
1 Supplementary Note

1.1 Quantitative Traits

Suppose we sample two cohorts with sample sizes N1 and N2. We measure phenotype 1 in cohort
1 and phenotype 2 in cohort 2. We model phenotype vectors for each cohort as y1 = Y β + δ, and
y2 = Zγ + ε, where Y and Z are matrices of genotypes with columns standardized to mean zero
and variance one1, with dimensions N1 ×M and N2 ×M , respectively; β and γ are vectors of per-
standardized genotype effect sizes, and δ and ε are vectors of residuals, representing environmental
effects and non-additive genetic effects. In this model, Y and Z are unobserved matrices of all
SNPs, including SNPs that are not genotyped.

We treat all of Y, Z, β, γ, δ and ε as random. We model all of these as independent, except for
β, γ, δ, ε. Suppose that (β, γ) has mean zero and covariance matrix2

Var[(β, γ)] =
1

M

(
h21I ρgI
ρgI h22I

)
,

and (δ, ε) has mean zero and covariance matrix

Var[(δ, ε)] =

(
(1− h21)I ρeI
ρeI (1− h22)I

)
.

Let ρ := ρg + ρe. Vectors of genotypes for each individual are drawn i.i.d. from a distribution with
covariance matrix r (i.e., r is an LD matrix with rjk = E[YijYik]). There are Ns individuals who
are included in both studies.

Lemma 1. Under this model, the expected genetic covariance (as defined in methods) between
phenotypes is ρg, justifying our use of the notation ρg.

Proof. Let X denote an 1×M vector of standardized genotypes for an arbitrary individual. Under
the model, the additive genetic component of phenotype1 1 for this individual is

∑
j Xjβj , and

the additive genetic component of phenotype 1 for this individual is
∑

j Xjγj . Thus, the genetic

1We ignore the distinction between normalizing and centering in the population and in the sample, since this
introduces only O(1/N) error.

2The assumption that all β is drawn with equal variance for all SNPs hides an implicit assumption that rare SNPs
have larger per-allele effect sizes than common SNPs. As discussed in the simulations section of the main text and
in our earlier work [1], LD Score regression is robust to moderate violations of this assumption, though it may break
down in extreme cases, e.g., if all causal variants are rare. In situations where a different model for Var[β] is more
appropriate, all proofs in this note go through with LD Score replaced by weighted LD Scores, `j =

∑
k Var[βj ]r

2
jk.
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covariance between phenotype 1 and phenotype 2 is

Cov

∑
j

Xjβj ,
∑
j

Xjγj

 = E

∑
j

Xjβj

∑
j

Xjγj


=
∑
j

∑
k

E[XjXkβjγk]

=
∑
j

E[X2
j βjγj ]

=
∑
j

E[X2
j ]E[βjγj ]

= ρg.

We compute linear regression z-scores z1j := Y T
j y1/

√
N1 and z2j := Y T

j y2/
√
N2 for genotyped

SNPs j (where Yj and Zj denote the jth columns of Y and Z).

Definition 1. The LD Score of a variant j is `j :=
∑

k r
2
jk, where the sum is taken over all other

variants k.

Proposition 1. Let j denote a genotyped SNP. Under the model described above,

E[z1jz2j ] =

√
N1N2ρg
M

`j +
Nsρ√
N1N2

. (1)

Proof. By the law of total expectation,

E[z1jz2j ] = E[E[z1jz2j |Y,Z]] (2)

First we compute the inner expectation from Equation 2, with Z and Y fixed.

E[z1jz2j |Y, Z] =
1√
N1N2

E[Y T
j y1y

T
2 Zj ]

=
1√
N1N2

Y T
j E[(Y β + δ)(Zγ + ε)T]Zj

=
1√
N1N2

Y T
j

(
Y E[βTγ]Z + E[δTZγ] + E[βTY Tε] + E[δTε]

)
Zj

=
1√
N1N2

Y T
j

(
Y E[βTγ]Z + E[δTε]

)
Zj

=
1√
N1N2

( ρg
M
Y T
j Y Z

T
j Z + ρeY

T
j Zj

)
. (3)

Next, we remove the conditioning on Y and Z.

1√
N1N2

E[Y T
j Zj ] =

Ns√
N1N2

, (4)
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and
1√
N1N2

E[Y T
j Y Z

T
j Z] = `j +

MNs√
N1N2

. (5)

Substituting equations 4 and 5 into Equation 3,

E[z1jz2j ] =

√
N1N2ρg
M

`j +
Ns (ρg + ρe)√

N1N2

=

√
N1N2ρg
M

`j +
Nsρ√
N1N2

. (6)

If study 1 and study 2 are the same study, then N1 = N2 = Ns, ρg = h2g and ρ = 1, so Equation
6 reduces to the LD Score regression equation for a single trait from [1].

1.2 Regression Weights

We can improve the efficiency of LD Score regression by weighting by the reciprocal of the con-
ditional variance function (CVF), Var[z1jz2j | `j ]. The CVF is not uniquely determined by the
assumptions about the first and second moments of β and γ used to derive Proposition 1. There-
fore we derive the CVF for the case where z1j and z2j are jointly distributed as bivariate normal3.
From a standard formula for double second moments of the bivariate normal, the CVF is

Var[z1jz2j | `j ] = Var[z1j ]Var[z2j ] + E[z1jz2j ]
2

=

(
N1h

2
1`j

M
+ 1

)(
N2h

2
2`j

M
+ 1

)
+

(√
N1N2ρg
M

`j +
ρNs√
N1N2

)2

(7)

The terms on the left follow from the fact that Var[zij ] = χ2
ij and E[χ2] = Nh2`j/M + 1. The term

on the right follows from Proposition 1. Note that if z1 = z2, this reduces to the expression for the
CVF of χ2 statistics from [1] (though there is an error in Equation 3.2 of the supplementary note
of [1]; the right side is missing a factor of 2. We thank Peter Visscher for pointing this out).

In cases where the normality assumption does not hold, LD Score regression will remain un-
biased, but may be inefficient, because the regression weights will be suboptimal. We also apply
a heuristic weighting scheme to avoid overcounting SNPs in high-LD regions, described in the
methods.

1.3 Liability Threshold Model

In the liability threshold (probit) model [2], binary traits are determined by an unobserved con-
tinuous liability ψ. The observed trait is y := 1[ψ > τ ], where τ is the liability threshold. If ψ is
normally distributed, then setting τ := Φ−1(1−K) (where Φ is the standard normal cdf) yields a
population prevalence of K.

For phenotypes generated according to the liability threshold model, we can estimate not only
the heritability and genetic covariance of the observed phenotype, but also the heritability and
genetic covariance of the unobserved liability.

3For instance, it is sufficient but not necessary to assume that β, γ, δ and ε are multivariate normal. More generally,
the z-scores will be approximately normal if β and γ are reasonably polygenic. If the distribution of effect sizes is
heavy-tailed, e.g., if there are few causal SNPs, then the CVF may be larger.
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In the next lemma, we derive population case and control allele frequencies in terms of the
heritability of liability when liability is generated following the model for quantitative traits from
section 1.1. Since we are only modeling additive effects and are willing to assume Hardy-Weinberg
equilibrium, we lose no generality and simplify notation considerably by stating the proofs in terms
of haploid genotypes.

We state this lemma in terms of marginal per-allele effect sizes, instead of the per-standardized-
genotype effect sizes considered in section 1.1. Here marginal means that these are the effect sizes
obtained by univariate regression of phenotype against genotype in the infinite data limit. Haploid
standardized genotypes are defined Xij := (Gij − pj)/

√
pj(1− pj), where Gij is the 0-1 coded

genotype. If βj is the marginal per-standardized-genotype effect and ζj is the marginal per-allele
effect, we have Xjβj = Gjζj . Thus, setting Gij = 1 yields ζj = βj

√
(1− pj)/pj .

Lemma 2. Suppose unobserved liabilities ψ,ϕ for traits y1, y2 with thresholds τ1, τ2 corresponding
to prevalences K1,K2 are generated according to the mode for quantitative traits from section 1.1,
i.e., ψi =

∑
j Xijβj + δ, ϕi =

∑
j Xijγj + ε, with

Var[(β, γ)] =
1

M

(
h21I ρgI
ρgI h22I

)
,

and

Var[(δ, ε)] =

(
(1− h21)I ρeI
ρeI (1− h22)I

)
.

Let ζj and ξj denote the marginal per-allele effect sizes of SNP j on ψ and ϕ. Let

pcas,kj := P[Gij = 1 | yik = 1]

pcon,kj := P[Gij = 1 | yik = 0]

denote the allele frequencies of SNP j in cases and controls for phenotype k, where yik denotes the
value of phenotype k for individual i and k = 1, 2. Then

E[pcas,1j − pcon,1j ] = 0,

E[pcas,2j − pcon,2j ] = 0,

Var[pcas,1j − pcon,1j ] =
pj(1− pj)φ(τ1)

2h21
MK2

1 (1−K1)2
`j ,

Var[pcas,2j − pcon,2j ] =
pj(1− pj)φ(τ2)

2h22
MK2

2 (1−K2)2
`j ,

Cov[pcas,1j − pcon,1j , pcas,2j − pcon,2j ] =
pj(1− pj)φ(τ1)φ(τ2)ρg

MK1(1−K1)K2(1−K2)
`j ,

where the expectation is taken over where φ is the standard normal density. These results apply
to population allele frequencies, not allele frequencies in a finite sample. We deal with ascertained
finite samples in the next section.

Proof. This proof is accomplished in two steps. First, we compute allele frequencies conditional
on the marginal effects on liability. To do this, we reverse the conditional probability using Bayes’
theorem, which reduces the problem to a series of [Taylor approximations to] Gaussian integrals.
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Second, we remove the conditioning on the marginal effects on liability in order to express the allele
frequencies in terms of h21, h

2
2, ρg and `j . Since liability is just a quantitative trait, we need only

apply the LD Score regression equation for quantitative traits.
By Bayes’ rule,

P[Gij = 1 | yi1 = 1, ζj ] =
P[yi1 = 1 |Gij = 1, ζj ]P[Gij = 1]

P[yi1 = 1]

=
pj
K1

P[yi1 = 1 |Gij = 1, ζj ]

=
pj
K1

P[ψi > τ1 |Gij = 1, ζj ]. (8)

The distribution of ψ given Gij and ζj is ψ | (Gij = 1, ζj) ∼ N(ζj , 1− ζ2j ) ≈ N(ζj , 1) (where the
approximation that the variance equals one holds when the marginal heritability explained by j is
small, which is the typical case in GWAS). Thus P[ψi > τ1 |Gij = 1] is simply a Gaussian integral.
We approximate this probability with a first-order Taylor expansion around τ1.

P[ψi > τ1 |Gij = 1, ζj ] = 1− Φ(τ1 − ζj)
≈ K1 + φ(τ1)ζj , (9)

Substituting Equation 9 into Equation 8,

P[Gij = 1 | yi1 = 1, ζj ] =
pj
K

(K1 + φ(τ1)ζj) . (10)

A similar argument shows that

P[Gij = 1 | yi1 = 0, ζj ] =
pj

1−K1
(1−K1 − φ(τ1)ζj) . (11)

Subtracting Equation 11 from Equation 10,

P[Gij = 1 | yi1 = 1, ζj ]− P[Gij = 1 | yi1 = 0, ζj ] = pj
φ(τ1)ζj

K1(1−K1)
. (12)

Similar results hold for trait 2, replacing ζ with ξ and subscript 1 with subscript 2.
We have written the probabilities in question in terms of constants and marginal effects on

liability. Since liability is simply a quantitative trait, the means, variances, and covariances of the
marginal effects on liability are described by the LD Score regression equation for quantitative
traits from Proposition 1. Precisely, E[ξj ] = E[ζj ] = 0, Var[ξj ] = (1 − pj)h

2
1`j/pjM , Var[ζj ] =

(1 − pj)h22`j/pjM and Cov[ζj , ξj ] = (1 − pj)ρg`j/pjM . If we combine these results with Equation
12, we find that

E[pcas,1j − pcon,1j ] = 0; (13)

Var[pcas,1j − pcon,1j ] = Var

[
pjφ(τ1)ζj
K1(1−K1)

]
=
pj(1− pj)φ(τ1)

2h21
MK2

1 (1−K1)2
`j (14)
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(similarly for trait two), and

Cov[pcas,1j − pcon,1j , pcas,2j − pcon,2j ] = Cov

[
pjφ(τ1)ζj
K1(1−K1)

,
pjφ(τ2)ξj
K2(1−K2)

]
=

pj(1− pj)φ(τ1)φ(τ2)ρg
MK1(1−K1)K2(1−K2)

`j . (15)

1.4 Ascertained Studies of Liability Threshold Traits

In the next proposition, we derive an LD Score regression equation for ascertained case/control
studies.

Let Pi denote the sample prevalence of yi in study i for i = 1, 2. We compute z-scores

zj :=

√
NP (1− P )(p̂cas − p̂con)√

p̂j(1− p̂j)
,

where p̂j denotes allele frequency in the entire sample4, p̂cas denotes sample case allele frequency
and p̂con denotes sample control allele frequency.

We emphasize one subtlety before stating the main proposition. The results in this section allow
for study k to select samples based on phenotype l only if k = l. If study 1 ascertains on phenotype
2 – for example, if all cases i in study 1 have yi1 = yi2 = 1 — then p̂cas,1j will not be an unbiased
estimate of pcas,1j . Indeed, in this example, E[p̂cas,1j ] = P[Gij = 1 | y1 = y2 = 1], which will not
equal pcas,1j = P[Gij = 1 | y1 = 1] unless ρ = 1 or ρ = 0. This follows from the fact that the
conditionals and marginals of a bivariate normal are equal iff ρ = 0 or ρ = 1. We do not derive
formulae describing the bias, except to note that the most common scenario, the “healthy controls”
model — cases are sampled independently but all controls are controls for both traits — is probably
nothing to worry about, so long as cases for both traits are uncommon. In this scenario, P[Gij =
1 | yi1 = 0] ≈ P[Gij = 1 | yi1 = yi2 = 0]. Conditioning on yi2 = 0 hardly changes the distribution,
because yi2 = 0 most of the time, anyway. In addition, excluding double cases from the analysis (as
a conservative defense against spurious comorbidity) is also likely to be safe for pairs of uncommon
traits with small excess comorbidity. In this case, P[Gij = 1 | yi1 = 1] ≈ P[Gij = 1 | yi1 = 1, yi2 = 0],
so long as y2 is uncommon and not too highly correlated with y1.

Proposition 2. Under the liability threshold model from lemma 1.3,

E[z1jz2j ] ≈
√
N1N2ρg,obs

M
`j +

√
N1N2P1(1− P1)P2(1− P2)

 ∑
a,b∈{cas,con}

Na,b(−1)1+1[a=b]

Na,1Nb,2

 (16)

where

ρg,obs := ρg

(√
φ(τ1)φ(τ2)P1(1− P1)P2(1− P2)

K1(1−K1)K2(1−K2)

)
denotes observed scale genetic covariance, Na,b denotes the number of individuals with phenotype a
in study 1 and b in study two for a, b ∈ {cas, con} (e.g., Ncas,con is the number of individuals who

4Conditional on the marginal effect of j, the expected value of p̂j is not equal to pj unless P = K or the marginal
effect of j is zero.
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are a case in study 1 but a control in study 2), Ni denotes total sample size in study i and Na,i for
a ∈ {cas, con} and i = 1, 2 denotes the number of individuals with phenotype a in study i.

Observe that ρg,obs/
√
h21,obsh

2
2,obs = ρg/

√
h21h

2
2 = rg. Put another way, the natural definition for

“observed scale genetic correlation” turns out to be the same as regular genetic correlation, because
the scale transformation factors in the numerator and denominator cancel. This is convenient: we
can compute genetic correlations for binary traits on a sensible scale without having to worry about
sample and population prevalences.

Proof. The full form of z1jz2j is

z1jz2j =

√
cN1N2(p̂cas,1j − p̂con,1j)(p̂cas,2j − p̂con,2j)√

p̂1j(1− p̂1j)p̂2j(1− p̂2j)
,

where c := P1(1− P1)P2(1− P2). Our strategy for obtaining the expectation is

E[z1jz2j ] ≈
√
cN1N2

E[(p̂cas,1j − p̂con,1j)(p̂cas,2j − p̂con,2j)]
E[
√
p̂1j(1− p̂1j)p̂2j(1− p̂2j)]

(17)

≈
√
cN1N2

E[(p̂cas,1j − p̂con,1j)(p̂cas,2j − p̂con,2j)]√
E[p̂1j(1− p̂1j)p̂2j(1− p̂2j)]

(18)

=
√
cN1N2

E [E[(p̂cas,1j − p̂con,1j)(p̂cas,2j − p̂con,2j) | ζj , ξj ]]√
E [E[p̂1j(1− p̂1j)p̂2j(1− p̂2j) | ζj , ξj ]]

, (19)

where ζj and ξj denote the marginal per-allele effects of j. Approximation 17 hides O(1/N) error
from moving from the expectation of a ratio to a ratio of expectations. Approximation 18 hides
O(1/N) error from moving from the expectation of a square root to a square root of expectations,
and dear reader we admire your perseverance in making it this far. Equality 19 follows from applying
of the law of total expectation to the numerator and denominator.

First, we compute the numerator. By linearity of expectation,

E[(p̂cas,1j − p̂con,1j)(p̂cas,2j − p̂con,2j)] | ζj , ξj ] = E[p̂cas,1j p̂cas,2j | ζj , ξj ]− E[p̂cas,1j p̂con,2j | ζj , ξj ]
− E[p̂con,1j p̂cas,2j | ζj , ξj ] + E[p̂con,1j p̂con,2j | ζj , ξj ] (20)

After conditioning on the marginal effects ζj and ξj , the only source of variance in the sample allele
frequencies p̂cas,1, p̂con,1, p̂cas,2, p̂con,2 is sampling error. Write p̂cas,1j p̂cas,2j = (pcas,1j+η)(pcas,2j+ν),
where η and ν denote sampling error. If study 1 and study 2 share samples, ν and η will be correlated:

E[p̂cas,1j p̂cas,2j | ζj , ξj ] = pcas,1jpcas,2j + E[ην]

≈ pcas,1jpcas,2j +
Ncas,cas

√
pcas,1j(1− pcas,1j)pcas,2j(1− pcas,2j)

Ncas,1Ncas,2
(21)

≈ pcas,1jpcas,2j
(

1 +
Ncas,cas

Ncas,1Ncas,2

)
, (22)

where approximation 21 is the (bivariate) central limit theorem, and approximation 22 comes from
ignoring the difference between

√
pcas,1j(1− pcas,1j)pcas,2j(1− pcas,2j) and pj(1 − pj). This step is

justified in the derivation of the denominator. Similar relationships hold for the other terms in
Equation 20.
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If we combine equations 22 and 15, we obtain

E[(p̂cas,1j − p̂con,1j)(p̂cas,2j − p̂con,2j)] ≈ pj(1− pj)

φ(τ1)φ(τ2)ρg
c′M

`j +
∑

a,b∈{cas,con}

Na,b(−1)1+1[a=b]

Na,1Nb,2

 ,

(23)

where c′ := K1(1−K1)K2(1−K2).
Next, we derive the expectation of the denominator. Conditional on ζj and ξj , p̂1j(1 − p̂1j) is

P1pcas,1j + (1 − P1)pcon,1j plus O(1/N) sampling variance. If studies 1 and 2 share samples, the
O(1/N) sampling variance in p̂1j(1 − p̂1j) and p̂2j(1 − p̂2j) will be correlated, but this still only
amounts to O(Ns/N1N2) error. If we remove the conditioning on ζj and ξj , then P1pcas,1j + (1 −
P1)pcon,1j is equal to pj(1 − pj) plus O(h21,obs`j/M) error from uncertainty in ζj . The covariance
between uncertainty in ζj and uncertainty in ξj is driven by ρg,obs, so the expectation of the
denominator is E

[√
p̂1j(1− p̂1j)p̂2j(1− p̂2j)

]
= pj(1− pj) (1 + O(Ns/N1N2) + O(ρg,obs`j/M)). We

make the approximation5 that

E
[√

p̂1j(1− p̂1j)p̂2j(1− p̂2j)
]
≈ pj(1− pj). (24)

We obtain the desired result by dividing
√
cN1N2 times Equation 23 by Equation 24.

Corollary 1. If study 1 is an ascertained study of a binary trait, and study 2 is a non-ascertained
quantitative study, then proposition 2 holds, except with genetic covariance on the half-observed
scale

ρg,obs := ρg

(√
φ(τ1)P1(1− P1)

K1(1−K1)

)
.

Corollary 2. For a single binary trait,

E[χ2
j ] =

Nh2obs
M

`j + 1, (25)

where h2obs = h2φ(τ)2P (1− P )/K2(1−K)2.

Proof. This follows from proposition 2 if we set study 1 equal to study 2 and note that the observed
scale genetic covariance between a trait and itself is observed scale heritability. To show that the
intercept is one, observe that if study 1 and study 2 are the same, then

√
cN1N2

 ∑
a,b∈{cas,con}

Na,b(−1)1+1[a=b]

Na,1Nb,2

 = NP (1− P )

(
1

Ncas
+

1

Ncon

)

=
NP (1− P )(Ncas +Ncon))

NcasNcon

=
N2P (1− P )

NcasNcon
. (26)

But NP = Ncas and N(1− P ) = Ncon, so Equation 26 simplifies to 1.

5For `j = 100 (roughly the median 1kG LD Score), M = 107 and ρg,obs = 1, we get ρg,obs`j/M = 10−5. A
worst-case value for Ns/N1N2 might be Ns = N1 = N2 = 103, in which case Ns/N1N2 = 10−3. Thus, ρg,obs`j/M and
Ns/N1N2 will generally be at least 3 orders of magnitude smaller than 1.
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1.5 Flavors of Heritability and Genetic Correlation

The heritability parameter estimated by ldsc is subtly different than the heritability parameter
h2g estimated by GCTA. If g denotes the set of all genotyped SNPs in some GWAS, define βGCTA :=
argmaxα∈R|g|Cor [y1, Xgα], where Xg is a random vector of standardized genotypes for SNPs in g.
Then the heritability parameter estimated by GCTA is defined

h2g :=
∑
j∈g

β2GCTA,j .

Let S denote the set of SNPs used to compute LD Scores (i.e., `j =
∑

k∈S r
2
jk), and let βS :=

argmaxα∈R|S|Cor [y1, XSα]. Generally βS,j 6= βGCTA,j unless all SNPs in S \ g are not in LD with
SNPs in g. Define

h2S :=
∑
j∈S

β2S,j .

Let S′ denote the set of SNPs in S with MAF above 5%. Define

h25-50% :=
∑
j∈S′

β2S,j . (27)

The default setting in ldsc is to report h25-50%, estimated as the slope from LD Score regression
times M5-50%, the number of SNPs with MAF above 5%.

The reason for this is the following: suppose that h2 per SNP is not constant as a function of
MAF. Then the slope of LD Score regression will represent some sort of weighted average of the
values of h2 per SNP, with more weight given to classes of SNPs that are well-represented among
the regression SNPs. In a typical GWAS setting, the regression SNPs are mostly common SNPs,
so multiplying the slope from LD Score regression by M (which includes rare SNPs) amounts to
extrapolating that h2 per SNP among common variants is the same as h2 per SNP among rare
variants. This extrapolation is particularly risky, because there are many more rare SNPs than
common SNPs.

It is probably reasonable to treat h2 per SNP as a constant function of MAF for SNPs with
MAF above 5%, but we have very little information about h2 per SNP for SNPs with MAF below
5%. Therefore we report h25-50% instead of h2S to avoid excessive extrapolation error. This lower
bound can be pushed lower with larger sample sizes and better rare variant coverage, either from
sequencing or imputation.

There are two main distinctions between h25-50% and h2g. First, h2g does not include the effects of
common SNPs that are not tagged by the set of genotyped SNPs g. Second, the effects of causal
4% SNPs are not counted towards h25-50%. In practice, neither of these distinctions makes a large
difference, since most GWAS arrays focus on common variation and manage to assay or tag almost
all common variants, which is why we do not emphasize this distinction in the main text.

The relationship between the genetic covariance parameter estimated by LD Score regression
and the genetic covariance parameter estimated by GCTA is similar to the relationship between
h25-50% and h2g. Choice of M is not important for genetic correlation, because the factors of M in
the numerator and denominator cancel.
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Supplementary Tables

Simulations with one Binary Trait and one Quantitative Trait

Prevalence ĥ2 ĥ2liab r̂g
0.01 0.72 (0.1) 0.59 (0.04) 0.51 (0.4)
0.05 0.72 (0.12) 0.59 (0.07) 0.45 (0.17)
0.2 0.72 (0.11) 0.6 (0.08) 0.46 (0.14)
0.5 0.73 (0.11) 0.59 (0.08) 0.42 (0.17)

Supplementary Table 1: Simulations with one binary trait and one quantitative trait. The prevalence col-
umn describes the population prevalence of the binary trait. We ran 100 simulations for each prevalence. The
ĥ2 column shows the mean heritability estimate for the quantitative trait. The ĥ2liab column shows the mean
liability-scale heritability estimate for the binary trait. The r̂g column shows the mean genetic correlation es-
timate. Standard deviations across 100 simulations in parentheses. The true parameter values were rg = 0.46,
h2 = 0.7 for the quantitative trait and h2liab = 0.6 for the binary trait. For all simulations, the quantitative
trait sample size was 1000, the binary trait sample size was 1000 cases and 1000 controls, and there were
500 overlapping samples. There were 1000 effective independent SNPs. The environmental covariance was
0.2. We simulated case/control ascertainment using simulated LD block genotypes and a rejection sampling
model of ascertainment. This is the same strategy used to simulate case/control ascertainment in [1].
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Simulations with MAF- and LD-Dependent Genetic Architecture

LD Score h2(5-50%) ρg(5-50%) rg(5-50%)

Truth 0.83 0.42 0.5
HM3 0.53 (0.08) 0.28 (0.07) 0.52 (0.1)
PSG 0.36 (0.08) 0.18 (0.06) 0.5 (0.13)
30 Bins 0.81 (0.12) 0.41 (0.08) 0.51 (0.09)
60 Bins 0.81 (0.12) 0.41 (0.09) 0.51 (0.09)

Supplementary Table 2: Simulations with MAF- and LD-dependent genetic architecture. Effect sizes were
drawn from normal distributions such that the variance of per-allele effect sizes was uncorrelated with MAF,
and variants with LD Score below 100 were fourfold enriched for heritability. Sample size was 2062 with
complete overlap between studies; causal SNPs were about 600,000 best-guess imputed 1kG SNPs on chr
2, and the SNPs retained for the LD Score regression were the subset of about 100,000 of these SNPs that
were included in HM3. True parameter values are shown in the top line of the table. Estimates are averages
across 100 simulations. Standard deviations (in parentheses) are standard deviations across 100 simulations.
LD Scores were estimated using in-sample LD and a 1cM window. HM3 means LD Score with sum taken
over SNPs in HM3. PSG (per-standardized-genotype) means LD Score with the sum taken over all SNPs in
1kG as in [1]. 30 bins means per-allele LD Score binned on a MAF by LD Score grid with MAF breaks at
0.05, 0.1, 0.2, 0.3 and 0.4 and LD Score breaks at 35, 75, 150 and 400. 60 bins means per-allele LD Score
binned on a MAF by LD Score grid with MAF breaks at 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4 and 0.45
and LD Score breaks at 30, 60, 120, 200 and 300, These simulations demonstrate that naive (HM3, PSG)
LD Score regression gives correct genetic correlation estimates even when heritability and genetic covariance
estimates are biased, so long as genetic correlation does not depend on LD.
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Sample Sizes and References

Trait Reference Sample Size

Schizophrenia PGC Schizophrenia Working Group, Nature, 2014 [3] 70,100
Bipolar disorder PGC Bipolar Working Group, Nat Genet, 2011 [4] 16,731
Major depression PGC MDD Working Group, Mol Psych, 2013 [5] 18,759
Anorexia Nervosa Boraska, et al., Mol Psych, 2014 [6] 17,767
Autism Spectrum Disorder PGC Cross-Disorder Group, Lancet, 2013 [7] 10,263
Ever/Never Smoked TAG Consortium, 2010 Nat Genet, [8] 74,035
Alzheimer’s Lambert, et al., Nat Genet, 2013 [9] 54,162
College Rietveld, et al., Science, 2013 [10] 101,069
Height Wood et al., Nat Genet 2014 [11] 253,288
BMI Locke, et al., Nature 2015 [12] 236,231
Coronary Artery Disease Schunkert, et al., Nat Genet, 2011 [13] 86,995
Triglycerides Teslovich, et al., Nature, 2010 [14] 96,598
LDL Cholesterol Teslovich, et al., Nature, 2010 [14] 95,454
HDL Cholesterol Teslovich, et al., Nature, 2010 [14] 99,900
Type-2 Diabetes Morris, et al., Nat Genet, 2012 [15] 69,033
Fasting Glucose Manning, et al., Nat Genet, 2012 [16] 46,186
Childhood Obesity EGG Consortium, Nat Genet, 2012 [17] 13,848
Birth Length van der Valk, et al., HMG, 2014 [18] 22,263
Birth Weight Horikoshi, et al., Nat Genet, 2013 [19] 26,836
Infant Head Circumference Taal, et al., Nat Genet, 2012 [20] 10,767
Age at Menarche Perry, et al., Nature, 2014 [21] 132,989
Crohn’s Disease Jostins, et al., Nature, 2012 [22] 20,883
Ulcerative Colitis Jostins, et al., Nature, 2012 [22] 27,432
Rheumatoid Arthritis Stahl, et al., Nat Genet, 2010 [23] 25,708

Supplementary Table 3: Sample sizes and references for traits analyzed in the main text.
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Supplementary Figures

Genetic Correlation between Educational Attainment and IQ Phenotypes
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Supplementary Figure 1: Genetic correlation between the two educational attainment phenotypes from
Rietveld, et al. [10] and childhood IQ from [24]. The structure of the figure is the same as Figure 2 in the
main text: blue corresponds to positive genetic correlations; red corresponds to negative genetic correlation.
Larger squares correspond to more significant p-values. Genetic correlations that are different from zero at
1% FDR are shown as full-sized squares. Genetic correlations that are significantly different from zero at
significance level 0.05 after Bonferroni correction are given an asterisk.
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Genetic Correlations among Anthropometric Traits
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Supplementary Figure 2: Genetic correlations among anthropometric traits from studies by the GIANT
and EGG consortia. The structure of the figure is the same as Figure 2 in the main text: blue corresponds
to positive genetic correlations; red corresponds to negative genetic correlation. Larger squares correspond
to more significant p-values. Genetic correlations that are different from zero at 1% FDR are shown as full-
sized squares. Genetic correlations that are significantly different from zero at significance level 0.05 after
Bonferroni correction are given an asterisk. BMI 2010 and Height 2010 refer to the results from [25] and [26],
respectively.
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Genetic Correlations among Smoking Traits
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Supplementary Figure 3: Genetic correlations among smoking traits from the Tobacco and Genetics (TAG)
consortium [8]. The structure of the figure is the same as Figure 2 in the main text: blue corresponds to
positive genetic correlations; red corresponds to negative genetic correlation. Larger squares correspond to
more significant p-values. Genetic correlations that are different from zero at 1% FDR are shown as full-
sized squares. Genetic correlations that are significantly different from zero at significance level 0.05 after
Bonferroni correction are given an asterisk.
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Genetic Correlations among Glycemic Traits
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Supplementary Figure 4: Genetic correlations among insulin-related traits from studies by the MAGIC
consortium. We have also included BMI data from [12] and T2D data from [15]. The structure of the figure
is the same as Figure 2 in the main text: blue corresponds to positive genetic correlations; red corresponds to
negative genetic correlation. Larger squares correspond to more significant p-values. Genetic correlations that
are different from zero at 1% FDR are shown as full-sized squares. Genetic correlations that are significantly
different from zero at significance level 0.05 after Bonferroni correction are given an asterisk.
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Metabolic Genetic Correlations from Vattikuti, et al. and LD Score
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Supplementary Figure 5: This figure compares estimates of genetic correlations among metabolic traits
from table 3 of Vattikuti et al. [27] to estimates from LD Score regression. The LD Score regression estimates
used much larger sample sizes. Error bars are standard errors.
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Schizophrenia — TG Conditional QQ Plot with and without the MHC

Supplementary Figure 6: At left, we reproduced the conditional QQ plot comparing schizophrenia (SCZ)
and triglycerides (TG) from Andreassen et al. [28] using the same data (PGC1 schizophrenia [29] and TG
from Teslovich, et al. [14]). Conditional QQ plots show the distribution of p-values for SCZ conditional on
the − log10(p) for TG exceeding different thresholds. The thresholds are indicated by color, as described in
the legends. Dark blue corresponds to no threshold, green corresponds to − log10(p) > 1, red corresponds to
− log10(p) > 2 and light blue corresponds to − log10(p) > 3. The major histocompatibility complex (MHC,
chr6, 25-35 MB) is a genomic region containing SNPs with exceptionally long-range LD and the strongest
GWAS association for schizophrenia [3], as well as an association to TG [14]. If we remove the MHC, the
signal of enrichment in the conditional QQ plot is substantially attenuated (middle); in particular, the red
line falls below the green and blue lines (which correspond to less stringent thresholds for TG). If in addition
we remove SNPs with very high LD Scores (` > 200, roughly the top 15% of SNPs), the signal of enrichment
is further attenuated. The most likely explanation for the attenuation is that conditional QQ plots will report
pleiotropy if causal SNPs are in LD (even if the causal SNPs for trait 1 are different from the causal SNPs
for trait 2), which is more likely to occur in regions with long-range LD.
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