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Supplement 

Supplementary Table 1. Drug Names, Synonyms, and Properties 

Drug names  Synonyms Properties 

AZD6244 Selumetinib, 

ARRY-142886  

Inhibitor of MEK or MAPK/ERK kinases 1 and 2  

Inhibition of cell proliferation 

Bortezomib PS-341, 

Velcade,  

LDP 341, 

MLN341 

Inhibition of the 26S proteasome 

Disruption of signaling pathways, induction of cell cycle 

arrest, apoptosis, and inhibition of angiogenesis 

DMAG 17-DMAG 

HCL, 

alvespimycin 

hydrochloride, 

KOS-1022 

Inhibition of HSP90 Chaperone protein 

Destabilization and degradation of oncogenes, kinases, 

transcription factors and other client proteins involved 

in cell proliferation and survival 

Erlotinib Tarceva,  

CP-358,744, 

OSI-744 

ATP-competitive inhibition of EGFR signal 

transduction 

Gefitinib Iressa, ZD 1839 ATP-competitive inhibition of tyrosine kinases, 

including EGFR  

Inhibition of EGFR signal transduction 

Lapatinib Tykerb, 

GSK572016, 

GW2016,  

GW-572016 

Blocks phosphorylation of EGFR, ErbB2, and Erk-1 and 

-2 and AKT kinases 
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Oxaliplatin -- Forms inter- and intra-strand platinum-DNA crosslinks 

Inhibition of DNA replication and transcription 

Cell-cycle independent cytotoxicity 

LipoxalTM Oxaliplatin-

encapsulated 

Tf-conjugated 

NGPE 

liposome 

Liposomal formulation of oxaliplatin (see above) 

Sunitinib Sutent, 

SU11248, 

SU011248  

Tyrosine kinase inhibitor of VEGFR2, PDGFRβ, FLT3 

and c-kit 

Inhibition of angiogenesis and cell proliferation 

Thalidomide Alpha-

phthalimidoglut

arimide, N-

phthaloylgluta

mimide, N-

phthalylglutami

c acid imide, 

Synovir, 

Thalomid, 

Contergan, 

Distaval, 

Kevadon, 

Neurosedyn, 

A synthetic derivative of glutamic acid active through 

immunomodulatory, anti-inflammatory and anti-

angiogenic properties 
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Pantosediv, 

Sedoval K-17, 

Softenon, 

Talimol 
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Supplementary Table 2. Papers Surveyed (N=125) 

Drug References; 

see below 

AZD6244 [1-4] 

Bortezomib [5-17] 

17-DMAG [18-21] 

Erlotinib [22-34] 

Gefitinib [35-70] 

Lapatinib [71-76] 

Oxaliplatin/ LipoxalTM [77-93] 

Sunitinib [94-103] 

Thalidomide [104-107] 

Vorinostat [108-125] 
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Supplementary Table 3.  In vitro schedules. Note: some papers used more than one schedule; some schedules 

were used in more than one paper. D=drug, R=radiation. The time of drug removal or replating is indicated if 

reported by the authors. 

Drug Schedule; D=Drug, R=radiation, min=minutes, h=hours, 

d=days  

References; see 

below 

AZD6244 D-immediate-R-48h-D removed (replated) [3] 

 D-2h-R [4] 

 D-16h-R [1, 2] 

 D-48h-R [3] 

Bortezomib D24h-R simultaneous (exact timing not given) [9, 13] 

 D-1h-R [16] 

 D-4h-R [12, 14] 

 D-16h-R [8] 

 D-16h-washed out-R [6] 

 D-24-R [5, 10] 

 D-24h-R-replated [13] 

 R-24h-D-24h-replated [13] 

 R-24h-D-48h [7] 

 R-48h-D-(duration not reported) [9] 

 (D duration, D+R schedule not reported) [15] 

DMAG D-R simultaneous (D duration, exact timing not given) [21] 

 D-6h-R [19] 

 D-8h-R [19, 21] 

 D-16h-R [18, 21] 



Preclinical efficacy of 10 drug-radiation combinations, Supplement   
 

 6 

 D-16h-R-washout [20] 

Erlotinib D-1h-R; D on for duration of experiment [30, 31] 

 D-1h-R (D duration unclear) [32] 

 D-1h-R-3h-washout [22] 

 D-2h-R [25, 27, 29] 

 D-R (D duration, D+R schedule not reported) [34] 

 DR simultaneous (D duration, exact timing not given) [34] 

 D-overnight-R (D duration not clear) [34] 

 D-24h-replated, allowed to adhere-R [22] 

 D-24h-R; D on for duration of experiment [30] 

 D-72-R [23, 26] 

 D-72h-washout-24h-R [26] 

 R-D-72h-washout [26] 

 R-D (D duration, D+R schedule not reported) [34] 

Gefitinib D-R simultaneous (D duration, D+R schedule not reported) [69, 70] 

 D-5min-R [64] 

 D≤30min-R-24h-washout [61] 

 D-30min-R-4h-washout [64] 

 D-30min-R-6h-washout [64] 

 D-30min-R-8h-washout [64] 

 D-30min-R-24h-washout [64] 

 D-30min-R-6d-washout [35] 

 D-30min-R-24h-R-24h-R; fresh D before final R and every 

48h during 5d incubation 

[67] 
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 D-1h-R [65] 

 D-1h-R-24h-washout [54] 

 D-2h-R [42, 59] 

 D-3h-R-6h-washout [45] 

 D-4h-R-68h washout [56] 

 D-12h-R-6h-replated [48] 

 D-12h-washed-12h-R [69] 

 D-16h-R-replated [39] 

 D-18h-R [49] 

 D-24h-R [36, 44, 51, 52, 63, 

66, 68] 

 D-24h-R-washout [35, 53, 57] 

 D-24h-R-24h-washout [40] 

 D-24h-R-7d-fresh D [37] 

 D-48h-R-washout [53] 

 D-48h-R [43, 61] 

 D-48h-R-24h-R-24h-R (duration of D exposure not given) [55] 

 D-72h-R [52] 

 D-72h-R-replated [47] 

 D-144h-R [52] 

 R-D-2h [35] 

 R-D-4h [35] 

 R-D-8h [35] 

 R-D-12h [35] 
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 R-D-24h [35] 

 R-D-24h-washout [38, 53] 

 R-replated-D-96h [37] 

 R-replated-D-288h (12d) [63] 

 R-24h-D-12h [69] 

 R-24h-D-48h [50] 

Lapatinib D-1h-R-10min-washout [76] 

 D-2h-R-2h-washout [72, 74] 

 D-24h-R-replated [73] 

Oxaliplatin D-1h-R-24h-washout [77, 79] 

 D-2h-R [85, 90] 

 D-2h-washout-R [87, 93] 

 D-2h-washout-12h-R [88] 

 D-2h-washout-24h-R [87, 88] 

 D-2h-R; medium changed at time of exposure and at 48h [85] 

 D-3h-R [89] 

 D-3h-washout-48h-R [89] 

 D-4h-washout-R [80] 

 D-8h-R [91] 

 D-24h-R [90] 

 D-24h-R-washout [86] 

 D-24h-removed all but1mm medium over cells-R-replated [84] 

 D-48h-R [91] 

 R-D-2h [85] 
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 R-2h-D-2h [85, 88] 

 R-24h-D-2h [85] 

Sunitinib D-1h-R-washout [97] 

 D-1h-washout-R-washed-replated [99] 

 D-24h-R [103] 

 D-24h-R-replated [94, 100] 

 [schedule not given] [102] 

Thalidomide D-30min-R-washout [107] 

 D-1h-R, D in medium after R, duration not given [105] 

 D-1h-R [104] 

 D-R-D, exact timing and total D duration not clear  [105] 

 R-D1h [105] 

Vorinostat D-2h-R [122] 

 D-2h-R-D throughout incubation [110] 

 D-3h-R [117] 

 D-4h-R [124] 

 D-6h-R-(66h-washout?) [116] 

 D-16h-R-3h-replated [111] 

 D-16h-R-D throughout incubation [108] 

 D-18h-R [121] 

 D-18h-R-washout [114] 

 D-18h-washout-R [115] 

 D-18h-washout-3h-R [115] 

 D-18h-washout-6h-R [115] 
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 D-24h-R [119] 

 D-24h-washout-R [123] 

 D-24h-R-washout [118] 

 D-24h-R-(10-12d)-washout [109] 

 D-48h-R [113] 

 D-48h-washout-30min-R [120] 

 D-48h-washout-24h-R [120] 

 [schedule not clear] [112] 
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Supplementary Table 4. Radiation sources 

Radiation source In vitro, of 104 papers In vivo, of 51 papers  

X rays 28* 17 

137Cs 24*, * 6* 

60Co 16* 2 

Linear accelerator, photons (X rays) 5 4* 

Linear accelerator, electrons 1 5 

Linear accelerator, beam type not given 4 1 

Neutrons 2 0 

Heavy ions, not identified 1 0 

Manufacturer name and/or model 

reported, but not radiation type 

10 9 

Not reported or unclear 15 8 

*Papers using 2 different radiation sources were counted twice 
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Supplementary Table 5.  In vivo schedules 

Single fraction irradiation 

Drug Schedule  

D=Drug, R=radiation; 

min=minutes, h=hours, d=days, 

w=weeks 

R dose/fraction x # of 

fractions=Total, Gy 

D dose/fraction x # doses; d=days, w=weeks References; 

see below 

AZD6244 D-4h-R 3 x 1 = 3 50 mg/kg x 1 [1] 

Bortezomib D-4h-R 6 x 1 = 6 1 mg/kg x 1 [14] 

 R-5h-D + D 2x/w, duration not 

given 

10 x 1 = 10 1.3mg/m2 x 2/w x ?w [17] 

DMAG D-12h-D-12h-R   5 x 1 = 5 50mg/kg x 1 [19] 

Erlotinib D in feed for 4d-R   6 x 1 = 5 50mg/kg/d, duration not given [22] 

 D daily x 15d, R x 1, timing not 

given  

8 x 1 = 8 1.6mg/d x 15d [33] 

Gefitinib (D+R) + 9 more daily D in 2w; exact 

timing, schedule not given  

5 x 1 50mg/kg/d x 5d/w x 2w [42] 

 D-1d-R + 4 more daily D-2d off-+5 

more daily D; exact timing not given  

10 x 1 75mg/kg x 5d/w x 2w [63] 
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 R-2h-D + 4 more daily D  5 x 1 100mg/kg/d x 5d  [46] 

 D-2h-R + 13 more daily D 5 x 1 50mg/kg/d x 14d [67] 

 D-2h-R + 2 more daily D 10 x 1 50mg/kg x 3d [38] 

Lapatinib [none] -- -- -- 

Oxaliplatin D-1h-R 10 x 1 = 10 or 20 x 1 = 

20 

6 or 10mg/kg x 1 [83] 

 D-2h-R  4 x 1 = 4 (neutrons) 10mg/kg x 1 [78] 

 D-4h-R 10 x 1 = 10 6 or 10mg/kg x 1 [83] 

 D-4h-R 15 x 1 = 15 10mg/kg x 1 [92] 

 D- 24h-R 10 x 1 = 10 6 or 10mg/kg x 1 [83] 

 D-24-R 15 x 1 = 15 10mg/kg x 1 [92] 

 D-48h-R 15 x 1 = 15 10mg/kg x 1 [92] 

 R-1h-D 10 x 1 = 10 6 or 10mg/kg x 1 [83] 

 R-4h-D 10 x 1 = 10 6 or 10mg/kg x 1 [83] 

 R- 24h-D 10 x 1 = 10 6 or 10mg/kg x 1 [83] 

LipoxalTM D-24h-R   15 x 1 = 15 Equivalent to 3mg/rat of oxaliplatin x 1 [81, 82] 

Sunitinib (D-1d-R-1d) x 3, then 14 more daily 8 x 1 = 8 20mg/kg/d x 17d [100] 
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D 

 D + R, exact timing not given, + 8 

more daily D  

15 x 1 = 15 40mg/kg/d x 9d [103] 

 D + R, exact timing not given, + 6 

more daily D, weekend off 

8 x 1 = 8 40mg/kg/d x 7/1.5w [96] 

 D daily x 14d-1d?-R 2, 4, 8, or 16 30mg/kg/d x 14d [99] 

Thalidomide D daily x 3d, R on 3rd d, exact 

timing of D & R not given 

20 (tumor periphery) or 

18 (center) 

4mg/rat x 3d [106] 

 D just before R  20 x 1 = 20 200mg/kg x1 [104] 

 (D daily x 2d)-R; exact timing D & 

R not given  

20 x 1 = 20 200mg/kg/d x 2d [104] 

 (D i.p. x 1/d x 4d)-R exact timing D 

& R not given  

20 x 1 = 20 200mg/kg/d x 4d [104] 

 R-(D daily x 2d) exact timing D & R 

not given  

20 x 1 = 20 200mg/kg/d x 2d [104] 

Vorinostat D-6h-R  3 x 1 = 3 50mg/kg [108] 

 D-6h-R 5 x 1 = 5 75mg/kg x 1 [108] 
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 D-24h-(R+D; exact timing not 

given) + 6 more daily D   

10 x 1 = 10 100mg/kg/d x 8 (5/w x 1.5w) [125] 

 R-immediate-D 4 x 1 = 4 25mg/kg x 3/w x 3w [112] 

Multifraction irradiation; fx=fractions 

AZD6244 

 

(D-2h-R-6h-D) x 5d - (D-8h-D) for 

5 more days 

2x5=10 25mg/kg x 2/d x 10d [3] 

 (D-8h-D) x 5d - (D-2h-R-6h-D) for 

5 more days 

2x5=10 25mg/kg x 2/d x 10d [3] 

Bortezomib (R+D) x 3/w x 2w; exact timing of 

R & D not given 

1.5x6=9 0.1mg/kg x 3/w x 2w [15] 

 (D-4h-R) x 1/w x 2w  10x2=20 0.9 mg/kg x 1/w x 2w [11] 

 R x 5fx/w x 2w; (D-4h-R on d 1, 4, 

8, 11) 

2x10=20 0.45mg/kg x 2/w x 1.5w [11] 

 R x 4d; D 2x/w for duration of 

study; exact timing of D & R not 

given 

5x4=20 0.5mg/kg/d x 2d/w for duration of study [9] 

DMAG [none] -- -- -- 
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Erlotinib R x 5/w x 2w; D-4h-R on d1-5 & 8-

12; exact timing of D & R not given 

1x10=10 100 mg/kg/d x 2/w x 2w [26] 

 R x 3/w x 2w; D 5x/w x 2w; exact 

timing of D & R not given 

2x6=12 100 mg/kg/d x 5/w x 2w [28] 

 R x 2/w x 3w; D 1x/d during course 

of R; exact timing of D & R not 

given 

2x6=12 0.8mg/mouse/d x 3w [23] 

 R x 2/d x 5d; D daily M-F until 

death; exact timing of D & R not 

given 

2x10=20 150 mg/kg/d x 5/w for duration of study [28] 

 R on d4, 7, 9, 11, D 1x/d x 10d 

starting d1; exact timing of D & R 

not given 

(2, 4, 6, 8, or 10)x4=8, 

16, 24, 32, or 40 

100 mg/kg/d x 10d [32] 

 R x 5/w x 6w; D 1x/d on d0-42; 

exact timing of D & R not given 

(range of doses)x30= 

(~25-150 for TCD50) 

50 mg/kg/d x 43d [24] 

Gefitinib (D-2h-R) x 5d 1x5=5 100 mg/kg/d x 5d [46] 

 R x 4d; D 5x/w x 2w, starting 1d 2.5x4=10 75 mg/kg/d x 5/w x 2w  [63] 
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before first R; exact timing of D & R 

not given 

 R x 2/w x 2w; D daily x 5d/w x 2w; 

exact timing of D & R not given 

4x4=16 100mg/kg/d x 5d/w x 2w [58] 

 R x 2/w, total 7 fractions; D 1 x/d x 

12; exact schedule, timing of D & R 

not given  

3x7=21 0.5mg/mouse/d x 5/w x 2.5w [47] 

 [(R+D)-1d-D 4d/w] x 3w; exact 

timing of D & R not given 

8x3=24 100 mg/kg/d x 5/w x 3w [62] 

 (R+D) x 5d/w x 2w; exact timing of 

D & R not given 

(1, 2, or 4) x10=10, 20, 

or 40 

150 mg/kg/d x 5/w x 2w [60] 

 R x 4d; D 1 x/d x 5d/w x 4w; exact 

schedule, timing of D & R not given 

10x4=40 100 mg/kg/d x 5/w x 4w [37] 

 R x 5/w x 3w; D every other day 

throughout; exact timing of D & R 

not given 

4x15=60 100 mg/kg/d every other day for duration [41] 

 (D-2h-R)/d x 3d + 11 more daily D 2x3=6 100mg/kg/d x 14d [67] 
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Lapatinib (D-6h-D) x 6d-(R+D-6h-D) x 3d-

(D-6h-D); exact timing of D & R 

not given  

2x3=6 100 mg/kg x 2/d x 10d [75] 

 D daily x 1w-(R+D) x 2w-D daily x 

1w; exact timing of D & R not given 

8x2=16 100 mg/kg/d x 4w [71] 

Oxaliplatin (D+R) daily x 10d; timing not given 2x10=20 1mg/kg/d x 10d [83] 

 (D-4d-D); R x 10d; schedule, timing 

not given 

2x10=20 4, 5, 6, or 7 mg/kg/d x 2d (4d apart)  [83] 

Sunitinib (D-2h-R) x 5 over 7d: exact 

schedule not clear  

2x5=10 40 mg/kg/d x 5d [97] 

 D x 3d-(D, R)d 4 & 5  + 7 more D 

(daily) 

10x2=20 40mg/kg/d x 12d [102] 

  (D-1h-R) x 5d  1x5=5 1.3mg/mouse/d x 5d [94] 

 (R x 1/d x 5d)-24h-(D x 1/d x 5d) 3 x 5=15 1.2mg/mouse/d x 5d [94] 

 (D-1h-R) x 1/d x 5d 3 x 5=15 1.2mg/mouse/d x 5d [94] 

 (D ≤ 30min-R)/d on d1-5, 7, 8 (7 fx) 3x7=21 40 mg/kg/d x 7 (d1-5, 7, 8) [101] 

 (D-2h-R)/d x 5d 2x5=10 40mg/kg/d x 5d [97] 
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 (D≤30min-R daily on d1-6)-(D-8h-

D) on d9-12, 15-17, 21 and 

thereafter 

3x6=18 40 mg/kg /d x 6d, then 20 mg/kg x 2/d on d9-

12, 15-17, 21 and for duration of study 

[101] 

 R x 5 on d1-5; D x 1/d on d 1-7; 

timing of D & R on d1-5 not given 

5x5=25 40 mg/kg/d x 7d [95] 

 (D≥ 30min-R) x 5/w x 3w  2x15=30 60 mg/kg/d x 5/w for duration [98] 

 (D ≥ 30min-R) x 5/w x 2w   “or 

until onset of symptoms” 

6x10=60 60 mg/kg/d x 5/w for duration  [98] 

Thalidomide [none] -- -- -- 

Vorinostat (D-1h-R)  on d 1, 3, 5  1x3=3 150 mg/kg/d x 3d [117] 

 (D-3h-R) x 4d 2x4=8 100 mg/kg/d x 4d [115, 121] 

 (D-12h-R) x 4d 2x4=8 100 mg/kg/d x 4d [115] 

 D-24h-(D, R)/d x 3d-11 more D; D 

x 5/w x 3w; exact schedule, timing 

not given for days when R given 

3x3=9 100 mg/kg x 15 

(5x/w x 3w) 

[125] 

 (D-3h-R) x 5d 2x5=10 100 mg/kg/d x 5d [115] 

 (D-12h-R) x 5d 2x5=10 100 mg/kg/d x 5d [115] 
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Supplementary Table 6. Effectiveness of 10 drugs in combination with radiation. Drug dose and 

schedule were not considered here, but were subsequently examined for Supplementary Table 7 (below). 

 

Drug # Tumor lines 

studied in vitro 

&/or in vivo* 

Total # 

Experiments, in 

vitro and in vivo 

Results in vitro, useable expts. 

Positive (+) / negative(-) 

Results in vivo, 

useable expts. 

# with 

DMF,  

+/ –** 

# additional 

with subjective 

results, +/-  ** 

Total, +/- # +/- *** 

AZD6244 7 16 11/1 0/0 11/1 1/3 

Bortezomib 26 51 7/3 5/1 12/4 3/4 

DMAG 11 25 14/3 7/0 21/3 1/0 

Erlotinib 73 84 10/8 0/0 10/8 1/9 

Gefitinib 74 146 18/1 18/1 36/2 3/7 

Lapatinib 15 20 4/3 0/0 4/3 1/2 

Oxaliplatin 19 54 0/0 0/0 0/0 4/6 

LipoxalTM 2 8 0/0 1/0 1/0 3/2 

Sunitinib 16 30 0/1 0/0 0/0 1/15 

Thalidomide 6 18 3/0 0/0 3/0 1/4 

Vorinostat 33 65 0/0 0/0 0/0 7/5 

Totals 282  

Drug-tumor 

line 

combinations 

517 67/20 31/2 98/21 26/57 
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* Note: the numbers in Fig. 1 did not break down the data by tumor line: some papers used more than one tumor 

line. 

** “Useable” was defined for in vitro experiments as those conducted using clonogenic assays and having drug 

concentrations at or below those achievable in patients (≤Cmax or ≤serum concentrations at the MTD). 

Experiments with missing or unclear information on drug or radiation doses or schedules or with 

uninterpretable data were not included. DMF > 1.1 = +; DMF ≤ 1.1 = -. Experiments quantified by other 

measures or other estimates of results were included in “additional subjective results.” Likely enhancement or 

sensitization = +; likely additive at most = -.  

*** “Useable” was defined for in vivo experiments as those with calculated and estimated enhancement from 

growth delay or survival studies and those with DMFs from TCD50 experiments. Experiments with missing or 

unclear information on drug or radiation doses or schedules or uninterpretable data were not included. Those 

with multi-day schedules in which exact timing was not given for the days of combined treatment were 

considered acceptable for this count.  
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Supplementary Table 7. Summary of findings 

Drug # Tumor lines with 

in vitro & in vivo 

data in agreement/# 

with both in vitro & 

in vivo data 

Summary of findings; “Both in vitro & in vivo”, below, indicates tumor lines for which both 

in vitro and in vivo data were available and useable  

AZD6244 1/4 In vitro: DMFs 1.13-2.0, varied with tumor line, drug dose & schedule; “simultaneous” drug and 

irradiation negative;  

Both in vitro and in vivo: only 1 of 4 was positive in both, with in vitro DMFs 1.9-2.0; all in vivo 

studies had in vitro studies with the same tumor lines 

Bortezomib 1/1 In vitro: DMFs = 2.25 with 100nM, ≤1.55 with ≤10nM;  

Both in vitro & in vivo: one tumor line only: DMF in vitro = 1.16, positive in vivo  

In vivo: in 2 studies, enhancement with 2 fractions, but not with 10 fractions; in other cases, drug 

doses and schedules varied, no clear pattern emerged 

DMAG 1/1 In vitro: DMFs 1.3-1.9 with 10-50nM; “enhancement” also with 100nM (not quantified);  

Both in vitro & in vivo: one study: enhancement suggested 

Erlotinib 2/2 In vitro: Of 9 cell lines tested identically (2µM, D-1h-R schedule), 6 had DMFs of 1.15-1.44, and 

3 were negative (DMF≤1.1); no in vivo data available on these lines 
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Both in vitro & in vivo: 2 tumor lines tested, all negative  

In vivo: 1 with DMF=1.13 in TCD50 assay, 6 others negative 

Gefitinib 1/4 In vitro: DMFs=1.12-3.4 @ drug doses 0.01-0.10µM, various schedules and tumor lines; in 2 of 3 

cell lines, DMFs varied with schedule; in 6 of 7 cell lines tested at multiple drug doses, no DMFs 

were available; in 1 cell line, DMFs=1.30-1.56 @ drug doses 0.01-0.10µM 

Both in vitro & in vivo: 1 line: positive in both; 3 lines, both positives and negatives 

In vivo: More negative results than positive 

Lapatinib 0/0 In vitro: one line tested @ 0.6 & 2.4µM, DMFs=1.13-  & 1.30, respectively; 5 other lines tested 

at single drug doses & schedules, 2 with DMFs of 1.16 and 1.4, respectively, and 3 negative. 

In vivo: mixed results may be cell line-specific 

Oxaliplatin 0/0 In vitro: All experiments carried out at concentrations above those clinically achievable 

In vivo: mixed results; may be schedule-dependent 

LipoxalTM 0/1 In vitro: one study, in glioblastoma, suggests enhancement; other studies uninterpretable 

In vivo: little or no increase of survival time in above line; 3 schedules in colorectal line: all 

probably >additive growth delay 

Sunitinib 0/0 In vitro: one study, a breast cancer line: negative 

In vivo: 15 studies negative; 1 positive: a glioma line: large effect on tumor size 5 days after 
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treatment 

 

Thalidomide 0/0 In vitro: esophageal tumor line: DMFs 1.15-1.7 @ 2-6µM, all with same schedule 

In vivo: glioma line: large effect; mouse fibrosarcoma: intratumoral injection negative in 4 

schedules 

Vorinostat 0/0 In vitro: All experiments carried out at concentrations above those clinically achievable  

In vivo: 2 colorectal lines: with similar drug doses & schedules, each had 2+ and 1- studies; other 

lines about evenly divided with + and – studies with various drug doses & schedules 

Totals 6/13  
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