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Model Descriptions: 
 
The basic Susceptible-Zombie-Removed (SZR) model shown in Figure 1A is a direct 
adaptation of the classic Susceptible-Infected-Removed/Recovered model used in 
mathematical epidemiology. The behavior of the model is governed by the following 
system of equations, which are presented in their differential form, but which may 
be readily adapted to more approachable difference equations. 
 

  (Supplemental Equation 1) 

 
In this model susceptible (S) individuals mix with and are infected by zombies (Z) at 

a rate β, which in turn decay and are removed at a rate γ. At any value of , an 

epidemic of zombieism is possible. This value, generally, is known as the basic 
reproductive number (R0), the average number of infections caused by a single 
infected zombie in an entirely susceptible population. With more complex models, 
the formula for R0 is correspondingly more complex. The methods for determining 
R0 well documented elsewhere. The addition of a latent period, α, in-between initial 
exposure is one common extension of the basis SIR model, and in the zombie 
epidemic framework, is described in equation form below. 
 

  (Supplemental Equation 2) 

 
 
Finally, the model used in the White Zed software is a somewhat more complex 
extension of this basic model form, in that it allows for immunity via vaccination, 
and the removal of zombies due to interaction with susceptible individuals as well 
as the transmission of disease, representing those individuals fighting or otherwise 
incapacitating the zombies, removing their ability to transmit. Note that this model 
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is distinct from that depicted in Figure 1B, though their overall intentions are 
similar. The equations for the White Zed model are: 
 

  (Supplemental Equation 3) 

 
By setting α, σ, or δ to zero, the latent period, vaccination, or zombie-survivor 
interaction that results in a removed zombie can be effectively removed, and by 
setting all three to zero, the model becomes equivalent to the SZR model. 
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Appendix 2: Example worksheet. 

 
 

An Introduction to Infectious Disease Dynamics 

Section 1: Basic SIR Model 

Launch the White Zed (http://cartwrig.ht/apps/whitezed/) website on your 

machine, and ensure that it is working – as you change any of the sliders presented, 

the graph at the top of the page should dynamically update. For the beginning of this 

tutorial, you may want to click Help at the bottom of the graph, in order to turn on 

text descriptions of the controls. 

Set everything in the Infection Parameters section to 0, save for β, which is set 

by default to 1. Adjust the Initial Population Makeup section to have 10,000 

Susceptible, and 1 Zombie – the first infected individual to appear in a small, 

isolated town. Observe this outbreak – how long does it take for the population to 

begin dropping dramatically? Are there any survivors in this scenario? What does 

increasing or decreasing the value for β do? How about the initial number of 

zombies? Explore possible values for β, while clicking on the + or – symbol beneath 

the graph to change the scale. Is there any way to prevent the town from being 

overrun in this scenario? Why, or why not? 

The model you have been working with is known as an “SI” model, as it has 

compartments for only Susceptible and Infected individuals (in this case, zombies). 

Now let’s add a new category class, Removed (R) to represent the natural decay of 

zombies in the environment, as they are trapped in ditches and dead ends, attacked 

by predators, or simply fall apart and no longer present a threat. Do this by setting 

http://cartwrig.ht/apps/whitezed/
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the γ parameter in the model to something other than zero – start with 0.1. 

Remember that γ is a rate, and is the inverse of number of days a zombie remains 

active. Thus, if a zombie lasts for 10 days, γ = 10-1 = 0.1. Higher values of gamma 

indicate a shorter duration. What does this do to the shape of the outbreak? Are 

there any survivors? 

 

Section 2. The Basic Reproduction Number 
 

As we have seen in the last section, it is difficult to save our hypothetical 

town from being overrun with zombies. But it is not impossible to do so. The first 

means by which an outbreak may be prevented is if the disease itself is less 

transmissible, or infected individuals remain capable of infecting for a shorter 

period of time. Change β to 0.25 and keep γ at 0.1. Notice that there are survivors in 

this scenario, represented by people who are still susceptible after the last zombie 

has decayed. The lower β, and thus the less transmissible the disease, the larger 

number of survivors they are. Similarly, try setting β back to 1, and raising γ – what 

does this due to the epidemic? Can you suggest a setting where γ might be 

considerably higher than it is in our first scenario? What does this suggest about the 

dynamics of a disease in different settings, even when the basic biology of the 

pathogen remains the same? 

 The average number of infections caused by a single infected zombie in an 

entirely susceptible population is known as the basic reproduction number (R0). In 

order for a disease to cause an epidemic in the population, the value of this number 

must be above 1. The formula for R0 will vary depending on what type of model is 
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being used, but in the case of the SIR model, 𝑅0 =
𝛽

𝛾
. Relate this to the observations 

you made about the behavior of the model previously. 

 

Section 3. Preventing Outbreaks 

 While changes in β and γ may alter the severity of an outbreak, in many ways 

these are fundamental properties of the disease, as well as the location and 

population it is spreading in. What if we wish to take more active steps to prevent 

the outbreak? Suppose someone has developed a vaccine against the zombie 

infection. There are two ways to model vaccination – first, as a pre-existing 

population of people immune to infection. Set β to 1, and γ to 0.25. Try changing the 

Initial Population Makeup sliders so that there are 7500 Susceptible individuals, and 

2500 Vaccinated individuals. What does this do to the epidemic? Does it prevent it 

completely? Is there a ratio of Susceptible to Vaccinated individuals that does? 

 This ratio of Susceptible to Immune individuals that prevents the 

establishment of a disease in the population is known as a critical fraction, and for 

the SIR model we have been, the percentage of the population that has to be 

immune equal to 1 −
1

𝑅0
. In this case, as R0 is equal to 4, that means 75% of the 

population must be vaccinated in order to prevent an outbreak. Consider our initial 

case, where γ = 0.10. Now that critical threshold is 90% of the population 

vaccinated. Look up the basic reproduction number for Measles, Pertussis or 

Rubella. Why might groups advocating against vaccinating children be considered a 

major threat to public health? 
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 In some cases however, such as when vaccine-induced immunity does not 

last very long, or with newly emerging infections, vaccination cannot take place in 

advance, but is instead introduced in response to an outbreak. Return the 

population to 10,000 Susceptible individuals. Begin increasing the σ parameter, the 

rate at which people are vaccinated. As with γ, this is the inverse of the average 

number of days before someone is vaccinated. This, a value of 0.05 implies a 20 day 

wait, while 0.10 implies a 10 day wait. Alter these values – what does this do to the 

epidemic? Are there values where the epidemic can be halted entirely? How might 

the planning and concerns about how to administer a vaccination program differ 

based on whether or not the vaccine can be deployed ahead of time? 
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