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Affective type Slide No. Physiological SCR pattern Affective pattern
Onset time Gain Rise time Time constant Valence Arousal

Pleasant

1710 0.86(0.07) 1.38(0.17) 1.62(0.16) 3.18(0.40) 7.78(1.35) 6.00(2.16)
1722 1.05(0.03) 1.52(0.10) 1.30(0.05) 2.18(0.06) 5.78(2.01) 5.93(1.75)
7230 0.52(0.15) 1.29(0.09) 1.08(0.19) 4.48(0.51) 7.22(1.45) 5.74(2.12)
7260 0.95(0.16) 1.32(0.93) 2.37(0.45) 5.48(0.43) 6.81(2.21) 4.96(1.95)
7270 0.91(0.35) 1.26(0.67) 1.85(0.44) 4.32(0.20) 6.59(1.54) 5.33(1.96)
7330 1.18(0.17) 1.38(0.51) 1.74(0.34) 5.22(0.93) 6.56(1.98) 5.93(1.96)
7460 1.00(0.80) 1.83(0.22) 0.82(0.21) 2.32(0.81) 6.96(2.12) 5.15(2.05)
8500 1.02 (0.04) 1.53(0.23) 1.23(0.09) 2.51(0.12) 6.41(1.36) 5.41(1.88)

Neutral

5510 1.03(0.22) 1.15(0.09) 1.10(0.05) 1.75(0.05) 5.30(1.42) 2.77(2.11)
5530 0.85(0.14) 0.89(0.10) 1.23(0.07) 2.30(0.12) 5.30(1.43) 3.06(1.95)
5740 1.22(0.23) 0.80(0.12) 1.26(0.09) 2.36(0.24) 6.00(1.41) 2.58(2.31)
7000 1.10(0.23) 1.30(0.25) 1.36(0.12) 1.77(0.14) 5.30(1.33) 2.14(1.83)
7004 1.13(0.13) 0.95(0.11) 1.50(0.09) 2.01(0.10) 5.74(1.19) 2.32(1.72)
7006 1.14(0.15) 0.85(0.23) 1.21(0.20) 1.48(0.15) 5.63(1.18) 2.54(2.17)
7010 1.10(0.25) 1.02(0.31) 1.20(0.18) 1.29(0.78) 5.41(1.21) 2.40(2.09)
7020 1.14(0.03) 0.71(0.12) 1.24(0.11) 1.51(0.12) 5.19(1.17) 1.88(1.78)

Unpleasant

3010 0.14(0.09) 4.85(0.13) 2.10(0.42) 6.18(0.30) 1.44(0.69) 7.93(1.14)
3030 0.30(0.12) 5.05(0.74) 2.03(0.46) 6.01(0.89) 2.15(0.94) 7.11(1.39)
3053 0.77(0.15) 3.43(0.19) 1.45(0.16) 5.84(0.26) 1.59(1.22) 8.30(1.23)
3060 0.82(0.13) 3.03(0.16) 1.27(0.05) 5.39(0.29) 1.30(0.64) 8.22(1.12)
3071 0.93(0.24) 5.13(0.21) 1.62(0.12) 4.79(0.26) 1.60(0.79) 7.78(1.28)
3080 0.26(0.12) 3.79(0.05) 1.66(0.24) 4.89(0.15) 1.41(0.73) 7.78(1.12)
3102 1.00(0.21) 2.71(0.06) 0.98(0.03) 5.78(0.16) 1.78(0.80) 7.74(1.09)
3120 0.56(0.16) 4.04(0.51) 2.09(0.13) 5.37(0.51) 1.81(0.92) 7.74(1.25)

Supplementary Table 1. Affective pattern and psychological SCR pattern. Twenty four pictures, which are defined by
their slide numbers (Slide No.) in the IAPS, were grouped into pleasant, neutral, and unpleasant groups. For each picture, its
affective pattern contains its mean valence and arousal scores across participants. Its mean SC signal is obtained by
averaging 10-second SC segments after its presentation across participants. Applying the Lim’s nonlinear curve fitting with
20 step iterations to each mean SC signal, each pure SCR pattern (waveform) was represented by a four dimensional feature
vector that consists of onset time, gain, rise time, and decay time constant (Time constant) parameters. The values in the
parentheses are corresponding standard deviations.
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Affective type Physiological SCR dimension Affective pattern
Gain Time constant Valence Arousal

Pleasant

1.45 2.25 6.78 6.13
1.29 3.88 7.80 6.00
1.31 4.58 7.52 5.45
1.27 3.77 7.36 5.71
1.35 4.40 7.33 6.13
1.67 2.35 7.62 5.58
1.46 2.49 7.23 5.77
1.39 3.17 6.39 5.95
1.41 3.88 6.10 5.40
1.37 3.06 5.95 5.66
1.45 3.69 5.92 6.08
1.77 1.64 6.21 5.53
1.56 1.78 5.81 5.71
1.25 5.50 7.12 5.27
1.21 4.69 6.97 5.53
1.29 5.32 6.94 5.95
1.61 3.27 7.23 5.40
1.40 3.41 6.84 5.58
1.23 5.39 6.68 4.98
1.31 6.03 6.65 5.40
1.63 3.98 6.94 4.85
1.42 4.11 6.55 5.03
1.27 5.21 6.50 5.66
1.59 3.16 6.78 5.11
1.37 3.29 6.39 5.29
1.67 3.80 6.76 5.53
1.46 3.93 6.36 5.71
1.78 1.88 6.65 5.16

Neutral

1.05 2.11 5.22 3.10
0.98 2.16 5.72 2.76
1.34 1.74 5.22 2.45
1.09 1.91 5.53 2.58
1.02 1.53 5.46 2.74
1.13 1.40 5.30 2.63
0.92 1.55 5.14 2.26
0.80 2.54 5.72 2.97
1.16 2.13 5.22 2.66
0.91 2.30 5.53 2.79
0.84 1.92 5.46 2.95
0.95 1.79 5.30 2.84
0.74 1.94 5.14 2.47
1.09 2.17 5.72 2.32
0.84 2.34 6.03 2.45
0.78 1.96 5.95 2.61
0.89 1.83 5.80 2.50
0.67 1.98 5.64 2.13
1.20 1.92 5.53 2.13
1.13 1.55 5.46 2.29
1.24 1.42 5.30 2.19
1.03 1.57 5.14 1.82
0.88 1.72 5.77 2.42
0.99 1.59 5.61 2.32

Continued on next page
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Continued from previous page
0.78 1.74 5.46 1.95
0.92 1.21 5.53 2.47
0.71 1.36 5.38 2.11
0.82 1.23 5.22 2.00

Unpleasant

5.34 6.32 1.86 7.39
4.20 6.20 1.47 8.23
3.92 5.88 1.26 8.18
5.40 5.46 1.47 7.86
4.46 5.53 1.34 7.86
3.69 6.16 1.60 7.84
4.63 5.87 1.63 7.84
4.34 6.09 1.97 7.65
4.06 5.77 1.76 7.60
5.54 5.34 1.97 7.29
4.60 5.42 1.84 7.29
3.83 6.04 2.10 7.26
4.77 5.75 2.13 7.26
2.91 5.65 1.37 8.44
4.39 5.23 1.58 8.13
3.45 5.30 1.44 8.13
2.68 5.93 1.71 8.10
3.62 5.64 1.73 8.10
4.11 4.91 1.37 8.07
3.17 4.98 1.23 8.07
2.40 5.60 1.50 8.05
3.34 5.32 1.52 8.05
4.65 4.56 1.44 7.76
3.88 5.18 1.71 7.73
4.83 4.89 1.73 7.73
2.94 5.25 1.58 7.73
3.88 4.97 1.60 7.73
3.11 5.59 1.86 7.71

Supplementary Table 2. Simulated data sets. For each affect and column, twenty eight simulated values were
constructed from its experimental values by the data extending theorem (Theorem 1).
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Polynomial order
Valence Arousal

PCOR MSE Index PCOR MSE Indexr p LB UB r p LB UB

1 0.85 0.00 0.78 0.90 1.31 0.65 0.91 0.00 0.87 0.94 0.83 1.10
2 0.91 0.00 0.86 0.94 0.83 1.09 0.96 0.00 0.94 0.97 0.38 2.55
3 0.97 0.00 0.95 0.98 0.31 3.08 0.96 0.00 0.94 0.97 0.40 2.40
4 0.97 0.00 0.95 0.98 0.30 3.21 0.97 0.00 0.95 0.98 0.34 2.88
5 0.97 0.00 0.96 0.98 0.25 3.91 0.97 0.00 0.95 0.98 0.33 2.94
6 0.96 0.00 0.96 0.97 0.30 3.16 0.96 0.00 0.95 0.98 0.35 2.79

Supplementary Table 3. Performances of twelve models with three input variables on the simulated data sets. The
PCOR and MSE are respectively the Pearson’s correlation and mean squared error (equations (6) and (7)) of models
prediction. Under the PCOR column, r is the Pearson’s correlation coefficient, p is the p-value, and LB and UB are
respectively the lower and upper bounds of the 95% confidence interval of r. The Index is the ratio of model’s MSE to
correlation coefficient r (equation (8)). All p-values are no more than 0.0001.

The five order HMPMs with three inputs is as follows:⎧⎨⎩
V(T,g, td) = 2.4472+3.5244g2 +2.6252gtd −1.2297g3 −2.9242g2td +0.9119g3td +0.0201g5

−0.0857g4td + εV ,

A(T,g, td) =−0.8618+2.9013gtd +0.35t2
d −0.9844gt2

d +0.0992gt3
d −0.0076t4

d −0.0021g2t3
d + εA,

(1)

where T, g, and td are onset time, gain, and time constant, and the terms εV ,εA are errors.

Polynomial order
Valence Arousal

PCOR MSE Index PCOR MSE Indexr p LB UB r p LB UB

1 0.85 0.00 0.78 0.90 1.31 0.65 0.91 0.00 0.87 0.94 0.83 1.10
2 0.91 0.00 0.86 0.94 0.83 1.09 0.96 0.00 0.95 0.98 0.34 2.83
3 0.97 0.00 0.95 0.98 0.33 2.89 0.96 0.00 0.94 0.97 0.40 2.40
4 0.97 0.00 0.95 0.98 0.31 3.11 0.97 0.00 0.95 0.98 0.30 3.20
5 0.98 0.00 0.97 0.99 0.16 6.15 0.97 0.00 0.95 0.98 0.31 3.11
6 0.98 0.00 0.96 0.98 0.22 4.37 0.96 0.00 0.95 0.98 0.34 2.83
7 0.97 0.00 0.96 0.98 0.25 3.97 0.97 0.00 0.95 0.98 0.32 3.01
8 0.98 0.00 0.98 0.99 0.15 6.73 0.96 0.00 0.94 0.98 0.35 2.73
9 0.98 0.00 0.96 0.98 0.24 4.11 0.97 0.00 0.96 0.98 0.28 3.42

10 0.98 0.00 0.96 0.99 0.24 4.00 0.96 0.00 0.94 0.97 0.38 2.52

Supplementary Table 4. Performances of twenty models with two input variables on the simulated data sets. The
PCOR and MSE are respectively the Pearson’s correlation and mean squared error (equations (6) and (7)) of models
prediction. Under the PCOR column, r is the Pearson’s correlation coefficient, p is the p-value, and LB and UB are
respectively the lower and upper bounds of the 95% confidence interval of r. The Index is the ratio of model’s MSE to
correlation coefficient r (equation (8)). All p-values are no more than 0.0001.
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Valence model Arousal model
Parameter value LB UB Parameter value LB UB

α00 4.64304351 4.55186803 4.73421900 β00 1.09673702 0.97239774 1.22107630
α40 -1.13887275 -1.62341059 -0.65433491 β21 1.63403427 1.31146025 1.95660829
α31 2.40514460 1.63864756 3.17164164 β22 -0.53044020 -0.63966746 -0.42121293
α32 -1.16460227 -1.49501333 -0.83419121 β05 0.02478456 0.01894402 0.03062511
α14 0.05101483 0.03935123 0.06267842 β24 0.01300670 0.01030580 0.01570760
α42 0.35987576 0.23750260 0.48224892 β06 -0.00801417 -0.01020255 -0.00582578
α06 -0.00061845 -0.00079847 -0.00043844 β43 -0.00188695 -0.00246411 -0.00130978
α52 0.00415980 0.00281086 0.00550874 β07 0.00064024 0.00043599 0.00084449
α43 -0.12418913 -0.16238427 -0.08599399 β44 0.00087617 0.00061029 0.00114205
α34 0.09057930 0.06664330 0.11451530 β35 -0.00050624 -0.00063949 -0.00037299
α25 -0.02145223 -0.02720084 -0.01570362 β54 -0.00003533 -0.00004826 -0.00002241
α44 0.00959053 0.00654917 0.01263189
α35 -0.00940102 -0.01207745 -0.00672460
α26 0.00249513 0.00176784 0.00322242

Supplementary Table 5. Parameters of the final optimal HMPM. LB and UB are respectively the lower and upper
bounds of the 95% confidence interval of corresponding parameter.

Hidden neuron
Valence Arousal

PCOR MSE Index PCOR MSE Indexr p LB UB r p LB UB

1 0.96 0.00 0.94 0.97 0.40 2.39 0.97 0.00 0.95 0.98 0.31 3.17
2 0.99 0.00 0.98 0.99 0.11 9.02 0.99 0.00 0.98 0.99 0.13 7.48
3 0.99 0.00 0.98 0.99 0.11 9.32 0.99 0.00 0.98 1.00 0.09 10.83
4 0.99 0.00 0.98 0.99 0.10 10.06 0.99 0.00 0.98 1.00 0.08 12.47
5 0.99 0.00 0.99 1.00 0.08 11.98 0.99 0.00 0.99 1.00 0.07 13.80
6 0.99 0.00 0.99 1.00 0.05 20.11 0.99 0.00 0.99 1.00 0.06 16.91
7 0.99 0.00 0.99 0.99 0.08 12.62 0.99 0.00 0.99 1.00 0.06 17.90
8 0.99 0.00 0.99 1.00 0.05 18.33 0.99 0.00 0.99 0.99 0.07 13.68
9 1.00 0.00 0.99 1.00 0.04 25.19 0.99 0.00 0.99 1.00 0.06 16.69

10 1.00 0.00 0.99 1.00 0.04 24.32 1.00 0.00 0.99 1.00 0.05 21.86

Supplementary Table 6. Performances of twenty ANN models with two input variables on the simulated data sets.
The PCOR and MSE are respectively the Pearson’s correlation and mean squared error (equations (6) and (7)) of models
prediction. Under the PCOR column, r is the Pearson’s correlation coefficient, p is the p-value, and LB and UB are
respectively the lower and upper bounds of the 95% confidence interval of r. The Index is the ratio of model’s MSE to
correlation coefficient r (equation (8)). All p-values are no more than 0.0001.
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Model
Valence Arousal

PCOR MSE Index PCOR MSE Indexr p LB UB r p LB UB

HMPR 0.9801 0.00 0.9538 0.9915 0.1948 5.0301 0.9600 0.00 0.9084 0.9828 0.3894 2.4654
ANN 0.9765 0.00 0.9534 0.9865 0.2398 4.0726 0.9586 0.00 0.9473 0.9634 0.7311 1.3111

Supplementary Table 7. Comparison between the affective HMPM and the optimal ANN model on the
experimental data sets. The PCOR and MSE are respectively the Pearson’s correlation and mean squared error (equations
(6) and (7)) of models prediction. Under the PCOR column, r is the Pearson’s correlation coefficient, p is the p-value, and LB
and UB are respectively the lower and upper bounds of the 95% confidence interval of r. The Index is the ratio of model’s
MSE to correlation coefficient r (equation (8)). All p-values are no more than 0.0001.

Affective data acquisition system and settings

Affective data acquisition system
The stimulus presentation, acquisition of psychological signals, and subject facial video recordings were synchronously com-
pleted by running Psychophysics Toolbox Version 3 (developed by David Brainard, Denis Pelli, and Mario Kleiner, See
http://psychtoolbox.org/) and customer scripts on a personal computer. The computer has a four-head graphics
card, one head for two monitors (23.6-in.) that were used to present the picture stimuli and were respectively placed in the
testing and control rooms, one head for displaying acquired psychological signals, one head for displaying subject facial video
recordings, and the last head for displaying the control processes in the command window of the MATLAB 2013a (The Math-
works, Inc, Protected by U.S. and international patents, See http://www.mathworks.com/patents). Experimenters
can control the entire experimental process, and simultaneously monitor the experimental stimulus presentation, acquired
psychological signals, and subject facial video recordings in the control room. By clicking the corresponding buttons in the
SAM scales on the testing room’s screen, the valence and arousal scores were automatically recorded and converted into the
standard scores from 1 to 9.

Signal acquisition settings
In the first stage, participants were seated in a dimly lit separate testing room, facing a computer monitor that was used to
present picture stimuli and placed 100 cm from the participant. Pictures were grouped into pleasant, neutral, and unpleasant
blocks. We orderly presented pleasant, neutral, and unpleasant blocks and there are no additional time gaps between the
adjacent blocks. In each block consisting of 8 pictures, picture was presented in a random order in the center of the monitor in
the testing room for 6s, with a 0.5s fixation and a random rest time (29s, 31s, and 34s). Participants were required to watch each
stimulus during the entire time of exposition and try to avoid unnecessary body movements. During the watching process, the
environmental temperature, pulse, SC, and ECG signals were recorded by Biopac MP 150 system (Biopac Systems Inc., USA,
See http://www.biopac.com/), and subject facial videos were recorded by a common USB webcam. For recording
SC (electrodermal activity or galvanic skin response) signal, the “standard methodology” was used. Before attaching the
electrodes, the skin was cleaned with alcohol. The electrodes (EL507) for SC were attached to the distal phalanges of index
and middle fingers of the left hand. The signal was filtered by the low-pass (LP) filter at 10 Hz for motor, ocular and biological
artefacts and the high-pass (HP) filter at direct current (DC). ECG was recorded continuously in terms of R-wave modal from
three electrodes (lead I), two of which were attached to the lower wrist, with the positive pole on the left arm and the negative
pole on the right one. The ground electrode was placed over the right ankle. The ECG signal was filtered by LP 35Hz
and HP 0.05Hz filters with the Biopac Acknowledge 4.2 software according to the manufacturer MP Hardware Guide. The
environmental temperature were recorded by placing the BN-TEMP-A-XDCR temperature transducer in the testing room
whose temperature and relative humidity were kept at about 24 degree centigrade and 50% by an air condition, respectively.
The recorded environmental temperature were filtered by LP 10 Hz and HP 0.5Hz filters. All physiological signal channels
were sampled at 1000 Hz and additionally filtered by the 50 Hz notch filter to wipe off the influence of the wall-power line
frequency. In order to make participants to be familiar with the experimental process, three training pictures were presented
before the start of presenting the pleasant block. During the training segment, no signals were recorded.

After the first stage, participants were required to rest for 10 minutes and then entered into the second stage to rate pictures
that were viewed. Before the start of formal rating process, three training pictures were presented and no scores were recorded.
With a 0.5s fixation and 6s picture presentation, participants immediately rated each picture that was presented at the complete
random order by clicking the corresponding buttons in the SAM scales. The valence and arousal ratings were automatically
recorded and converted into the standard range from 1 to 9.
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Proof of the data extending theorem

Proof 1 Since ξ1,ξ2, ⋅ ⋅ ⋅ ,ξn be a sample of a population ξ with the finite mean µ and variance σ2, ξ1,ξ2, ⋅ ⋅ ⋅ ,ξn is an
independent random variable sequence, and

E{ξ j}= µ , D{ξ j}= σ2, ( j ∈ {1,2, ⋅ ⋅ ⋅ ,n})

where E and D denote the mathematical expectation and variance operators respectively.
For any i, j ∈ {1,2, ⋅ ⋅ ⋅ ,n} and i ∕= j, we have computations as follows:

E{ηi j}= E{ξi +ξ j√
2

+(1−
√

2)µ}= E{ξi}+E{ξ j}√
2

+(1−
√

2)µ =
√

2µ +(1−
√

2)µ = µ

and

D{ηi j}= D{ξi +ξ j√
2

+(1−
√

2)µ}= D{ξi}+D{ξ j}
2

+0 = σ2.

For any two different random variables, ηi j and ηkl , i, j,k, l ∈ {1,2, ⋅ ⋅ ⋅ ,n}, random variables ξi,ξ j are used to compute
the random variable ηi j and random variables ξk,ξl are used to make the random variable ηkl .. The correlation coefficient
R(ηi j,ηkl) of ηi j and ηkl is obtained by the computing process as follows:

R(ηi j,ηkl)=
E{(ηi j −E{ηi j})(ηkl −E{ηkl})}√

D{ηi j}D{ηkl}
=

E{(ηi j −µ)(ηkl −µ)}
σ2 =

1
2σ2 E{[(ξi−µ)+(ξ j−µ)][(ξk−µ)+(ξl−µ)]}.

If random variables ξi,ξ j,ξk,ξl are different from each other, then variables ξi,ξ j,ξk,ξl are independent and hence R(ηi j,ηkl)=
0. If two of random variables ξi,ξ j,ξk,ξl are the same variable (assuming ξi = ξk), then the last term of above formula is
simplified into 1

2σ2 D{ξi}. Hence, R(ηi j,ηkl) = 0.5 holds.
For any two different random variables, ηi j and ξk, i, j,k ∈ {1,2, ⋅ ⋅ ⋅ ,n}, the correlation coefficient R(ηi j,ξk) of ηi j and

ξk is obtained by the computing process as follows:

R(ηi j,ξk) =
E{(ηi j −E{ηi j})(ξk −E{ξk})}√

D{ηi j}D{ξk}
=

E{(ηi j −µ)(ξk −µ)}
σ2 =

1√
2σ2

E{[(ξi −µ)+(ξ j −µ)](ξk −µ)}.

If random variables ξi,ξ j,ξk are different from each other, then variables ξi,ξ j,ξk are independent and hence R(ηi j,ξk) = 0.
If two of random variables ξi,ξ j,ξk are the same variable (assuming ξi = ξk), then the last term of above formula is simplified
into 1√

2σ2 D{ξi}. Hence, R(ηi j,ξk) =
√

2
2 holds. The theorem is proved.

From a size-n sample of a population, the data extending theorem illustrates that one can obtain a new random variable set
whose size is n(n−1)

2 . Each new random variable is of the same mean and variance with the population. This extending approach
is very important in practical situations where many data points are needed (see Supplementary Table 8). In particular, the new

Sample size 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Extending set size 66 91 120 153 190 231 276 325 378 435 496 561 630 703 780

Supplementary Table 8. Size of a simple V.S. size of the new random variable set. The extending set size is computed
from the sample size n by the formula n(n−1)

2 . In practical situations, given a small sample with its size 20, 190 new data
points can be obtained. Increasing the size of a sample will quadratically increase the number of new data points.

random variables keep the same normal probability distribution for a normal distribution population that is often encountered
in practical situations. Since new random variables are not independent, they can not be a new sample of the population.
Although there exists certain correlation among new random variables and between the sample and new random variables, our
empirical evidences and simulated examples indicate that good application effectiveness can be obtained from new random
variables observations.
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Particular details on implementing HMPR
If one independently repeated experimental observations N-times, the N input vectors (xi1,xi2, ⋅ ⋅ ⋅ ,xim) and N response val-
ues yi (i = 1,2, ⋅ ⋅ ⋅ ,N) of the system can be obtained. Treating the terms xl1xl2 ⋅ ⋅ ⋅xl j ( j = 1,2,3, ⋅ ⋅ ⋅ ) as new independent
variables and using the N pairs of observations ((xi1,xi2, ⋅ ⋅ ⋅ ,xim) and yi), the pth-order multivariable polynomial function
HMPp(x1,x2, ⋅ ⋅ ⋅ ,xm) can be written into its vector form as follows:

Y = ΦΘ+ ε,

where the response vector Y = (y1,y2, ⋅ ⋅ ⋅ ,yN)
T , the parameter vector Θ = (β0,β1, ⋅ ⋅ ⋅ ,βm, ⋅ ⋅ ⋅ ,β11⋅⋅⋅11,β11⋅⋅⋅12, ⋅ ⋅ ⋅ ,βmm⋅⋅⋅m)T ,

and the error vector ε = (ε1,ε2, ⋅ ⋅ ⋅ ,εN)
T are easy to be understood, and the complex loading matrix Φ is expressed as follows:

Φ =

⎡⎢⎢⎢⎢⎣
1 x11 ⋅ ⋅ ⋅ x1m ⋅ ⋅ ⋅ xp

11 xp−1
11 x12 ⋅ ⋅ ⋅ xp

1m
1 x21 ⋅ ⋅ ⋅ x2m ⋅ ⋅ ⋅ xp

21 xp−1
21 x22 ⋅ ⋅ ⋅ xp

2m
...

...
...

...
...

...
...

...
...

1 xN1 ⋅ ⋅ ⋅ xNm ⋅ ⋅ ⋅ xp
N1 xp−1

N1 xN2 ⋅ ⋅ ⋅ xp
Nm

⎤⎥⎥⎥⎥⎦ .

If the matrix ΦT Φ is invertible, the ordinary least square estimator Θ∗ = (ΦT Φ)−1ΦTY is the most frequent one to estimate
polynomial coefficients. If the matrix ΦT Φ is not invertible, its singular value decomposition (SVD) and the truncated Least-
Squares estimation (tLS) also can solve the parameter estimation problem. After substituting the estimated parameter vector
Θ∗ into the function HMPp(x1,x2, ⋅ ⋅ ⋅ ,xm), the obtained pth-order multivariable polynomial function HMP∗

p (x1,x2, ⋅ ⋅ ⋅ ,xm)

can be used to predict the response variable y at a new input vector (xnew
1 ,xnew

2 , ⋅ ⋅ ⋅ ,xnew
m ). The 1th-order multivariable polyno-

mial regression is the ordinary multivariable linear regression (MLR). It is the most striking difference between the HMPR
and MLR that the HMPR nicely describes the complex nonlinearities of a nonlinear system by introducing nonlinear terms
xl1xl2 ⋅ ⋅ ⋅xl j ( j = 1,2,3, ⋅ ⋅ ⋅ ). Deduced from the HMPR, a HMPM is the accurate computational system model that represents
the analytical relationships between its response variable and input variables. This analytical relationships can visually tell
people internal interactions of input variables and that which input variable has main contribution to the response variable.
These simple and visual informations may provide scientists certain reference values to uncover mechanisms behind complex
phenomena. All of those are exactly the reasons why we introduce the HMPR as an important methodological supplement to
emotional estimation methodology.
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