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1 Generalized R? generalizes classical R?

Starting with Nagelkerke’s generalized R:

_ P(x;, y;|null) o
Ry =1- H ( P(z;,y;|alt) )
= f(i)

Given a fixed set of x; values, and assuming that the alternate model is a regression function y;
with Gaussian errors and with a maximum likelihood variance estimate (or the unbiased variance estimate,
with trivial changes), we have:

1 1 [y — flx; 2
P(z;, yilalt) = mefp(*i <yf()) )

where
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Similarily, assuming that the null model is the constant mean line, y; = § with Gaussian errors, and

with a maximum likelihood variance estimate, we have:

1 1(yi—y
P(x;,yilnull) = ————=exp —< )
( ! Z| ) OnullV 2 ( 2 Onull

where
2 1 _\2
Opull = N Z (yl - y)

i

substituting in Nagelkerke’s expression
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2 Sinusoidal example.

0=0.125 R2=0.968 A=0.942 w=0 0=0.25 R2=0.893 A=0.858 w =0.002 o=05 R2=0.674 A=0.659 w=0.005

o=1 R2=0.36 A=0.343 w=0.038

Figure 1. Sinusoidal example. To build intuition about the relationship between our measure of
association and the magnitude of the variance around a function f(z) (in this case, the sinusoid from fig
1 in the main text), we have generates examples with the same function (x ~ unif(—2, 27),

y ~ sin(x) + N (0,0)), but different noise levels. Using 1000 data points, we show examples of data,
titled by the standard deviation, classical R? (which can be calculated because f(z) is known), our
estimate, A, and the mixture weight estimate w (see Methods of the main text for a definition of this).



3 Classical R?, generalized R?, A, A and Linfoot’s Informational
Measure of Correlation.

Figure |2| attempts to clarify the relationship between the various quantities mentioned in the main text.
Firstly, there is classical R?, which, for our purposes, is calculated as 1 — 0%,.,.,,./0%,,.;- Since the error
model in classical R? is implicitly Gaussian (assuming least squares fitting), the regression curve, f(x),
is all that is required to specify the model. Generalized R2, defined by equation 1 in the main text, relies
on explicitly defined probability distributions for the null and alternative models, reducing to classical
R? when the noise model is Gaussian with constant variance and when the null model is a flat function,
f(x) = c. Under these conditions, calculating the generalized R? for the maximum likelihood parameter
estimates (assuming f(x) was governed by some free parameters) will yield the same result as calculating
the classical R? with the least squares optimal parameters.

We define A to be a special case of the generalized R?, where the null model enforces independence,
and is restricted to being the product of marginal distributions. To allow the alternative model to reduce
to the null as a special case, we can create the alternative to be a mixture distribution with dependent and
independent components: wx P(X,Y|0)+ (1 —w) x P(X|60)P(Y'|0), where 6 encodes the parameters that
govern the distribution P(X,Y’|0). This reduces to the independent null model when w = 0 (whether or
not this mixture is required — rather than just using P(X,Y|0) alone as the alternative model — depends
on your view of the requirements of a generalized R2.). For a particular distributional form, A could be
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Figure 2. Relationships between measures of association. Classical R? and A are “sisters” —
both are special cases of generalized R2. They are equivalent for bivariate Gaussian data, but may
differ for other kinds of relationships. A is the estimate of A when the distribution is not known a
priori, and Linfoot’s ‘Informational Measure of Correlation’, based on mutual information, is the large
sample limit of A.



computed directly, although, if closed forms are not available, this may require numerical integration to
compute the marginal distributions P(X|0) = fy P(X,Y|0). The free parameters 6§ could be optimized
by maximum likelihood, but this may be computationally intensive due to the numerical integration.
(Note that estimating A using density approximation has no such difficulties.)

When the null model is selected to be a constant function with Gaussian errors, as in the context of
regression, then the generalized R? and the classical R? are equivalent. Since the null for A is the product
of the marginals, whenever the marginal distribution of Y departs substantially from a Gaussian (see
figure , the null model for A will differ from the null model for classical R2, yielding different association
scores (see figure . Thus A and classical R? aren’t quite estimating the same quantity, although their
behavior is very similar for functions that aren’t pathologically skewed (see figures [5| and @, and they
are entirely equivalent for bivariate Gaussian data.

This departure of A from classical R? is not undesirable. When the marginal distribution of Y is not
Gaussian, then it is not sensible to use a Gaussian distribution to describe it, even under the null model (a
Gaussian marginal for Y is assumed in the classical R?). Classical R? is measuring how far data departs
from a flat function with Gaussian errors, whereas A measures how far it departs from independence.

A depends on a parametric distribution (which may have some free parameters), and a collection of
samples which are ostensibly drawn from that distribution. If the distribution is entirely fixed (ie. no
free parameters), it is possible to calculate an analogous quantity directly from the distribution itself,
which will be the large sample limit of A. It turns out (see SI2) that this large sample limit is equivalent
to Linfoot’s Information Measure of Correlation [1], which was proposed as a way to transform mutual
information into an association score that was equivalent to R? for bivariate Gaussian distributions.

A attempts to estimate A when the distribution is unknown. The quality of this estimation will

depend on the convergence behavior of the approximated densities used by A to the true generating

Figure 3. When A differs substantial from classical R? - illustration. Data (in grey) is
generated from an exponential function with Gaussian noise. Panel A depicts the distribution that
generated the data. This is the alternative model for both the classical R? and for A. Panel B depicts
the null model for classical R? (in green), which, no matter the value of X, is a Gaussian distribution
centered around the mean of the Y values. The null model for A is depicted in blue, which is the
product of the marginal distributions, P(X)P(Y). The null for A in blue provides a much better fit to
the data than does the null model for classical R? (in particular, it captures the asymmetry), which
causes classical R? to be inflated relative to A (in this example, classical R? = 0.88 and A = 0.68). One
way of describing the difference is that classical R? is measuring how far data departs from a flat
function with Gaussian errors, whereas A measures how far it departs from independence.



distributions. We have investigated the behavior of A by simulation, and theoretical convergence results
are left for future work.

Skewed marginal: A # Classical R?
wf T g
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Figure 4. When A differs substantial from classical R? - comparison. In some cases, the
marginal distribution of Y can be substantially non-normally distributed (see figure 3)) and A will
depart from R?. This example is for an exponential function with additive Gaussian noise. Note that,
in this section, A is calculated directly from a known distribution to illustrate this departure
analytically, whereas everywhere else A is estimated from an unknown distribution.



Figure 5. When A differs subtley from classical R? - illustration. Data (in grey) is generated
from a sinusoidal function with Gaussian noise. Panel A depicts the distribution that generated the
data. This is the alternative model for both the classical R?, and for A. Panel B depicts the null model
for classical R? (in green), which, no matter the value of X, is a Gaussian distribution centered around
the mean of the Y values. The null model for A is depicted in blue, which is the product of the
marginal distributions, P(X)P(Y). The null for A in blue provides a better fit to the data than does
the null model for classical R?, which causes classical R? to be slightly inflated relative to A (in this
example, classical R? = 0.89 and A = 0.86). The null for classical R? is an adequate approximation, in
this case, so measuring the departure from independence, A, and the departure from a constant
function with Gaussian noise, classical R?, yields similar values.
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Figure 6. When A differs subtley from classical R? - comparison. In this case, where the data
is sinusoidal, the marginal distribution of Y can be non-normally distributed, especially when there is
little noise, (see figure|5) and A will depart from R2. The degree of the departure is smaller than in the
exponential case because the Gaussian marginal null model of classical R? is closer to the true marginal
than in the exponential case. Note that, in this section, A is calculated directly from a known
distribution to illustrate this departure analytically, whereas everywhere else A is estimated from an
unknown distribution.



4 A is a sample approximation of Linfoot’s Informational Mea-
sure of Correlation.

We assert that A (which is Nagelkerke’s generalized R? if the null distribution is taken to be the product
of the marginals of the alternative distribution), which is computed from a set of observations sampled
from a known distribution M, will tend to Linfoot’s IMC |[1], which is based on mutual information,
I(z;y). When (x;,y;) are samples from P(x,y|M), then, by the weak law of large numbers,

L) — - o P(z, y| M) i

o) = [ [ y'Mlg( P(a[M)P <yM>>d ay (M
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5 List of functions used for the
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Figure 7. Functions used in equitability plots. The functions used to generate the equitability
plots, before Gaussian noise is added. R code defining these functions is available from the authors

upon request.
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Figure 8. Functions of two variables used in multivariate equitability plot. The functions of
two variables used to generate the multivariate equitability plots, before Gaussian noise is added. R
code defining these functions is available from the authors upon request.
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6 Significance tests.

To calculate a p-value to assess whether a set of observations departs significantly from independence, we
use the cross-validation likelihoods for both the null and alternative models to produce a cross-validation
likelihood ratio statistic (cvLRS):

(6)

wLRS = —2log {LC”("“”)}

Ly (alt)

As with a traditional likelihood ratio test, we can compare the value of the ¢cvLRS for the set of
observations of interest against the distribution of the cvLRS that we expect if the null hypothesis is true
and the variables are independent. We obtain the null distribution by drawing random permutations of
the original data, where the permutations enforce independence. The significance test associated with A
was run on a number of different distributions (see figure[d). As comparators, we used the dCov test [2],
the test associated with MIC [3], and a state-of-the-art test by Heller, Heller and Gorfine (HHG) for all
departures from independence [4]. The results paint a complex picture (see figures [10| and . There is
no clear victor, and the relative performance depends strongly on the form of the distribution. Overall,
the A test sometimes greatly outperforms all other tests, but it is never far from the best test (except
for the purely linear Gaussian case, in which dCov has an advantage). This is in contrast with MIC,
which has very low power across all sample sizes for 4 of the 7 non-independent distributions. This lack
of power has already been pointed out in commentary by Simon and Tibshirani (www-stat.stanford.
edu/~tibs/reshef/comment.pdf|) and by Gorfine, Heller and Heller (iew3.technion.ac.il/~gorfinm/
files/science6.pdf).


www-stat.stanford.edu/~tibs/reshef/comment.pdf
www-stat.stanford.edu/~tibs/reshef/comment.pdf
iew3.technion.ac.il/~gorfinm/files/science6.pdf
iew3.technion.ac.il/~gorfinm/files/science6.pdf
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Figure 9. The distributions used to compare the power of some tests of significance. Each
of these plots was created using n = 1000 to visualize the distributions, although the tests were
conducted with smaller sample sizes. We adjusted the amount of noise to give the power of the tests a
meaningful dynamic range for the sample sizes we considered. Very complex relationships like the four
overlapping circles required no noise at all, whereas a single circle required much more noise to provide
a challenging example. Starting clockwise from top left, the distributions are: 1) independent Gaussian
noise, 2) slightly correlated Gaussian noise (R? = 0.1), 3) a circle with Gaussian noise added to both
dimensions 4) 4 noiseless overlapping circles, 5) a uniform diamond, 6) a mixture of noisy sinusoids, 7) a
noiseless sinusoid against a background of uniform noise and 8) a noiseless straight line against a
background of uniform noise.
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power plot: Gaussian
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Figure 10. Power curves for increasing sample sizes for the distributions from the top row
of figure [9} On independent data, all tests produce false positives in line with the selected test size,

a = 0.05. For a weak linear association, the dCov test outperforms the others. For the noisy circle and
the 4 overlapping circles, the A test dominates. Error bars are 95% binomial confidence intervals

(Wilson’s method).
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Figure 11. Power curves for increasing sample sizes for the distributions from the bottom
row of figure [9) HHG has the greatest power when a linear relationship is obscured by independent
background noise. The A test is superior when a sinusoid is placed against a noisy background. MIC
outperforms the A test for a mixture of noisy sinusoids when N = 75, and is equal for other samples
sizes. HHG slightly outperforms the A test on the diamond, where dCov’s power grows slowly with
sample size and MIC has uniformly low power. Error bars are 95% binomial confidence intervals

(Wilson’s method).
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7 A can detect manifolds.

If all data points lie along a lower dimensional non-trivial manifold in a higher dimensional space (by
non-trivial we mean that the manifold cannot be elucidated by merely discarding a variable), then A
appears to tend to 1 as the sample size increases. We demonstrate this manifold detection property of A
using data scattered on simple manifolds embedded in 3 dimensions.
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Figure 12. Manifolds detection examples. Examples of the point clouds used in the manifold
detection exercise.

In figure we compute A on the 3D datasets of figure using a 3 part partition, computing
the alternative likelihood as ~ P(Vy, Vs, V3), but the null as ~ P(V;)P(V2)P(V3). A approaches unity,
indicating that there is some noiseless relationship between these sets of variables.



manifold detection with matie
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Figure 13. A approaches unity as sample size increases in the presence of a manifold. The
helix is detected at the lowest sample sizes, perhaps because it is a 1 dimensional manifold in 3
dimensions, whereas the other examples are 2 dimensional manifolds in 3 dimensions.
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8 Semipartial association - controlling for variables.

When the data are truly linear, /Aly, x;c yields very similar estimates to the linear R%’ X:C (estimated
using the R function ‘spcor’). We generated data where X ~ N(0,1), C ~ N (0,1), and Y ~ kx*x X + (1 —
k)« C + N(0,¢€), where k controls how much of the variance in Y is governed by X and how much by C,
and € is a small constant to prevent the linear package from encountering a singularity. Thus P(Y, X, C)
is jointly normally distributed. When we vary k from 0 to 1, Ay’ x;c¢ yields strikingly similar estimates
to Ry, x.c, as seen in figure

Semipartial association agreement
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Figure 14. Agreement between linear semipartial correlation, and nonlinear semipartial
association for linear data. The x axis depicts the linear R% x;c as estimated by the ‘spcor’

function in R, and the y axis depicts the nonlinear Ay7 x;c. Bach red point is the semipartial association

estimated two ways from a simulated dataset, with 500 points drawn from a jointly Gaussian
distribution, varying the strength of the semipartial correlation.
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9 Example: BEAST analysis.

To demonstrate the abilities of A on non-contrived data, we analyse the relationships between variables
comprising the posterior distribution of a BEAST Markov Chain Monte Carlo (MCMC) analysis. BEAST
[5] is a Bayesian phylogenetics package that models the evolution of gene sequences over an unknown
evolutionary history. A ‘model’ comprises a phylogeny and a number of model parameters, such as
mutation rates, nucleotide frequencies, the ages of internal nodes in the phylogeny, and more. A likelihood
function is constructed to explain the sequence data and, where available, the dates of the observed taxa
or internal nodes. Using MCMC, BEAST draws samples from the posterior distribution of the model
parameter conditioned on the observed data. These samples, along with whatever other auxiliary variables
the user is interested in, are stored in the MCMC “chain”. For our purposes, we will treat samples from
the posterior as data to quantify the associations between variables. Here, we examine the BEAST
analysis of a number of Influenza sequences from Wertheim et al. [6], thinning the MCMC chain to 1000
samples.
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Figure 15. Network of pairwise associations form a BEAST analysis. A was used to quantify
the association between variables from the posterior distribution of a BEAST analysis.

Fig. depicts a pairwise examination of the associations between all variables, visualised using a
force-directed graph (using the standard D3 javascript implementation: http://d3js.org/). Stronger
associations are pulled together by shorter, wider, and bolder links (removing links where A < 0.1). Links


http://d3js.org/
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are coloured by their degree of non-linearity from red to blue to depict non-linear to linear relationships,
respectively. Some variables do not covary substantially with others, and are seen as isolated points. Of
the relationships identified, most are linear, and they tend to occur in clusters of related variables, but
there are a few non-linear relationships. We expand the scatter plots of four example relationships. First,
the pairwise associations between ‘tmrca.Human’ (the Time to Most Recent Common Ancestor of the
Human clade), and ‘treeModel.rootHeight’ is strongly non-linear (A = 0.81, linear p? = 0.06). Examining
the scatter plot indicates that there appears to be a superposition of a perfect linear relationship with
a weaker linear relationship. This can be explained by BEAST marginalising over uncertainty in the
phylogeny itself, so that, for some parts of the MCMC chain, the MRCA for the human clade was the
root of the tree, so their heights are identical, but for other parts of the tree some other node was
occupying the root location. The next interesting non-linear relationship occurs between ‘sample’ and
‘tmrca.Human’ (A = 0.37, linear p? = 0.03); ‘sample’ denotes the index of the MCMC chain, so if some
variable is particularly strongly related to ‘sample’, then it indicates that the chain is mixing particularly
slowly with respect to that variable. This would usually be quantified using a measure of autocorrelation,
but we note that with A the non-linear dependence is identified in the raw relationship, without having
to explicitly compare values to their successors, as is done to analyse autocorrelation. We also depict
the mildly non-linear ‘tmrca.Unknown’ vs ‘tmrca.1977" (A = 0.63, p2 = 0.55), and the completely linear
‘CP3.frequenciesd’ vs ‘CP3.frequenciesl’ (/i =0.29, p? = 0.29).

A can identify higher order relationships, such as the triplet association score, using the likelihood of
a full joint P(V1, Vs, V3) against a null of P(V1)P(V2)P(V3). We computed all triplet relationships, and
ranked them by the difference between the triplet A score and the greatest pairwise A score (see table
1 below for the first 20). Two near-perfect triplet relationships are identified with A =0.99. Both are
linear, and straightforward to explain. The relationship between ‘posterior’, ‘prior’, and ‘likelihood’ is
simply a result of Bayes’ theorem, while the relationship between ‘likelihood’, ‘CP1.2.H1.treeLikelihood’
and ‘CP3.H1.treeLikelihood’ simply reflects the fact that the overall log-likelihood is the sum of the
log-likelihood from the first and second codon positions (which share parameters) and from the third
codon position (which uses different parameters). Further down the list (at positions 5, 6, 8 and 9) are
relationships between triplets of nucleotide frequency variables, with triplet A scores ranging from 0.36 to
0.51. This reflects the fact that the sum over nucleotide frequencies should be 1, inducing a relationship
that A identifies. In fact, when we include all 4 nucleotide frequencies, the association gets much stronger:
0.91 for the merged first two codon positions and 0.93 for the third codon position. These association
scores approach 1 as the sample size increases (they are both 0.98 for a sample size of 11305, obtained
by less stringent thinning of the MCMC chain), which reflects a tendency of A to act conservatively,
especially in higher dimensions.



Table 1. BEAST triplet score table.
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triplet A best pair A differenceEl name V1 name V2 name V3
0.9892365  0.3563312  0.6329053 likelihood CP1.2.H1.treeLikelihood =~ CP3.H1.treeLikelihood
0.9908218  0.5390134  0.4518084 posterior prior likelihood
0.6115287  0.3563312  0.2551975 posterior CP1.2.H1.treeLikelihood CP3.H1.treeLikelihood
0.5069893  0.2879703  0.2190190 CP3.frequencies] CP3.frequencies2 CP3.frequenciesd
0.4251341  0.2064465  0.2186875 CP1.2.frequenciesl CP1.2.frequencies2 CP1.2.frequencies4
0.7651117  0.5702889  0.1948228 prior treeModel.rootHeight meanRate
0.3759378  0.2064465  0.1694912 CP1.2.frequenciesl CP1.2.frequencies2 CP1.2.frequencies3
0.4507804  0.2879703  0.1628100 CP3.frequenciesl CP3.frequencies3 CP3.frequencies4
0.5842424  0.4308488 0.1533936 posterior prior constant.popSize
0.5803565  0.4282539 0.1521025 prior uced.mean meanRate
0.5828469  0.4308488 0.1519980 prior constant.popSize meanRate
0.5406853  0.3955828  0.1451025 posterior prior uced.mean
0.5697743  0.4282539  0.1415204 posterior prior meanRate
0.6762243  0.5390134  0.1372109 posterior likelihood constant.popSize
0.3275699  0.1920072  0.1355627 CP1.2.frequenciesl CP1.2.frequencies3 CP1.2.frequencies4
0.5295651  0.3955828  0.1339822 posterior prior CP3.H1.treeLikelihood
0.5645590  0.4308488  0.1337101 prior constant.popSize uced.mean
0.6524119  0.5390134  0.1133985 posterior likelihood meanRate
0.6760031  0.5702889  0.1057142  treeModel.rootHeight uced.mean meanRate
0.6425790  0.5390134 0.1035656 posterior likelihood uced.mean

%The difference between the triplet A score and the highest pairwise A. The table is sorted by this value.
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10 MIC can return 1 for noisy relationships.

MIC is supported by a theorem that guarantees a value of 1 when a relation is noiseless and nowhere
flat. Such a guarantee less useful if MIC can achieve 1 for noisy relationships as well, as demonstrated in

figure
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Figure 16. A pathology caused by MIC’s grid. When data are generated by a sinusoid with
uniform multiplicative noise (X ~ U(0,47), Y ~ sin(X) x U(k, 1), where k lies between 0 and 1), MIC
assigns scores of 1 (green) irrespective of the level of noise (we suspect that few values less than one are
due to the approximations employed when searching for the optimum grid). This is because MIC can
find an optimal grid (blue) that is overly coarse, and the structure of the data within the grid cells is
ignored. A, on the other hand, performs appropriately on this example. Depicted above are examples at
various values of R2.
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11 A is robust to outliers.

See figure (18] for plots. Data points (n=100) were first generated from a bivariate normal distribution,
with the standard deviations of X and Y = 1. R? of the generating distribution (shown on the X axis
of all plots) was varied incrementally from 0 to 1. Each association measure (Pearson, Spearman, MIC
and A) was calculated on each dataset. This measures the association without outliers (marked “Clean”
on the plots). Then outliers are introduced by replacing a small number of points (3 for “Few” and 10
for “Many”) with points drawn from a bivariate uniform distribution, whose range is (-2,+2) for “Close”
and (-5,+5) for “Far”. “Close” outliers tend to have a similar range to the distribution of interest (the
bivariate normal), but “Far” outliers may fall outside of it. We overlay the outlier-contaminated scatter
plots with the “Clean” ones to see the magnitude of the effect of outliers on the association measures. A
and MIC are relatively robust to outliers, Spearman’s correlation is moderately robust, and Pearson’s is
not robust at all. Loess curves are included as a guide for the eye.

Figure[I7]shows the distribution of the differences in association between clean and contaminated data
for a particular combination of generating parameters, overlaying the distributions for different methods
to facilitate direct comparison.

Simulated R = 0.85, N = 100, 10 outliers
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Figure 17. The distribution of differences between clean and contaminated data. Using a
fixed generating R? = 0.85 and an outlier mechanism corresponding to “Many” and “Far” in figure
(the most extreme case), we display the difference between the association measured from the clean
data and that from the outlier-contaminated data. A appears to have the smallest differences, followed
by MIC, then Spearman’s correlation, then Pearson’s.
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Figure 18. Robustness to outliers. “Clean”: associations measured with no outliers. “Close”:
outliers have range similar to data. “Far”: outlier range extends beyond data range. “Few”: 3 outliers
included. “Many”: 10 outliers included. See SI8 text for details.
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12 A small samples bias correction.

Empirically, the raw estimates of A (when estimating the density) tend to converge to A (when the
density is known) from below as the sample size increases, underestimating the strength of relationships
for small samples. Providing conservative estimates when a lack of data precludes confidence in a strong
relationship could be interpreted as an attractive feature. This might not be ideal for all applications, so
we sought to correct this bias. We postulated (aided by inspection) the form of a correction - the amount
by which to adjust the alternative model likelihood - and simulated bivariate Gaussian data from a range
of sample sizes and association strengths, finding the parameter values for the correction that maximized
the agreement between the true association (p? of the bivariate Gaussian) and A.
The alternative log likelihoods were offset using the following correction:

() s
1+TA) S

and A was then re-estimated using the adjusted alternative log likelihood.

The three parameters of the correction, T', S and P, were optimized to minimize the mean squared
deviation from the known R2. See figure [19| for an example comparing the corrected and uncorrected
values. All results in main text and the SI use this correction - the default in the matie package.
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Figure 19. Bias correction. Data were generated from a bivariate Gaussian distribution (N = 200)
with R? ranging from 0 to 1, and the uncorrected (green) and corrected (red) A estimates are displayed.
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13 matie, An R package for computing A.

A can be estimated using an R package, matie (Measuring Associations and Testing Independence Effi-
ciently), available on CRAN (http://cran.r-project.org/web/packages/matie/).

The main function of matie is ma (measure association). This function computes associations between
between any number of variables, each of which may be vector valued. The canonical example discussed in
the main text is the bivariate case, X against Y. Another example from the main text is the “one against
two” case, where the association is computed between a scalar valued X and a vector valued Y, with
components (Y7, Y2). While the description in Methods (from the main text) only handles the case for
two (possibly vector valued) variables, it naturally extends beyond that to any number of vector valued
variables. We use this in SI7] to detect lower dimensional manifolds embedded in a higher dimensional
space. The principle is the same: the likelihood under a full joint density model is compared to that of
the product of marginal densities.

The function ma takes a dataset, in the form of a matrix, where each row is an observation. Each
observation is a list of real values, but ma needs to know which values belong to which vector valued
variables. In the package, this is implemented in the form of a ‘partition’, which assigns values to
variables. For example, if each observation has 3 values, a partition of ((1),(2,3)) will compute the
proportion of variance in the first variable that can be explained by the combination of the second and
third variables (as in figure 4 from the main text). In this case, the alternative model will be the joint of
all three &~ P(V1, V, V3), but the null will be the product of the marginal of the first with the joint of the
rest, ~ P(V1)P(Va,V3). For a partition of ((1),(2),(3)) (as in SI7), matie will compute the alternative
as ~ P(V1,Va,V3), but the null as ~ P(V;)P(V2)P(V3). Another way of thinking about this is that the
partition specifies the factorization of the null model.

The matie package also provides functionality that allows the user to:

e compute p-values testing against the null hypothesis of independence

compute the non-linearity in a relationship

compute the semipartial association between two variables, controlling for a third covariate

e visualize associations and non-linearity in datasets

simulate data to investigate the behavior of the methods


http://cran.r-project.org/web/packages/matie/
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14 Execution time: matie versus MIC.

MIC (using the Java package provided by the authors) and A (using matie) were computed for a number of
different sample sizes: n= 50, 100, 200, 400, 800, 1600, 3200. Each point in figure |20|is the computation
time taken to compute a single bivariate association, averaged over 45 replicates. The curves are 0
intercept quadratics (fit with least squares), and the empirical computation times appear to be quadratic
for both methods. All computation times were measured on a 2012 Apple MacBook Air.

Timings: matie versus MIC
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Figure 20. Comparison between A and MIC execution times. The curves are 0 intercept
quadratics (fit with least squares), and the empirical computation times appear to be quadratic for both
methods.
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