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Figure S1: Power behavior of our likelihood ratio test. Power was estimated at level α=0.05 based on 
1000 simulations. Power increases with sample size and coverage but decreases with background 
mutation rate. 𝜋𝜋 is the background mutation rate for all genes. 𝛾𝛾 is the coverage of the simulated MEGS. 
m is the sample size. 

 



 

Figure S2: Null distribution of LRT-SB. Simulations were performed under the null hypothesis with 
1000 samples and four genes. All four genes had the same mutation frequency 20%. The histogram was 
based on simulations. The red curve is fitted to the histogram with mean 2.44 and standard deviation 1.14. 
In the original paper, the null distribution was claimed to be N(0,1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

Figure S3: Quantile-quantile (QQ) plot of P-values for “cliques” under global null hypothesis, 
generated by the algorithms in MEMo. Mutation frequency is 10% for each gene. MEMo uses a default 
threshold P0=0.05 in their procedure. Here, we tried three different thresholds 0.05, 0.01 and 0.001. For 
each simulation, we make QQ plot against the uniform distribution U(0,1). The x-coordinate is log(p) with 
p~U(0,1). The y-coordinate is the log(p) for observed overall P-values produced from the MEMo algorithm. 
P-values deviate U(0,1). 

 

  



 

Figure S4: Number of true positive and false positive genes. For MEGSA and Dendrix, numbers are 
calculated based on the top MEGS candidate. For MEMo, the numbers are calculated based on the 
algorithm described in Supplementary Note. We performed simulations using three sets of parameters 
with coverage ranging from 0.4 to 0.8. The figures in the first row show the simulated pattern with four 
genes (left four) in MEGS and six genes randomly mutated (right six). The left four bars (green) show the 
probability of choosing the true MEGS genes. The right six bars (red) show the probability of choosing 
false positive genes. The simulation was based on 4 MEGS genes and 6 non-MEGS genes.  

 



 

 

Figure S5: Performance comparison of methods for detecting mutually exclusive gene sets. In all 
simulations, we have 53 genes with 50 being randomly simulated with specific mutation frequencies and 
3 genes as MEGS. For each comparison, the left panel is for balanced MEGS with mutation frequency 
ratio 1:1:1; the right panel is for imbalanced MEGS with mutation frequency ratio 4:1:1. In all figures, the 
x-coordinate is the coverage γ, ranging from 0.3 to 0.4. (A) Probability of ranking the true MEGS as top 
candidate. (B) Power of detecting true MEGS using MEGSA and Mutex. (C) Probability that the identified 
top MEGS is statistically significant and identical to the true MEGS. (D) The numbers of detected true 
positive genes (out of 3) and false positive genes.  

 

 

 

 

 

 



 

Figure S6: The number of true positive and false positive genes detected by MEGSA and Mutex. In all 
simulations, we have 54 genes with 50 being randomly simulated with specific mutation frequencies and 
4 genes as MEGS. In imbalanced MEGS, the mutational frequencies have a ratio 3:1:1:1.For each 
simulation, we counted the number of selected true genes out of 4 and the number of falsely selected 
genes not belonging to the simulated MEGS. MEGSA has similar false positive rate but higher number of 
selected true genes, particularly for imbalanced MEGS.  

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure S7: Compare statistical power of two search strategies using MEGSA. The simulation was 
based on M=100 genes and N=500 samples.   A balanced MEGS had four genes with background 
mutation rate 10%. The rest 96 genes were randomly mutated with frequency 10%. We compared the 
statistical power of rejecting the global null hypothesis for two analysis strategies: de novo discovery and 
pathway-guided search. For de novo discovery of MEGS (red curve), we applied MEGSA to the whole set 
of 100 genes and rejected the global null hypothesis if the overall P-value is less than 0.05. For pathway-
guided search, we assume that 100 genes are split to L(L=5 or 10) non-overlapping modules, each of 
which has 100/L genes. The simulated MEGS were in one of the modules. We applied MEGSA to each of 
the modules and rejected the global null hypothesis if any of the L P-values were less than 0.05/L based 
on the Bonferroni correction. The power was calculated as the proportion of simulations rejecting the 
global hypothesis. If the MEGS is within any of the cliques, pathway-guided search may substantially 
improve the power due to the reduced multiple testing burden.     

 

 

 

 



  

Figure S8A: Significant MEGS (multiple testing corrected P<0.05) identified by MEGSA for different 
cancers using the whole exome sequencing data in TCGA. 

 

 

 

 

 



 

Figure S8B: Significant MEGS (FDR q-value<0.05) identified by Mutex for different cancers using the 
whole exome sequencing data in TCGA. 

 

 

 

 

 



 

Figure S8C: MEGS identified by RME for different cancers using the whole exome sequencing data in 
TCGA. LAML results were not available because RME did not run successfully on the LAML data. 

 

 

 

 

 

 



   

Figure S8D: The top MEGS identified by Dendrix for different cancers using the whole exome 
sequencing data in TCGA.  

  



 

α π k=2 k=3 k=4 k=5 k=6 
m=100 m=500 m=100 m=500 m=100 m=500 m=100 m=500 m=100 m=500 

0.05 0.1 0.031 0.061 0.068 0.054 0.056 0.052 0.054 0.051 0.054 0.052 

0.2 0.061 0.053 0.053 0.051 0.053 0.051 0.053 0.051 0.053 0.051 

0.001 0.1 0 0.0021 0.0004 0.0012 0.001 0.0011 0.0012 0.00107 0.0011 0.00109 

0.2 0.00145 0.0011 0.0012 0.00108 0.00108 0.0010 0.0011 0.0010 0.0011 0.00105 

0.0001 0.1 0 0.000021 0.000011 0.000102 0.00007 0.000124 0.000113 0.000099 0.000117 0.0001 

0.2 0.000074 0.00012 0.00013 0.00011 0.00011 0.00010 0.00012 0.000092 0.00012 0.00010 
 
Table S1: Type I error rate for the likelihood ratio statistic. Here, 𝛼𝛼 is the specified significance level; 𝜋𝜋 is 
the gene mutation rate, which was assumed the same for all genes in each simulation; 𝑘𝑘 is the number of 
genes for simulations; 𝑚𝑚 is the number of subjects for simulation.  
  



 
 
 
 

Cancer type Number patients Number of genes How to select genes 
BLCA 238 39 Tumor Portal 

BRCA 989 39 Tumor Portal 
COAD 269 39 Tumor Portal 
GBM 282 34 Tumor Portal 
HNSC 511 40 Tumor Portal 
KIRC 451 25 Tumor Portal 
LAML 196 26 Tumor Portal 
LGG 465 45 MutSigCV 

LUSC 178 25 Tumor Portal 
OV 462 15 Tumor Portal 

PRAD 300 7 Tumor Portal 
SKCM 428 39 Tumor Portal 
UCEC 248 94 Tumor Portal 

       
 
 
 
Table S2: Cancer types, the number of subjects and the number of genes included for analysis of mutual 
exclusivity. Genes were selected by the TumorPortal website: http://cancergenome.broadinstitute.org/, 
which were derived based on the TCGA tumor sequencing data. The TumorPortal website does not 
report results for LGG; thus we downloaded mutation data from the TCGA website and ran MutSigCV to 
identify significantly mutated genes.    
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Supplementary note: Summary of some methods for detecting mutually exclusive gene sets 

1. MEMo 

MEMo partitions all input genes into N cliques (fully connected gene networks) based in external 
biological information. The key is how to derive an overall P-value for testing the global null hypothesis for 
a clique with M genes. For a given gene set with m genes, MEMo defines the coverage (the proportion of 
patients with at least one mutation in these genes) as statistic for assessing mutual exclusivity and 
approximates the significance by permutations. MEMo uses the following procedure to derive an overall 
P-value for the clique with M genes. 

(1) Run permutations for the whole clique with M genes. If the P-value (PM) is less than a specified 
threshold P0 (default 0.05 in MEMo), the algorithm stops, the overall P-value is PM and the best 
MEGS has M genes. Otherwise, go to step 2; 

(2) Delete the gene with the smallest mutation frequency and test the significance for the remaining 
M-1 genes using permutations. Let P-value be PM-1. If PM-1<P0, record the overall P-value as PM-1 
and the best MEGS has M-1 genes.  Otherwise, repeat step (2) until only two genes remain. In 
this case, the overall P-value is P2. 

After deriving overall P-values for all cliques, MEMo selects statistically significant cliques by controlling 
FDR using these overall P-values. However, controlling FDR requires that P-values under null hypothesis 
follow a uniform distribution U(0,1). Obviously, the overall P-values based on the above procedure do not 
follow U(0,1). To numerically demonstrate this, we have re-implemented their algorithm and summarize 
overall P-value results in Supplementary Figure S3. Clearly, these overall P-values under null 
hypothesis dramatically deviate from U(0,1), suggesting that MEMo does not control type-I error correctly.  

Another problem is the way of selecting “optimal” MEGS. If the true MEGS has 3 genes that are very 
strongly mutually exclusive, then it is very likely the permutation test has a P-value < P0 for the whole 
clique with K (K>>3) genes, i.e. MEMo includes too many false positive genes. This is confirmed by 
simulations, reported in Supplementary Figure S4.  

2. Dendrix/MDPFinder/Multi-Dendrix 

Dendrix, MDPFinder and Multi-Dendrix are designed for de novo discovery of MEGS. All algorithms use 
the same criterion for ranking gene sets motivated by two requirements: (1) most patients have at least 
one mutation in MEGS (high coverage) and (2) most patients have no more than one mutation in MEGS 
(approximate exclusivity). For a subset of m genes with mutation matrix A0, let )( 0AT  denote the total 
number of mutations carried by all patients and )( 0AΓ  denote the number of patients with at least one 
mutation. The “weight” statistic is defined as:  

).()(2))()(()()( 000000 ATAAATAAW −Γ=Γ−−Γ=  

These algorithms rank and identify MEGS by maximizing )( 0AW  over all possible subsets. However, this 
criterion is neither appropriate for comparing putative MEGS with the same size nor different sizes.  

In the left panel with four genes, genes a and b are mutually exclusive. Each gene is mutated in 3/16 
patients. 8/316/316/3),( =+=Γ ba  and 8/3),( =baT , thus .8/3),( =baW  Genes c and d are randomly 
mutated. Gene c covers 50% patients and gene d covers 2α patients. In this case, it is easy to verify that 

2/1),( =dcW  for any value of α when sample size is infinite. Thus, the weight statistic will choose (c,d) 
but not (a,b). Note that, the current calculation is based on proportion assuming infinite sample size, 
suggesting that increasing sample size will not solve the problem.  



In the right panel, genes e (mutated in 1/4 proportion of patients) and f (mutated in 1/4 patients) are 
mutually exclusive but g (mutated in β proportion of patients) is randomly mutated. Thus 5.0),( =feW . 
Because g is randomly mutated, so it has 50% probability to be less overlap with (e,f), which gives 

5.0),,( >gfeW , i.e. the probability of choosing (e, f, g) is 50%, even when sample size goes to infinity.   

In summary, the weight statistic is not suitable as a criterion for choosing MEGS, even when sample size 
is infinite. However, when the coverage of MEGS is higher than 50%, the performance of the weight 
statistic increases. But even in this case, it may include many false positive genes according to our 
simulations. Moreover, Dendrix only performs permutations for evaluating the nominal significance of the 
selected MEGS without correcting for multiple testing.  

 

 

 

 

 

 

  

 
 
 

3. Mutex 
 
Mutex has two innovations: a new metric for measuring MEGS and a search strategy for search genes 
with common downstream targets. Mutex also uses permutations to derive null distribution and thus it has 
correct type-I error rates. Here, we briefly describe their basic idea of defining mutual exclusivity, although 
they used complicated permutations. Consider a set of K genes. For each gene k, Mutex merges the 
mutations of the other K-1 genes as a “super-gene” and tests the mutual exclusivity between gene k and 
the super-gene to derive Pk. The metric for testing the set of M gene is defined as the weakest signal, i.e. 
maxPk. Using the weakest signal for each set of genes likely excludes false positive genes. Although this 
statistic is intuitively attractive, it has low accuracy, particularly for imbalanced MEGS, as we show in 
simulations. In addition, our MEGSA can be adapted to search for MEGS using their databases for 
common downstream targets.  
 

4. LRT-SB 

Szczurek and Beerenwinkel (2014) derived a likelihood ratio statistic based on a data generative model 
different from us. To discuss, we assume that there is no measurement error in the mutation data. In their 
data generative model, they assumed that background mutations could only happen for patients who had 
MEGS mutations. Thus, for a patient with one mutation in the m genes in consideration, this mutation 
must not be background mutation. This is apparently not reasonable.  
 
This assumption leads to a likelihood function );,( 0AL πγ : 
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where γ  is the coverage of MEGS, π  is the background mutation rate (for all genes), 0A  is observed 

mutation matrix, m is the number of genes in the MEGS and kq  is the number of rows in 0A  that have k  

mutations ( mk ,...,1,0= ). 
 
Here, 0=γ  corresponds to the null hypothesis that these genes are not in MEGS. However, this 
likelihood degrades when 0=γ . Thus, they cannot define a likelihood ratio test in a standard way.  

To solve this problem, they derived a likelihood function under the null hypothesis, denoted as );( 00 AL Π : 
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where ),...,( 1 mππ=Π , gπ is the background mutation rates of gene g , gk is the number of samples 

that have mutations in gene g , mg ,...,1= . 
 
Then, they derived the likelihood ratio statistic as  

LRT )];ˆ(log);ˆ,ˆ([log2 000011 ALAL Π−= πg , 

where 1̂γ  and 1π̂ are estimated under H1 and 0Π̂ is estimated under H0. Because the two models are not 

nested, LRT does not follow 2
1χ asymptotically. The authors applied the Vuong’s method to derive a 

statistic (referred as LRT-SB) 
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Here, n is the number of patients and m is the number of genes in consideration. The authors claimed 
that LRT-SB followed N(0,1) under H0 and calculated the P-value as 1-Ф(LRT-SB). However, they 
interpreted the Vuong’s method incorrectly. 
 
The Vuong’s method was originally developed for comparing two models that were not nested. The “null 
hypothesis” for Vuong’s statistic is that the two models (H0, H1 in this case) are equally likely given the 
data (the mutation matrix in this case). If data are generated under H0 (null hypothesis for ME), LRT-SB 
does not follow N(0,1), as is shown in Supplementary Figure S2.  
 
Moreover, the authors assume equal background mutation rate across genes. Thus it is expected to have 
low power for imbalanced MEGS even if the null distribution can be fixed.   


