (grey curve). (B) Same as in
(A), but aligned at TTS.
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Fig. S19: Nucleosome-depleted regions in S. pombe contain reduced 10.5-bp periodicity. (A) At each genomic
location i, we computed the mono-nucleotide spectral envelope at period 10.5 bp of the 147-bp region centered at
that location, normalized to the genome-wide mean. Figure shows the spectral envelope aligned at TSS of 3,692
genes (main text, Materials and Methods) in S. pombe, normalized to the genome-wide mean (red curve), together
with aligned nucleosome occupancy (grey curve). (B) Same as in (A), but aligned at TTS. (C,D) Same as in (A,B),
but for di-nucleotides.
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Fig. S20: Poly(dA:dT) contents around TSS and TTS in S. cerevisiae and S. pombe (Supplementary Methods sec-
tion 1.7). (A) Poly(dA:dT) content (normalized to the genome-wide mean) and nucleosome occupancy (normalized
to the genome-wide mean) around TSS in S. cerevisiae. (B) Same as in (A), but around TTS. (C,D) Same as in
(A,B), but for S. pombe.

31



3 Supplementary Tables

Table S1: Fraction of sequences containing 10.5-bp periodicity in S. cerevisiae, S. pombe and E. coli. We calculated
empirical p-values characterizing the statistical significance of 10.5-bp periodicity in mono- and di-nucleotides of
nucleosomal sequences (nucleosomes), randomly selected genomic regions (random regions), and linker regions of
length> 147 bp (nucleosome depleted regions) in both S. cerevisiae and S. pombe (Supplementary Methods section
1.1.2). We also calculated empirical p-values characterizing the statistical significance of 10.5-bp periodicity in
mono- and di-nucleotides of randomly selected genomic regions (random regions) in E. coli. We then fitted the
distribution of the empirical p-values using a beta-uniform mixture model (Supplementary Methods section 1.1.2).
The numbers are the estimated mixing coefficient π̂1 of the beta component (Equation S2).

Mono-nucleotide Di-nucleotide

S. cerevisiae
Nucleosomes 0.198 0.0879

Random regions 0.182 0.0825
Nucleosome depleted regions 0.0807 0.0305

S. pombe
Nucleosomes 0.155 0.0438

Random regions 0.125 0.0268
Nucleosome depleted regions 0.0540 0.0302

E. coli Random regions 0.154 0.0694
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Table S2: Upper bounds on the fraction of sequences with significant 10.5-bp periodicity at 5% FDR in S. cere-
visiae, S. pombe and E. coli (Supplementary Methods section 1.1.2).

Mono-nucleotide Di-nucleotide

S. cerevisiae
Nucleosomes 0.046 0.032

Random regions 0.044 0.031
Nucleosome depleted regions 0.038 0.028

S. pombe
Nucleosomes 0.040 0.027

Random regions 0.038 0.025
Nucleosome depleted regions 0.034 0.024

E. coli Random regions 0.042 0.031
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Table S3: Ratio of the value of each factor at 3 and 10.5 bp, respectively, to the corresponding background average,
in S. pombe.

1/f A(f) I(f) P (f) R(f)

3 bp 35.6 2.03 14.8 1.18
10.5 bp 87.0 1.01 85.8 1.01
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