Supporting Information

First Introduction of NiSe₂ to Anode Material for Sodium-Ion Batteries: A Hybrid of Graphene-Wrapped NiSe₂/C Porous Nanofiber

Jung Sang Cho, Seung Yeon Lee, and Yun Chan Kang*

J. S. Cho, Y. L. Lee, and Prof. Y. C. Kang Department of Materials Science and Engineering Korea University Anam-Dong, Seongbuk-Gu Seoul 136-713, Republic of Korea E-mail: <u>yckang@korea.ac.kr</u>

Keywords: Nickel selenide, sodium ion batteries, graphene, carbon composite, electrospinning

Figure S1 Morphologies and XRD pattern of the intermediate structures of the NiSe₂-rGO-C composite nanofibers. SEM images of the nanofibers (a) before heat treatment, (b) after heat treatment at 450 °C in Ar, and (c) XRD pattern of the nanofibers after heat treatment at 450 °C in Ar.

Figure S2 Morphologies and XRD pattern of the intermediate structures of the bare $NiSe_2$ nanofibers. SEM images of the nanofibers (a) before heat treatment, (b) after heat treatment at 450 °C in air, and (c) XRD pattern of the nanofibers after heat treatment at 450 °C in air.

Figure S3 Energy dispersive spectroscopy (EDS) analysis of the NiSe₂-rGO-C composite nanofibers formed by selenization process.

Figure S4 Raman spectrum of the NiSe₂-rGO-C composite nanofibers formed by selenization process.

Figure S5 TG analysis of the NiSe₂-rGO-C composite nanofibers formed by selenization process.

Figure S6 XPS spectra of the NiSe₂-rGO-C composite nanofibers formed by selenization process. (a) Ni 2p, (b) Se 3d, and (c) C 1s.

Figure S7 N_2 adsorption-desorption isotherms measured at 77 K for the NiSe₂-rGO-C composite and bare NiSe₂ nanofibers.

Materials	Voltage Range	Current Density	Initial Coulombic Efficiency	Initial Discharge/Charge Capacity	Last Discharge Capacity	Cycle Number	Ref
NiSe ₂ -rGO- carbon composite nanofiber	0.001–3.0 V	200 mA g ⁻¹	72 %	717 mA h $g^{-1}/$ 516 mA h g^{-1}	468 mA h g ⁻¹	100	This work
NiO-film	0.005-3.0 V	100 mA g^{-1}	~71 %	744 mA h $g^{-1}/$ 550 mA h g^{-1}	$\sim 215 \text{ mA h g}^{-1}$	100	S 1
NiS nano rods-rGO	0.005-3.0 V	50 mA g^{-1}	~75 %	701 mA h g ⁻¹ / 524 mA h g ⁻¹	$\sim 500 \text{ mA h g}^{-1}$	3	S2
Ni ₃ S ₂ powders	0.04-2.6 V	50 mA g ⁻¹	90 %	420 mA h g ⁻¹ / 376 mA h g ⁻¹	342 mA h g ⁻¹	15	S 3
Ni ₃ S ₂ powders	0.4-2.6 V	450 mA g^{-1}	-	430 mA h g^{-1}	220 mA h g ⁻¹	100	S4
Monolithic Ni ₃ S ₂	0.5-2.5 V	$20 \ \mu A \ cm^{-2}$	-	220 $\mu A h cm^{-2}$	$\sim 170 \ \mu A h cm^{-2}$	20	S5
Layered nickel sulfide-rGO	0.005-3.0 V	100 mA g ⁻¹	80 %	665 mA h g ⁻¹ / 529 mA h g ⁻¹	392 mA h g ⁻¹	50	S 6

Table S1. Electrochemical properties of the nickel compound materials with various structures as anode materials for NIBs.

References

- S1. Jiang, Y. *et al.* Transition metal oxides for high performance sodium ion battery anodes. *Nano Energy* **5**, 60–66 (2014).
- S2. Pan, Q. *et al.* Reduced graphene oxide-induced recrystallization of NiS nanorods to nanosheets and the improved Na-storage properties. *Inorg. Chem.* 53, 3511– 3518 (2014).
- S3. Kim, J. S. *et al.* The discharge properties of Na/Ni₃S₂ cell at ambient temperature. *J. Power Sources* **178**, 852–856 (2008).
- S4. Ryu, H. S. *et al.* Degradation mechanism of room temperature Na/Ni₃S₂ cells using Ni₃S₂ electrodes prepared by mechanical alloying. *J. Power Sources* 244, 764–770 (2013).
- S5. Go, D. Y. *et al.* Electrochemical properties of monolithic nickel sulfide electrodes for use in sodium batteries. *Mater. Res. Bull.* **58**, 190–194 (2014).
- S6. Qin, W., Chen, T., Lu, T., Chua, D. H. & Pan, L. Layered nickel sulfide-reduced graphene oxide composites synthesized via microwave-assisted method as high performance anode materials of sodium-ion batteries. *J. Power Sources* **302**, 202–209 (2016).