(Manuscript for Scientific Reports)

ROS-generating TiO₂ nanoparticles for non-invasive sonodynamic therapy of cancer

Dong Gil You^{1,2,*}, V.G. Deepagan^{3,*}, Wooram Um^{2, 4}, Sangmin Jeon^{1,2}, Sejin Son², Hyeyoun Chang^{2,5}, Hwa In Yoon^{2,6}, Yong Woo Cho⁶, Maggie Swierczewska⁷, Seulki Lee⁷, Martin G. Pomper⁷, Ick Chan Kwon², Kwangmeyung Kim^{2,5} & Jae Hyung Park^{1,3,4}

¹School of Chemical Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea.

²Center for Theragnosis, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, Seongbuk-gu, Seoul 136-791, Republic of Korea.

³Department of Polymer Science and Engineering, Sungkyunkwan University, Suwon 440-

746, Republic of Korea.

⁴Samsung Advance Institute for Health Sciences and Technology, Sungkyunkwan University, Suwon 440-746, Republic of Korea.

⁵Korea University of Science and Technology, 113 Gwahangno, Yuseong-gu, Daejeon 305-333, Republic of Korea.

⁶Department of Chemical Engineering, Hanyang University, Ansan 426-791, Republic of Korea.

⁷The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School, Baltimore, Maryland 21287-0006, United States.

* These authors contributed equally to this paper.

Corresponding authors:

Jae Hyung Park, Ph.D. Tel: +82-31-290-7288; fax: +82-31-299-6857; e-mail: <u>jhpark1@skku.edu</u>

Kwangmeyung Kim, Ph.D. Tel: +82-2-958-5916; fax: +82-2-958-5909; e-mail: <u>kim@kist.re.kr</u>

Figure S1. (a) FT-IR spectra of $HTiO_2$ NPs and CMD. The peak at 600 cm⁻¹, indicated by a dashed arrow, is attributed to C-C bending vibration of dopamine. The peak at 1686 cm⁻¹, indicated by a solid arrow, is assigned to the carbonyl stretching vibration of the amide bond between CMD and dopamine. (b) EDS spectrum of $HTiO_2$ NPs.

Figure S2. Flexibility of $HTiO_2$ NPs. (a) Fluorescence image of $HTiO_2$ NPs after passing through a series of syringe filters. (b) Quantification of fluorescence signal intensity.

MTT assay and (b) FACS analysis.

Figure S4. The singlet oxygen generation ability of $HTiO_2$ NPs with ultrasound. (a) UV-Vis spectra of DPBF with increasing exposure time. (b) First-order plot of DPBF absorbance versus time.

Figure S5. H&E staining of major organs after SDT. (Scale bar, 200 µm).

Figure S6. *In vivo* biodistribution of $HTiO_2$ NPs in the liver tumor model. (a) Timedependent accumulation of nanoparticles in mice bearing liver tumor after intravenous injection of $HTiO_2$ NPs. (b) *Ex vivo* bright-field and fluorescence images of liver tumor 6 h post injection. The doted circle indicating the tumor region.