Brain Structure and Function – Special Issue on the Insula

A link between the systems: functional differentiation and integration within the human insula revealed by Meta-Analysis

Florian Kurth^{1,2,*}, Karl Zilles^{1,2,4}, Peter T. Fox³, Angela R. Laird³, Simon B. Eickhoff^{2,4,5}

¹ C. & O. Vogt Institute of Brain Research, University Düsseldorf, Germany
² Institute for Neuroscience and Medicine (INM-2), Research Center Jülich, Germany
³ Research Imaging Center, University of Texas Health Science Center at San Antonio, Texas, USA
⁴ JARA - Translational Brain Medicine, Jülich, Germany
⁵ Department of Psychiatry and Psychotherapy, RWTH Aachen University, Germany

Supplement #1:

*Correspondence should be addressed to:

Florian Kurth Institute for Neurosciences and Medicine (INM-2) Forschungszentrum Jülich GmbH Leo-Brandt Str. 5 52425 Jülich, Germany *Phone :* +49 2461 61-8609 *Fax:* +49 2461 61-2820 *E-mail:* f.kurth@fz-juelich.de

Tables of included studies, sorted by category (see Table 1)

Emotion:

30028 Hamann 1999 Nature Neuroscience 2 4/6 30044 Maddock 2003 Human Brain Mapping 2 28/16 30120 Canli 1998 Neuroreport 4 10/5/11/3 30219 Elliott 2000 Journal of Neuroscience 3 5/2/6 30272 Bystritsky 2001 Neuroreport 1 4 30288 Paradiso 1999 American Journal of Psychiatry 4 8/5/3/6 30313 Gandour 2003 Human Brain Mapping 3 7/7/1 30366 Baker 1997 Psychological Medicine 2 8/12 30368 Beauregard 1998 Neuroreport 1 1 30377 Damasio 2000 Nature Neuroscience 4 16/14/13/3 30379 Dolan 2000 Neurolegae 1 2 30380 Dougherty 1999 Biological Psychiatry 1 9 30383 Geo	BMapID	1st Auth.	Year	Journal	Experiments	Foci
30044Maddock2003Human Brain Mapping2228/1630120Canlia1948Neuroreport410/5/11/330212Elliott2000Journal of Neuroscience35/2/630227Bystrisky2001Neuroreport1430288Paradiso1999American Journal of Psychiatry48/5/3/630313Gandour2003Human Brain Mapping37/7/130366Baker1997Psychological Medicine38/1230376Damasio1998Neuroreport1130377Damasio2000Neuroreport1130378Baker1999Neuroreport1130379Danasio2000NeuroImage1130370Danasio1990NeuroImage1230371Danasio1990NeuroImage1130372Danasio1990NeuroImage1130373Danasio1990NeuroImage1130374Danasio1990NeuroImage1130375Danasio1999Biological Psychiatry1130376Danasio1999NeuroImage1130377Danasio1999NeuroImage1130378George1999NeuroImage2630380George1999Neuroimage2630381	30028	Hamann	1999	Nature Neuroscience	2	4/6
30120Cani199Neuroreport4105/11/330211Elliott200Journal of Neuroscience35/2/630272Bystrisky201Neuroreport1430288Paradiso199American Journal of Psychiatry48/5/3/630313Gandour203Human Brain Mapping37/77/130366Baker197Psychological Medicine28/128/1230376Damasion198Neuroreport11330377Damasion200Neuroscience410/1/1/3/330387Dolant200Neuroscience12330388Genger199Biological Psychiatry19330389Genger199Biological Psychiatry11130389George199Neuroing of Psychiatry11130389Koslyn199Neuroscience11130389Koslyn199Neuroing of Psychiatry11130380Koslyn199Neuroing of Psychiatry26530389Koslyn199Neuroport27730399Lane199Neuroport26730380Koslyn199Neuroport26730399Lane199Neuroport26730399Koslyn199N	30044	Maddock	2003	Human Brain Mapping	2	28/16
30219Elliott2000Journal of Neuroscience35/2/630272Bystriksy201Neuroeport1430288Paradiso1999American Journal of Psychiatry48/5/3/630310Gandour2003Human Brain Mapping37/17/130366Baker1997Psychological Medicine28/1230370Beauregard1998Neuroeport11330377Damaio2000Neuroeport411/4/13/330380Dougherty1999Biological Psychiatry19930381George1998American Journal of Psychiatry11130382George1999Biological Psychiatry191130383Kossiyn1998Neuroeport265/35/330384Kossiyn1999Neuroeport261130384Kossiyn1999Neuroeport261130384Kossiyn1999Neuroeport261130384Kossiyn1999Neuroeport261130384Kossiyn1999Neuroeport261130384Kossiyn1999Neuroeport261130384Kossiyn1999Neuroeport261130384Kossiyn1999 </td <td>30120</td> <td>Canli</td> <td>1998</td> <td>Neuroreport</td> <td>4</td> <td>10/5/11/3</td>	30120	Canli	1998	Neuroreport	4	10/5/11/3
30272Bystritsky2001Neuroreport1430288Paradiso1999American Journal of Psychiatry48/5/3/630313Gandour2003Human Brain Mapping37/7/130366Baker1997Psychological Medicine28/1230376Beauregard1998Neuroreport11330377Damasio2000Nature Neuroscience416/14/13/330379Dolan2000NeuroImage1230380Dougherty1999Biological Psychiatry1930383Gemar1996Depression11130384George1996Biological Psychiatry26/530385George1996Biological Psychiatry26/530386George1996Biological Psychiatry26/530387George1996Biological Psychiatry26/530388George1996Biological Psychiatry26/530389Koslyn1996Neuroreport27/530390Lane1997Merican Journal of Psychiatry6130389Koslyn1996Neuroeport2630389Koslyn1997Merican Journal of Psychiatry6630389Koslyn1997Merican Journal of Psychiatry6630380Koslyn1997Merican Journal of Psychiatry66 </td <td>30219</td> <td>Elliott</td> <td>2000</td> <td>Journal of Neuroscience</td> <td>3</td> <td>5/2/6</td>	30219	Elliott	2000	Journal of Neuroscience	3	5/2/6
30288Paradiso1999American Journal of Psychiatry48/5/3/630313Gandour2003Human Brain Mapping337/7/130364Baker1979Psychological Medicine28/1230365Beauregard1998Neuroreport1130377Damasio2009Nature Neuroscience416/14/13/330379Dolan2009NeuroImage1230380Dougherty1999Biological Psychiatry1930381George1996American Journal of Psychiatry1130382George1996Biological Psychiatry26/530383George1996Biological Psychiatry619/11/5/4/230384Kosslyn1996Neuroeport2730385Lane1996Neuroeport2630386Kosslyn1996Neuroeport2630387Lane1996Neuroeport2630388Kosslyn1996Neuroeport27	30272	Bystritsky	2001	Neuroreport	1	4
30313Gandour2003Human Brain Mapping37/7/130366Baker1997Psychological Medicine28/1230368Beauregard1998Neuroreport1130377Damasio2000Nature Neuroscience416/14/13/330379Dolan2000NeuroImage1230380Dougherty1999Biological Psychiatry1930384George1996Depression1130385George1996Biological Psychiatry26/530386Koslyn1996Neuroeport27/530380Lane1997Neuroeport2630381George1996Neuroeport26/530382Lane1996Neuroeport27/530384Koslyn1997Neuroeport2619/41/5/4/230385Koslyn1997Neuroeport2619/41/5/4/230386Koslyn1997Neuroeport2619/41/5/4/230387Lane1997Neuroeport2619/41/5/4/230389Koslyn1997Neuroeport2619/41/5/4/230380Lane1997Neuroeport2619/41/5/4/230380Lane1997Neuroeport2619/41/5/4/230380NeuroeportNeuroeport2619/41/5/4/230380	30288	Paradiso	1999	American Journal of Psychiatry	4	8/5/3/6
30366Baker1997Psychological Medicine28/1230368Beauregard1998Neuroreport11330377Damasio2000Nature Neuroscience416/14/13/330379Dolan2000NeuroImage1230380Dougherty1999Biological Psychiatry1930384George1995American Journal of Psychiatry26/530385George1996Biological Psychiatry6130384Kosslyn1996Neuroreport27/530389Kosslyn1996Neuroeport2630390Lane1997American Journal of Psychiatry68	30313	Gandour	2003	Human Brain Mapping	3	7/7/1
30368Beauregard1998Neuroreport11330377Danasio2000Nature Neuroscience416/14/13/330379Dolan2000NeuroImage1230380Dougherty1999Biological Psychiatry1930383Gemar1996Depression11130384George1995American Journal of Psychiatry26/530385George1996Biological Psychiatry619/11/5/4/230386Kosslyn1996Neuroreport27/530390Lane1997American Journal of Psychiatry68/14/6/7/16/4	30366	Baker	1997	Psychological Medicine	2	8/12
30377Damasio200Nature Neuroscience416/14/13/330379Dolan200NeuroImage1230380Dougherty199Biological Psychiatry1930383Gemar1996Depression1130384George1995American Journal of Psychiatry26/530385George1996Biological Psychiatry619/11/5/4/230386Kosslyn1996Neuroeport27/530390Lane1997American Journal of Psychiatry68/14/07/16/4	30368	Beauregard	1998	Neuroreport	1	13
30379Dolan2000NeuroImage1230380Dougherty1999Biological Psychiatry1930383Gemar1996Depression1130384George1995American Journal of Psychiatry26/530385George1996Biological Psychiatry619/4/11/5/4/230389Kosslyn1996Neuroeport227/530390Lane1997American Journal of Psychiatry68/14/6/7/16/4	30377	Damasio	2000	Nature Neuroscience	4	16/14/13/3
30380Dougherty1999Biological Psychiatry1930383Gemar1996Depression11130384George1995American Journal of Psychiatry26/530385George1996Biological Psychiatry619/4/11/5/4/230389Kosslyn1996Neuroeport27/530390Lane1997American Journal of Psychiatry68/14/6/7/16/4	30379	Dolan	2000	NeuroImage	1	2
30383Gemar1996Depression1130384George1995American Journal of Psychiatry26/530385George1996Biological Psychiatry619/4/11/5/4/230389Kosslyn1996Neuroreport27/530390Lane1997American Journal of Psychiatry68/14/6/7/16/4	30380	Dougherty	1999	Biological Psychiatry	1	9
30384George1995American Journal of Psychiatry26/530385George1996Biological Psychiatry619/4/11/5/4/230389Kosslyn1996Neuroreport27/530390Lane1997American Journal of Psychiatry68/14/6/7/16/4	30383	Gemar	1996	Depression	1	1
30385George1996Biological Psychiatry619/4/11/5/4/230389Kosslyn1996Neuroreport27/530390Lane1997American Journal of Psychiatry68/14/6/7/16/4	30384	George	1995	American Journal of Psychiatry	2	6/5
30389 Kosslyn 1996 Neuroreport 2 7/5 30390 Lane 1997 American Journal of Psychiatry 6 8/14/6/7/16/4	30385	George	1996	Biological Psychiatry	6	19/4/11/5/4/2
30390 Lane 1997 American Journal of Psychiatry 6 8/14/6/7/16/4	30389	Kosslyn	1996	Neuroreport	2	7/5
	30390	Lane	1997	American Journal of Psychiatry	6	8/14/6/7/16/4
30391 Lane 1997 Neuropsychologia 2 5/11	30391	Lane	1997	Neuropsychologia	2	5/11

30392	Lane	1999	Neuropsychologia	2	4/1
30393	Lane	1997	Neuroreport	1	4
30394	Liberzon	2000	Neuropsychopharmacology	1	3
30395	Liotti	2000	Biological Psychiatry	2	7/13
30397	Mayberg	1999	American Journal of Psychiatry	1	7
30409	Pietrini	2000	American Journal of Psychiatry	3	4/1/4
30413	Reiman	1997	American Journal of Psychiatry	2	13/7
30419	Teasdale	1999	American Journal of Psychiatry	3	7/6/7
30453	Royet	2000	Journal of Neuroscience	3	2/4/3
30456	Simpson	2000	Journal of Cognitive Neuroscience	2	47/41
30459	Taylor	1998	NeuroImage	2	2/3
30460	Taylor	2000	Neuropsychologia	3	3/4/2
4040032	Lee	2004	Cognitive Behavioral Neurology	2	9/6
4040037	Mitterschiffthaler	2003	Neuroreport	1	9
6040030	Goldin	2005	NeuroImage	4	17/6/13/16
6040031	Markowitsch	2003	Cortex	4	4/4/4/6
6040032	Pelletier	2003	Neuroreport	4	8/8/4/3
6040035	Britton	2006	NeuroImage	6	4/6/3/10/10/6
6060082	Drobyshevsky	2006	NeuroImage	1	18
6080120	Keedwell	2005	Biological Psychiatry	2	1/2
7010001	Anand	2005	Biological Psychiatry	1	10
7020072	Cato	2004	Journal of Cognitive Neuroscience	2	6/5
7030079	Frey	2000	European Journal of Neuroscience	1	4
	l				I

7030089	Bartolo	2006	Journal of Cognitive Neuroscience	2	16/18
7040092	Buchanan	2000	Cognitive Brain Research	4	1/2/1/3
7040097	Ethofer	2006	Neuroreport	1	2
7040099	Grandjean	2005	Nature Neuroscience	2	8/7
7040102	Kotz	2003	Brain and Language	4	10/3/10/12
7040106	Mitchell	2003	Neuropsychologia	1	6
7060153	Ogino	2007	Cerebral Cortex	1	7
7070196	Zald	2002	Proceedings of the National Academy of Sciences	2	4/4
7080206	Shapira	2003	Biological Psychiatry	2	25/26
7090246	Knutson	2001	Journal of Neuroscience	5	7/10/12/2/7
7090248	Phan	2005	Biological Psychiatry	3	12/6/4
7090257	Taylor	2003	NeuroImage	3	7/9/4
7100299	Stark	2007	NeuroImage	4	9/7/8/5
7110305	Herwig	2007	Psychiatry Research	3	9/8/2
7110352	Nitschke	2004	NeuroImage	1	6
7110356	Schienle	2005	Neuroscience Letters	3	3/2/2
7120372	Straube	2007	NeuroImage	1	1
8030080	Noriuchi	2008	Biological Psychiatry	5	14/15/9/37/6
8030083	Coan	2006	Psychological Science	3	24/3/2
8040104	laria	2008	Human Brain Mapping	1	15
8080167	Bartels	2004	NeuroImage	1	28
8080168	Bartels	2000	Neuroreport	1	13
8080177	Eippert	2007	Human Brain Mapping	1	26
	I	ı 1			

8080180	Fitzgerald	2004	Neuroscience Letters	1	15
8080182	Goldin	2008	Biological Psychiatry	2	26/18
8080192	Reiss	2008	PLoS ONE	1	4
8080218	Dolcos	2004	NeuroImage	1	2
8100244	Garrett	2006	NeuroImage	3	29/10/15
8100248	Mathews	2004	Journal of Cognitive Neuroscience	4	22/7/14/5
8100253	Wrase	2003	Neuroscience Letters	4	6/3/3/8
8110256	Bermpohl	2006	Human Brain Mapping	3	17/4/7
8110276	Junghofer	2006	Neuroreport	1	14
8110289	Najib	2004	American Journal of Psychiatry	1	40
8110295	Ranote	2004	Neuroreport	2	12/3
8110304	Stark	2005	Biological Psychology	1	2
9010002	Butler	2007	Neuroscience	1	17
9010012	Malhi	2004	European Journal of Neuroscience	2	38/14
9010016	Sanjuan	2007	Psychiatry Research	1	5
9010022	Wicker	2003	Neuron	4	12/14/17/6
9010026	Sabatinelli	2007	Journal of Neurophysiology	4	19/14/15/9
9020040	Herpertz	2008	Journal of Child Psychology and Psychiatry	2	21/8
		1			1

Empathy:

BMapID	1st Auth.	Year	Journal	Experiments	Foci
30138	Hariri	2000	Neuroreport	2	4/2
30302	Abel	2003	Neuroreport	1	8
30314	Gorno-Tempini	2001	NeuroImage	5	10/11/11/11/11
30324	Kesler-West	2001	Cognitive Brain Research	4	7/1/1/1
30338	Wright	2002	Neuroreport	1	6
30369	Blair	1999	Brain	2	2/2
30373	Breiter	1996	Neuron	2	8/2
30388	Kimbrell	1999	Biological Psychiatry	2	9/7
30398	Morris	1998	Brain	3	4/5/3
30399	Morris	1999	Neuropsychologia	1	8
30400	Morris	1996	Nature	2	5/5
30401	Nakamura	1999	Journal of Neurophysiology	1	5
30406	Phillips	1997	Nature	5	3/3/3/14/2
20407	Phillips	1000	Proceedings of the Royal Society of London. Series B. Biological	o	12/14/18/14/10/0/7/9
30407	Finips	1990	Sciences	0	12/14/10/14/10/9/7/0
30408	Phillips	1998	Psychiatry Research	1	9
30416	Sprangelmeyer	1008	Proceedings of the Royal Society of London. Series B. Biological	3	2/2/2
30410	Sprengenneyer	1990	Sciences	5	
30421	Whalen	1998	Journal of Neuroscience	1	4
30441	George	1993	Journal of Neuropsychiatry and Clinical Neuroscience	2	11/4
	1		1	l	

4040028	Hall	2004	Neuroreport	2	3/1
6030022	Habel	2005	NeuroImage	4	14/8/6/5
6040034	Winston	2003	NeuroImage	4	4/4/3/7
7020046	Critchley	2000	Human Brain Mapping	4	9/3/6/9
7020049	Dolan	1996	NeuroImage	1	4
7020065	Wang	2004	Journal of the American Academy of Child and Adolescent Psychiatry	2	10/10
7040121	Habel	2007	Neuropsychologia	2	10/9
7070183	Malhi	2007	Bipolar Disorders	2	16/11
7080231	Williams	2001	NeuroImage	1	25
7090251	Vuilleumier	2001	Neuron	1	7
7110318	Deeley	2007	Biological Psychiatry	3	9/8/4
8010023	Deeley	2006	British Journal of Psychiatry	2	6/8
8080208	Britton	2006	NeuroImage	10	4/4/3/6/6/5/3/4/3/4
8080226	Lennox	2004	Psychological Medicine	2	5/4
8110270	Holt	2006	Schizophrenia Research	2	4/5
8110275	Jogia	2008	British Journal of Psychiatry	1	6
8110293	Phillips	2004	NeuroImage	10	14/3/15/9/9/9/3/17/6/3
9010001	Altshuler	2008	Bipolar Disorders	1	7
9020042	Keightley	2007	Social Cognitive and Affective Neuroscience	4	18/1/4/15
7050125	Gu	2007	NeuroImage	1	6
7060153	Ogino	2007	Cerebral Cortex	1	14
7100297	Singer	2004	Science	3	23/11/10
7110330	Moriguchi	2007	Cerebral Cortex	1	38
	I	l	1		l

8020047	Jackson	2006	Neuropsychologia	2	14/6
8110257	Botvinick	2005	NeuroImage	1	17
8110273	Jackson	2005	NeuroImage	1	20
8110299	Saarela	2007	Cerebral Cortex	2	6/4
9010003	Cheng	2007	Current Biology	4	7/9/2/8

Olfaction:

BMapID	1st Auth.	Year	Journal	Experiments	Foci
30053	Poellinger	2001	NeuroImage	2	27/18
30061	Savic	2000	Neuron	3	5/2/7
30062	Savic	2001	Neuron	6	4/2/3/4/1/3
30076	Zatorre	2000	Neuroreport	1	5
30177	Sobel	2000	Journal of Neurophysiology	1	32
30304	Bengtsson	2001	Neuroreport	5	2/3/2/2/1
7080212	de Araujo	2003	European Journal of Neuroscience	2	11/7
7080226	Rolls	2003	European Journal of Neuroscience	5	3/3/1/1/3
8050128	Francis	1999	Neuroreport	1	7
8080172	Ciumas	2008	NeuroImage	2	2/3
8110306	Suzuki	2001	Journal of Gerontology	2	15/2
8110311	Zatorre	1992	Nature	1	6
	1		1		l

Gustation:

BMapID	1st Auth.	Year	Journal	Experiments	Foci
7070195	Zald	2002	Journal of Neurophysiology	3	7/7/5
7070197	de Araujo	2003	Journal of Neurophysiology	2	5/1
7080212	de Araujo	2003	European Journal of Neuroscience	1	8
7090252	Zald	1998	Brain	1	8
8010021	Berns	2001	Journal of Neuroscience	1	1
8020060	Schoenfeld	2004	Neuroscience	5	2/2/2/1/1
8030076	Haase	2007	Journal of Neuroscience Methods	2	31/9
8050128	Francis	1999	Neuroreport	1	8
8050137	de Araujo	2004	Journal of Neuroscience	2	4/1
8100246	Kobayashi	2004	NeuroImage	1	8
8100250	O'Doherty	2001	Journal of Neurophysiology	2	14/10
8100251	Ogawa	2005	Chemical Senses	1	8
8110303	Small	2003	Neuron	9	18/14/16/14/3/2/2/26/4
	1			I I	

Interoception:

BMapID	1st Auth.	Year	Journal	Experiments	Foci
30111	Arnow	2002	Brain	1	21
30217	Athwal	2001	Brain	3	10/5/2
30253	Brannan	2001	Proceedings of the National Academy of Sciences	3	23/12/11
30261	Liotti	2001	Proceedings of the National Academy of Sciences	2	20/14
30264	Parsons	2001	Proceedings of the National Academy of Sciences	5	16/13/2/11/7
30303	Beauregard	2001	Journal of Neuroscience	2	6/7
30322	Karama	2002	Human Brain Mapping	2	18/14
30411	Rauch	1999	Psychiatry Research	1	5
30412	Redoute	2000	Human Brain Mapping	1	17
4020019	Nunneley	2002	Journal of Applied Physiology	1	9
6040035	Britton	2006	NeuroImage	1	6
7030078	Desseilles	2006	NeuroImage	2	11/7
7030083	Porubska	2006	NeuroImage	2	4/6
7040116	Smeets	2006	American Journal of Clinical Nutrition	2	12/6
7040117	Uher	2006	Behavioural Brain Research	6	5/3/8/1/1/2
7070168	Blok	1997	Brain	2	7/5
7070169	Blok	1998	Brain	7	4/3/1/1/2/2/2
7070193	Wu	1999	American Journal of Psychiatry	1	6
7080213	de Araujo	2003	Journal of Neurophysiology	5	7/4/2/2/5
7080215	Denton	1999	Proceedings of the National Academy of Sciences	1	14
	I			l	l

7080216	Egan	2003	Proceedings of the National Academy of Sciences	5	16/14/22/5/9
7080217	Fukuyama	1996	Neuroreport	1	4
7080218	Kuhtz-Buschbeck	2005	Journal of Urology	1	17
7080220	Matsuura	2002	Journal of Urology	2	10/6
7080222	Nour	2000	Brain	1	35
7080228	Seseke	2006	NeuroImage	2	1/10
7090259	Denton	1999	Proceedings of the National Academy of Sciences	4	14/9/6/10
7090261	Farrell	2006	Proceedings of the National Academy of Sciences	1	18
7090273	Yin	2006	Journal of Nuclear Medicine	2	4/15
8010010	Killgore	2003	NeuroImage	6	12/11/7/5/7/3
8010018	Tataranni	1999	Proceedings of the National Academy of Sciences	2	19/4
8010033	Safron	2007	Behavioral Neuroscience	4	34/1/15/3
8060141	Ferretti	2005	NeuroImage	5	28/28/18/10/8
8080228	Mehnert	2008	NeuroImage	3	17/18/6
8110277	Kim	2006	International Journal of Impotence Research	1	13
8110283	Lowell	2008	NeuroImage	1	15
8110287	Miyagawa	2007	NeuroImage	1	5
8110294	Ponseti	2006	NeuroImage	2	13/12
8110304	Stark	2005	Biological Psychology	2	7/3
8110305	Stoleru	1999	Archives of Sexual Behavior	2	6/2
8110307	Tsujimura	2006	Journal of Urology	2	3/1
9010015	McKay	2008	NeuroImage	1	39
9010025	Moulier	2006	NeuroImage	5	31/21/21/24/3
	I	I	1		I

Pain:

BMapID	1st Auth.	Year	Journal	Experiments	Foci
30107	Gelnar	1999	NeuroImage	1	9
30122	Coghill	1994	Journal of Neuroscience	2	14/3
30163	Ploner	2000	Journal of Neurophysiology	1	3
30230	Derbyshire	1998	Experimental Brain Research	1	2
5040012	Becerra	1999	Magnetic Resonance in Medicine	3	16/13/13
5040013	Bingel	2002	Pain	1	12
5040014	Bornhovd	2002	Brain	1	10
5040015	Casey	1996	Journal of Neurophysiology	3	4/10/10
5040016	Coghill	2001	Journal of Neurophysiology	4	54/42/35/37
5040017	Coghill	1999	Journal of Neurophysiology	1	22
5040031	Coghill	2003	Proceedings of the National Academy of Sciences	2	7/2
5040032	Giesecke	2004	Arthritis & Rheumatism	1	7
5040033	Ibinson	2004	Anesthesiology	2	7/6
5040035	Nemoto	2003	Neuroreport	1	13
5040037	Paulson	1998	Pain	2	12/17
5040039	Smith	2002	British Journal of Psychiatry	1	13
5040040	Strigo	2003	Journal of Neurophysiology	2	21/25
5040041	Svensson	1998	European Journal of Pain	3	10/9/9

5040042	Xu	1997	Neuroreport	2	13/9
5040045	Becerra	2001	Neuron	2	31/9
5040046	Bingel	2003	NeuroImage	3	10/10/10
5040048	Derbyshire	2002	NeuroImage	1	11
5040049	Derbyshire	1997	Pain	1	17
5040050	Derbyshire	2002	Journal of Pain	3	16/13/22
5040051	Jones	1997	Annals of the Rheumatic Diseases	1	6
5040053	Lorenz	2002	Neuron	1	8
5040056	Svensson	1997	Journal of Neurophysiology	2	8/6
5040057	Tolle	1999	Annals of Neurology	2	2/2
5040058	Tracey	2000	Neuroscience Letters	1	25
5040062	Casey	2001	Journal of Neurophysiology	2	6/16
5040063	Derbyshire	1998	Pain	1	12
7050136	Frankenstein	2001	NeuroImage	1	10
7060163	de Leeuw	2006	Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and	1	16
7000100		2000	Endodontics	I	
7080221	Mochizuki	2007	NeuroImage	1	7
7080223	Peyron	1999	Brain	5	5/6/7/1/6
7080225	Rolls	2003	Cerebral Cortex	1	15
7080236	Petrovic	2002	NeuroImage	2	1/6
7080238	Valet	2004	Pain	1	16
7090247	Petrovic	2002	Science	1	6
7090261	Farrell	2006	Proceedings of the National Academy of Sciences	1	11
	I	I			I

7100297	Singer	2004	Science	2	23/7
7110311	Schmahl	2006	Archives of General Psychiatry	2	13/14
7110322	Geuze	2007	Archives of General Psychiatry	2	23/22
8020051	Maihofner	2007	European Journal of Neuroscience	1	12
8110257	Botvinick	2005	NeuroImage	1	11
8110271	ladarola	1998	Brain	3	25/27/14
	I				

Somatosensation:

30047Naito2000Journal of Neurophysiology12	
30048 Naito 1999 Journal of Neuroscience 2 4/2	
30107 Gelnar 1999 NeuroImage 1 6	
30122Coghill1994Journal of Neuroscience15	
30127 Deuchert 2002 Neuroreport 2 2/2	
30142Johansen-Berg2000Neuroreport15	
30150 Lepage 2001 NeuroImage 1 26	
30163Ploner2000Journal of Neurophysiology14	
30171 Seitz 1992 Acta Neurologica Scandinavica 1 14	
30172Seitz1991European Journal of Neuroscience121	
30293 Kitada 2003 Neuroreport 1 5	
30339 Yoo 2003 Neuroreport 2 8/6	

4040021	Bodegard	2000	Neuroreport	1	9
4040022	Burton	1997	Cerebral Cortex	2	6/4
4040023	Burton	1999	Cerebral Cortex	1	5
4040026	Francis	2000	NeuroImage	2	1/1
4040027	Hagen	2002	Journal of Neurophysiology	4	5/6/4/4
5040029	Blakemore	1999	NeuroImage	2	6/6
5040036	Numminen	2004	NeuroImage	1	25
5040043	Yoo	2004	NeuroImage	1	10
5040053	Lorenz	2002	Neuron	1	11
6050054	Hlushchuk	2006	Journal of Neuroscience	2	5/4
6110179	Hagen	2002	European Journal of Neuroscience	1	9
7010022	Kitada	2005	NeuroImage	1	21
7020041	Zhang	2005	Human Brain Mapping	1	11
7080225	Rolls	2003	Cerebral Cortex	2	7/5
7110346	Eickhoff	2006	NeuroImage	1	3
8050120	Carlsson	2000	Journal of Cognitive Neuroscience	2	12/10
8050128	Francis	1999	Neuroreport	1	7
8110269	Hobday	2001	Brain	1	15
8110271	ladarola	1998	Brain	1	14
8110283	Lowell	2008	NeuroImage	1	34
6110180	Hui	2005	NeuroImage	1	58
8110282	Lotze	2001	NeuroImage	1	12
		I	l l	1	1

Motion:

BMapID	1st Auth.	Year	Journal	Experiments	Foci
30016	Desmurget	2001	Journal of Neuroscience	1	14
30020	Ehrsson	2000	European Journal of Neuroscience	7	9/14/17/5/4/13/3
30022	Gosain	2001	Plastic and Reconstructive Surgery	2	2/2
30033	Indovina	2001	Experimental Brain Research	3	15/23/10
30054	Rao	1997	Journal of Neuroscience	4	3/7/3/7
30078	van Mier	1998	Journal of Neurophysiology	6	28/28/12/12/12/12
30082	Gerardin	2000	Cerebral Cortex	2	24/18
30103	Simon	2002	Neuron	2	16/16
30107	Gelnar	1999	NeuroImage	1	8
30123	Colebatch	1991	Journal of Neurophysiology	4	3/12/8/5
30137	Grafton	1993	Experimental Brain Research	4	3/3/3/3
30151	Lotze	2000	Neuroreport	2	2/2
30187	Winstein	1997	Journal of Neurophysiology	1	19
30229	Corfield	1999	Journal of Applied Physiology	1	17
30254	Carey	2000	NeuroImage	2	3/3
30279	Kawashima	2000	NeuroImage	1	12
30300	Umetsu	2002	NeuroImage	4	3/6/8/13
30306	Binkofski	2000	Human Brain Mapping	2	9/8
30318	Inoue	2001	NeuroImage	4	3/4/3/4
	1	l	I		

30356	Menon	2001	Human Brain Mapping	1	7
30425	Casey	1998	NeuroImage	1	11
30437	Ehrsson	2001	Journal of Neurophysiology	1	28
4020006	Grafton	1992	Journal of Neuroscience	1	11
4040033	Maldjian	1998	NeuroImage	1	2
5070065	Blinkenberg	1996	Journal of Cerebral Blood Flow and Metabolism	1	10
5070072	Catalan	1998	Brain	1	9
5070085	Joliot	1998	NeuroImage	1	13
5070091	Lerner	2004	NeuroImage	2	9/4
5070101	Ramsey	1996	Journal of Cerebral Blood Flow and Metabolism	1	1
5070120	Astafiev	2003	Journal of Neuroscience	3	25/10/4
5070131	Connolly	2000	Journal of Neurophysiology	2	14/20
6020017	Watanabe	2004	NeuroImage	3	18/17/11
6060081	De Luca	2005	Experimental Brain Research	1	4
6070107	Wilson	2004	Nature Neuroscience	1	2
6080140	Nowak	2005	Human Brain Mapping	1	14
7050129	Wong	2007	NeuroImage	1	25
7060151	Mallol	2007	Brain Research	1	17
7060152	Milner	2007	NeuroImage	2	2/7
7070175	Ghatan	1995	NeuroImage	1	16
7090258	Blok	1997	Journal of Comparative Neurology	1	7
7110303	Gavazzi	2007	Journal of Computer Assisted Tomography	1	3
7110327	Lissek	2007	NeuroImage	6	48/29/15/14/37/28
	1		1		1

7120370	Simon	2004	NeuroImage	1	15
7120388	Leslie	2004	NeuroImage	1	23
8020052	Martin	2004	Journal of Neurophysiology	3	15/23/13
8020053	Mostofsky	2006	Biological Psychiatry	2	3/4
8020054	Onozuka	2002	Journal of Dental Research	2	10/10
8020055	Onozuka	2003	Journal of Dental Research	2	6/6
8020062	Stephan	1995	Journal of Neurophysiology	2	41/21
8020068	Brown	2008	Cerebral Cortex	2	15/11
8020071	Gerardin	2003	Cerebral Cortex	4	10/14/9/18
8030084	Hamdy	1999	Journal of Neurophysiology	1	9
8030085	Harris	2005	Journal of Cerebral Blood Flow and Metabolism	1	17
8030088	Wild	2003	Psychiatry Research	1	4
8080201	Fesl	2003	NeuroImage	1	8
8080202	Rotte	2002	Stereotactic and Functional Neurosurgery	3	16/16/12
8080222	Hanakawa	2008	Cerebral Cortex	2	13/11
8110286	Martin	2001	Journal of Neurophysiology	1	9
9010004	Dziewas	2003	NeuroImage	2	9/4
9010006	Fraser	2002	Neuron	1	8
9010007	Furlong	2004	NeuroImage	1	4
9010008	Guillot	2008	Human Brain Mapping	1	39
9010014	Martin	2007	Experimental Brain Research	2	33/24
9020028	Bengtsson	2005	European Journal of Neuroscience	1	11
	1				1

Attention:

BMapID	1st Auth.	Year	Journal	Experiments	Foci
30001	Anderson	2000	Journal of Cognitive Neuroscience	2	18/14
30002	Arrington	2000	Journal of Cognitive Neuroscience	2	15/6
30010	Bush	1998	Human Brain Mapping	1	7
30058	Rosen	1999	Journal of Cognitive Neuroscience	4	14/13/8/4
30059	Rushworth	2001	Journal of Neuroscience	2	16/9
30069	Sturm	1999	Neuropsychologia	1	10
30103	Simon	2002	Neuron	3	23/12/1
30124	Corbetta	1991	Journal of Neuroscience	1	3
30134	Gitelman	2002	NeuroImage	1	22
30142	Johansen-Berg	2000	Neuroreport	3	3/5/3
30210	Steel	2001	Neuroreport	3	26/32/14
30228	Carter	1995	NeuroImage	3	6/4/7
30230	Derbyshire	1998	Experimental Brain Research	1	2/
30231	MacDonald	2000	Science	2	1/5
30233	Pardo	1990	Proceedings of the National Academy of Sciences	1	13
30236	Ruff	2001	NeuroImage	4	10/7/7/16
30237	Whalen	1998	Biological Psychiatry	1	10
30239	de Zubicaray	2001	Human Brain Mapping	1	9
30240	Banich	2000	Journal of Cognitive Neuroscience	4	6/8/7/9
	1				

30248	Peterson	2002	Cognitive Brain Research	2	14/14
30252	Bench	1993	Neuropsychologia	5	6/2/2/5/1
30256	George	1994	Human Brain Mapping	1	10
30262	Marois	2000	Neuron	1	8
30266	Shaywitz	2001	NeuroImage	3	18/19/12
30267	Stevens	2000	Magnetic Resonance Imaging	2	23/20
30285	O'Leary	2002	Neuropsychopharmacology	1	2
30295	Marois	2000	Neuron	1	20
30308	Brown	1999	Journal of the International Neuropsychological Society	2	4/4
30310	Fan	2003	NeuroImage	4	14/14/11/14
30327	Leung	2000	Cerebral Cortex	1	16
30328	Mead	2002	Journal of the International Neuropsychological Society	2	1/1
30333	Taylor	1997	NeuroImage	3	12/9/11
30342	Brass	2001	NeuroImage	1	5
30360	Peterson	1999	Biological Psychiatry	1	40
30386	Milham	2002	Brain and Cognition	1	14
30444	Jonides	1997	Journal of Cognitive Neuroscience	1	2
30463	Milham	2001	Cognitive Brain Research	1	7
5040009	Konishi	2002	Proceedings of the National Academy of Sciences	2	16/9
5070073	Corbetta	2000	Nature Neuroscience	3	8/8/5
5070074	Corbetta	1998	Neuron	2	21/19
5070078	Gitelman	1999	Brain	1	16
5070081	Hopfinger	2000	Nature Neuroscience	6	18/18/18/21/21/21
	ļ	l	I I		

5070090	LaBar	1999	NeuroImage	2	26/8
5070093	Milham	2005	Human Brain Mapping	2	38/23
5070106	Thiel	2004	NeuroImage	3	7/2/1
5070116	Winterer	2002	NeuroImage	1	21
5070120	Astafiev	2003	Journal of Neuroscience	2	12/1
5070121	Beauchamp	2001	NeuroImage	1	12
5070124	Berman	1995	Neuropsychologia	1	35
5070137	Goldberg	1998	NeuroImage	2	17/7
5070158	Nagahama	1996	Brain	1	19
5070159	Nagahama	2001	Cerebral Cortex	1	14
5070160	Nagahama	1997	Experimental Brain Research	1	26
5070165	Peelen	2004	NeuroImage	1	8
5070170	Ragland	1998	Neuropsychology	1	1
5080208	Banich	2000	Cognitive Brain Research	2	4/3
5080209	Cools	2004	Journal of Neuroscience	1	11
5080210	DiGirolamo	2001	Neuroreport	3	68/31/11
5080211	Dove	2000	Cognitive Brain Research	1	13
5080212	Kimberg	2000	Cognitive Brain Research	1	9
5080213	Kringelbach	2003	NeuroImage	2	7/5
5080214	Milham	2003	Cognitive Brain Research	3	16/16/25
5080215	Nakahara	2002	Science	1	13
5080217	Omori	1999	Neuroscience Research	2	18/12
5080218	Pollmann	2000	Human Brain Mapping	1	6
	1				

5080219	Potenza	2003	American Journal of Psychiatry	2	10/1
5080220	Smith	2004	Human Brain Mapping	1	10
5080221	Swainson	2003	Journal of Cognitive Neuroscience	3	1/3/2
5090222	Banich	2001	Progress in Brain Research	2	79
5090223	Brass	2002	Cerebral Cortex	3	21
5090224	Brass	2004	Journal of Cognitive Neuroscience	3	3/4/3
5090225	Braver	2003	Neuron	5	5/5/3/3/8
5090227	Dreher	2003	Cerebral Cortex	4	14/25/9/9
5090228	Dreher	2002	NeuroImage	1	9
5090236	Luks	2002	NeuroImage	8	13/12/6/4/3/4/2/2
5090241	Rushworth	2002	Journal of Neurophysiology	2	4/2
5090243	Sylvester	2003	Neuropsychologia	5	14/11/8/12/4
5100245	Zysset	2001	NeuroImage	3	9/6/4
6070103	Kerns	2005	American Journal of Psychiatry	2	13/13
6080108	Heckers	2004	American Journal of Psychiatry	1	9
6080109	Jeong	2005	Psychiatry Research	1	9
6080112	Weiss	2003	Psychiatry Research	3	9/7/9
6080126	Mendrek	2004	British Journal of Psychiatry	1	2
7010020	Eyler	2004	Psychiatry Research	1	4
7020042	Bedwell	2005	International Journal of Neuroscience	1	19
7020053	Fink	1997	Brain	4	1/1/2/2
7020054	Gurd	2002	Brain	1	2
7020067	Weiss	2007	Psychiatry Research	2	14/17
	I	I			

7020068	Barch	2001	Cerebral Cortex	4	5/5/6/6
7040095	Dichter	2007	NeuroImage	2	8/8
7040113	Ravnkilde	2002	Journal of Clinical and Experimental Neuropsychology	1	8
7050136	Frankenstein	2001	NeuroImage	2	5/6
7060159	Tang	2006	Journal of Cognitive Neuroscience	6	10/11/1/18/7/5
7060161	Wrase	2007	NeuroImage	3	2/3/1
7070171	Durston	2003	NeuroImage	2	4/1
7070172	Fiehler	2004	European Journal of Neuroscience	2	5/7
7070177	Gur	2007	Human Brain Mapping	2	26/14
7070179	Hazeltine	2003	Neuropsychologia	1	5
7070185	Pfefferbaum	2001	NeuroImage	1	10
7080198	Fitzgerald	2005	Biological Psychiatry	3	13/1/1
7080202	Nakao	2005	Psychiatry Research	1	27
7080210	Wagner	2006	Biological Psychiatry	1	2
7080211	Yucel	2007	Archives of General Psychiatry	1	15
7080219	Maltby	2005	NeuroImage	2	8/5
7080229	Ullsperger	2001	NeuroImage	2	34/14
7090249	Phelps	2004	Neuron	6	6/8/44/4/11
7090251	Vuilleumier	2001	Neuron	1	1
7090253	Buchel	1999	Journal of Neuroscience	1	11
7090263	Georgiou-Karistianis	2007	Neuropsychologia	1	8
7090264	Kerns	2006	NeuroImage	1	5
7090265	Liu	2004	NeuroImage	2	34/15
	I	I	1		I

7090266	Maclin	2001	Neuroreport	1	5
7090271	Rubia	2006	Human Brain Mapping	3	11/9/7
7090272	Wittfoth	2006	NeuroImage	5	10/10/6/5/7
7100280	Rogers	2000	Journal of Cognitive Neuroscience	8	13/4/5/4/3/6/3/3
7120370	Simon	2004	NeuroImage	1	9
8010020	Bayless	2006	Neuroscience Letters	2	4/6
8010036	Stern	2007	Brain Research	3	12/4/12
8050120	Carlsson	2000	Journal of Cognitive Neuroscience	1	8
8050125	Elliott	1997	Neuropsychologia	1	10
8110256	Bermpohl	2006	Human Brain Mapping	1	10
9010005	Forstmann	2008	Journal of Cognitive Neuroscience	2	6/2
9010017	Sommer	2008	Acta Neurobiologiae Experimentalis	1	11
9010024	Wittfoth	2008	Brain Research	3	14/8/14
9020033	Coull	2004	Science	2	11/5

Language:

BMapID	1st Auth.	Year	Journal	Experiments	Foci
30006	Binder	1996	Brain	2	1/6
30008	Buckner	2000	Brain	2	7/7
30018	Duzel	2001	Human Brain Mapping	4	2/2/2/1
30019	Duzel	1999	Proceedings of the National Academy of Sciences	1	2

30035	Kiehl	2002	NeuroImage	1	12
30036	Klein	2001	NeuroImage	2	13/17
30079	Booth	2002	Human Brain Mapping	2	15/11
30080	Dehaene	2001	Nature Neuroscience	4	15/6/2/3
30091	Le Clec	2000	NeuroImage	2	4/3
30103	Simon	2002	Neuron	1	7
30104	Skosnik	2002	NeuroImage	3	2/5/3
30112	Belin	2000	Nature	1	11
30114	Binder	2000	Cerebral Cortex	1	8
30119	Calvert	2003	Journal of Cognitive Neuroscience	4	31/25/21/7
30136	Grady	1998	Proceedings of the National Academy of Sciences	2	4/5
30149	Kuperberg	2000	Journal of Cognitive Neuroscience	4	11/10/13/17
30155	Meyer	2002	Human Brain Mapping	2	2/6
30164	Poldrack	1999	NeuroImage	2	19/7
30167	Roskies	2001	Journal of Cognitive Neuroscience	5	22/1/4/3/5
30174	Shaywitz	1995	Human Brain Mapping	2	15/11
30206	Mechelli	2000	Journal of Cognitive Neuroscience	3	11/18/1
30232	Noppeney	2002	NeuroImage	1	7
30234	Phillips	2002	Brain	4	6/3/1/2
30239	de Zubicaray	2001	Human Brain Mapping	1	9
30247	Petersen	1988	Nature	4	5/6/5/3
30257	Hagoort	1999	Journal of Cognitive Neuroscience	3	7/9/8
30258	Herbster	1997	Human Brain Mapping	4	6/3/6/7
		l	I I	I	

30276	Dapretto	1999	Neuron	4	8/8/1/1
30285	O'Leary	2002	Neuropsychopharmacology	1	2
30286	O'Leary	2000	Neuroreport	3	3/2/2
30313	Gandour	2003	Human Brain Mapping	2	8/6
30334	Thierry	2003	Human Brain Mapping	2	15/18
30347	Devlin	2003	Journal of Cognitive Neuroscience	3	26/5/34
30349	Kang	1999	NeuroImage	2	7/7
30355	Lurito	2000	Human Brain Mapping	2	7/15
30358	Muller	1997	Neuroreport	2	7/8
30367	Beauregard	1997	Journal of Cognitive Neuroscience	4	18/17/14/22
30376	Curtis	1998	American Journal of Psychiatry	2	9/7
30378	De Nil	2003	Journal of Fluency Disorders	1	6
30382	Friston	1995	NeuroImage	1	10
30414	Remy	2003	NeuroImage	1	13
30417	Stippich	2003	Neuroscience Letters	2	4/4
30423	Brammer	1997	Magnetic Resonance Imaging	2	6/6
30432	Curtis	1999	Schizophrenia Research	1	18
30434	Demonet	1992	Brain	3	7/14/9
30435	Demonet	1994	Brain	4	3/5/1/5
20420	Frith	1001	Proceedings of the Royal Society of London. Series B. Biological	4	0
30439		1991	Sciences	I	2
30446	Кио	2001	Neuroreport	2	32/15
30454	Schlosser	1998	Journal of Neurology, Neurosurgery, and Psychiatry	2	11/9
	I		I I		ļ

4020005	Fiez	1996	Journal of Neuroscience	1	24
4020008	Howard	1992	Brain	2	2/2
4020011	Price	1994	Brain	2	12/6
4020012	Price	1996	Brain	2	3/4
4020017	Zurowski	2002	NeuroImage	1	3
4040039	Okada	2003	Neuropsychobiology	1	8
4090059	De Nil	2000	Journal of Speech, Language, and Hearing Research	1	5
5040003	Chao	2002	Cerebral Cortex	4	7/5/5/9
5040004	Chao	2000	NeuroImage	1	3
5040018	Martin	1996	Nature	2	8/9
5040020	Price	2003	Brain and Language	1	4
50/0021	Price	1996	Proceedings of the Royal Society of London. Series B. Biological	Λ	5/7/7/3
5040021	The	1000	Sciences	-	3/1/1/3
5040022	Renvall	2003	Applied Neuropsychology	1	15
5040023	Smith	2001	Journal of Neuroimaging	3	16/16/4
5040024	Thompson-Schill	1999	Neuropsychologia	4	5/2/4/5
5040025	Tyler	2004	Journal of Cognitive Neuroscience	2	7/6
5040026	Vandenberghe	1996	Nature	2	11/11
5040027	Vingerhoets	2003	NeuroImage	9	12/13/12/10/18/16/5/10/11
5040028	Zelkowicz	1998	Journal of the International Neuropsychological Society	1	8
5040054	Maguire	2004	NeuroImage	3	9/2/7
5070068	Booth	2004	Journal of Cognitive Neuroscience	3	9/9/11
5070076	Damasio	1996	Nature	9	3/2/3/2/1/3/3/3/3
	Į		I		

5070095	Moore	1999	NeuroImage	6	5/7/5/6/4/4
5070099	Poeppel	2004	Neuropsychologia	4	37/26/26/23
5070113	Votaw	1999	NeuroImage	2	16/11
5070114	Vouloumanos	2001	Journal of Cognitive Neuroscience	2	10/8
5070126	Binder	2003	Journal of Cognitive Neuroscience	1	26
5070130	Cohen	2003	Cerebral Cortex	3	11/7/2
5070135	Fiebach	2002	Journal of Cognitive Neuroscience	1	14
5070166	Petersen	1989	Journal of Cognitive Neuroscience	2	6/6
5070167	Petersen	1990	Science	2	1/3
5080189	Poldrack	2001	Journal of Cognitive Neuroscience	1	2
5080190	Price	1997	Journal of Cognitive Neuroscience	2	3/6
5080192	Siok	2004	Nature	2	12/17
6050042	Calarge	2003	American Journal of Psychiatry	1	13
6050053	Henke	1999	Proceedings of the National Academy of Sciences	1	7
6050060	Peck	2004	NeuroImage	1	13
6050071	Riecker	2000	Neuroreport	1	3
6060082	Drobyshevsky	2006	NeuroImage	1	9
6060084	Hamzei	2003	NeuroImage	1	4
6060098	Rowan	2004	NeuroImage	1	13
6060099	Saccuman	2006	NeuroImage	4	3/15/12/7
6080122	Kumari	2003	Biological Psychiatry	5	9/4/3/4/19
6110182	Мо	2005	Human Brain Mapping	2	6/9
6120186	Poldrack	2001	Brain	1	13
	I	l	1		I

6120187	Poldrack	1998	Cerebral Cortex	1	11
7010010	Martin	1995	Science	2	8/10
7010011	Paulesu	1997	Neuroreport	4	4/5/1/1
7010012	Pihlajamaki	2000	Annals of Neurology	1	9
7010013	Shapiro	2006	Proceedings of the National Academy of Sciences	2	3/4
7010015	Tranel	2005	Brain and Language	6	2/2/3/4/4/5
7010017	Vitali	2005	Brain and Language	2	28/27
7020054	Gurd	2002	Brain	1	8
7020055	Katzir	2005	NeuroImage	3	11/12/9
7020056	Kemeny	2005	Human Brain Mapping	1	10
7020073	Voets	2006	Brain	2	8/14
7020074	Mummery	1996	Proceedings of the Royal Society of London. Series B. Biological	4	3/3/3/2
1020014	Warmery	1000	Sciences	т	0/0/0/2
7030076	Audenaert	2000	European Journal of Nuclear Medicine	2	7/6
7030080	Fu	2005	American Journal of Psychiatry	1	1
7030081	Fu	2002	NeuroImage	2	29/39
7030088	Allen	2006	Psychopharmacology	1	6
7040102	Kotz	2003	Brain and Language	2	10/8
7040108	Smith	2002	Neurology	1	10
7040111	Jardri	2007	NeuroImage	2	12/1
7040113	Ravnkilde	2002	Journal of Clinical and Experimental Neuropsychology	1	28
7050126	Jobard	2007	NeuroImage	4	12/6/3/4
7050136	Frankenstein	2001	NeuroImage	1	8
	I	l	1		I

7070170	Dick	2007	Journal of Cognitive Neuroscience	2	19/10
7070188	Seghier	2008	Human Brain Mapping	1	10
7090267	Meschyan	2006	NeuroImage	2	12/6
7090270	Perani	1996	Neuroreport	5	10/6/6/4/5
7100287	Eddington	2007	Journal of Cognitive Neuroscience	3	5/6/3
7110328	Liu	2007	Human Brain Mapping	2	14/14
7110334	Thompson	2007	Journal of Cognitive Neuroscience	3	25/28/31
7120385	llg	2007	NeuroImage	3	21/8/3
8020061	Shibata	2007	Brain Research	3	5/6/4
8060155	Prince	2005	Journal of Neuroscience	1	8
8080183	Haller	2005	Neuropsychologia	1	7
9020038	Grossman	2003	Brain	1	2
	l I	l			I

Speech:

BMapID	1st Auth.	Year	Journal	Experiments	Foci
30422	Adcock	2003	NeuroImage	1	16
30081	Fox	1996	Nature	2	30/23
30130	Fox	2001	NeuroImage	1	5
30151	Lotze	2000	Neuroreport	4	2/2/2/2
30166	Rosen	2000	Neurology	2	5/7
30188	Xiong	2000	NeuroImage	21	6/3/5/6/6/5/4/5/6/6/6/5/5/4/6/5/6/6/5/5/5

30201	Etard	2000	Neuroreport	1	21
30216	Tan	2001	Neuroreport	2	37/51
30241	Bookheimer	1995	Human Brain Mapping	2	33/19
30242	Braun	1997	Brain	2	14/7
30246	Paus	1993	Journal of Neurophysiology	4	3/4/6/7
30247	Petersen	1988	Nature	2	6/6
30255	Fiez	1999	Neuron	2	15/16
30257	Hagoort	1999	Journal of Cognitive Neuroscience	2	17/13
30260	Jernigan	1998	NeuroImage	1	6
30265	Rumsey	1997	Brain	2	10/14
30271	Bookheimer	2000	Neurology	3	10/10/14
30317	Ingham	2000	Brain and Language	2	8/9
30344	Chee	1999	Journal of Neuroscience	4	7/8/1/8
30378	De Nil	2003	Journal of Fluency Disorders	2	8/8
30418	Tatsumi	1999	NeuroImage	5	8/6/6/5/5
4020012	Price	1996	Brain	5	12/15/10/19/9
4020013	Price	1996	NeuroImage	1	20
4090059	De Nil	2000	Journal of Speech, Language, and Hearing Research	1	4
5040018	Martin	1996	Nature	1	7
5040019	Murtha	1999	Journal of Cognitive Neuroscience	2	22/15
5070161	Nakamura	2000	Brain	1	5
5070166	Petersen	1989	Journal of Cognitive Neuroscience	2	9/6
5110246	Heim	2002	Neuroscience Letters	1	5
	l	l			1

6050068	Brown	2006	European Journal of Neuroscience	1	55
6050071	Riecker	2000	Neuroreport	1	6
6050075	Soros	2006	NeuroImage	5	28/8/1/2/22
6060087	Mechelli	2006	NeuroImage	1	22
6060095	Wildgruber	1996	Neuroreport	1	2
6070104	Riecker	2002	NeuroImage	2	13/15
6070105	Riecker	2006	NeuroImage	1	13
6070106	Riecker	2005	Neurology	1	13
6070107	Wilson	2004	Nature Neuroscience	1	6
7020036	Tremblay	2006	NeuroImage	3	4/7/7
7020056	Kemeny	2005	Human Brain Mapping	4	6/12/11/11
7020069	Basho	2007	Neuropsychologia	2	6/2
7060142	Bohland	2006	NeuroImage	7	41/55/39/49/55/18/54
7060155	Riecker	2000	Brain and Language	4	2/3/2/1
7100292	Kircher	2004	NeuroImage	1	31
8020050	Kleber	2007	NeuroImage	1	15
8020068	Brown	2008	Cerebral Cortex	2	14/28
8080206	Andreasen	1995	American Journal of Psychiatry	1	6
8080234	Rektorova	2007	Movement Disorders	1	35
8110263	Ghosh	2008	Journal of Speech, Language, and Hearing Research	2	61/37
9010019	Tourville	2008	NeuroImage	2	27/33
9010023	Wilson	2009	Brain	5	8/10/8/8/14
	1	I	1	I	l

Working Memory:

BMapID	1st Auth.	Year	Journal	Experiments	Foci
30011	Cabeza	2002	NeuroImage	1	33
30014	Dade	2001	NeuroImage	2	18/24
30021	Garavan	2000	Microscopy Research and Technique	1	17
30034	Kapur	1996	Journal of Cognitive Neuroscience	1	5
30042	Lee	2002	Human Brain Mapping	1	26
30043	Leveroni	2000	Journal of Neuroscience	3	3/3/2
30051	Owen	1998	Proceedings of the National Academy of Sciences	2	12/10
30066	Sperling	2001	Human Brain Mapping	3	15/5/17
30068	Stern	2000	NeuroImage	2	20/18
30097	Pessoa	2002	Neuron	1	19
30099	Petit	1998	Journal of Neuroscience	2	4/4
30100	Pochon	2001	Cerebral Cortex	2	5/5
30116	Bunge	2001	Brain	1	14
30139	Hasson	2002	Neuron	1	3
30146	Kelley	1998	Neuron	3	14/22/19
30154	Mellet	2000	NeuroImage	3	11/17/15
30168	Rypma	1999	NeuroImage	2	16/41
30205	Mazard	2002	Journal of Cognitive Neuroscience	3	22/27/25
30214	Zago	2002	Neuroscience Letters	1	6
	1			1	

30215	Rowe	2000	Science	2	5/7
30243	Clark	2000	Human Brain Mapping	1	5
30274	Crespo-Facorro	2001	Human Brain Mapping	1	8
30334	Thierry	2003	Human Brain Mapping	2	15/21
30371	Braver	2001	NeuroImage	1	4
30372	Braver	1997	NeuroImage	1	12
30374	Callicott	1999	Cerebral Cortex	1	18
30375	Carlson	1998	Cerebral Cortex	3	28/17/26
30381	Druzgal	2001	Cognitive Brain Research	1	12
30387	Gruber	2003	NeuroImage	18	1/1/1/9/8/14/13/3/1/11/11/11/11/1/4/4/4/5/5
30408	Phillips	1998	Psychiatry Research	1	4
30420	Veltman	2003	NeuroImage	6	8/11/17/4/11/10
30425	Casey	1998	NeuroImage	5	11/13/6/22/21
30428	Cohen	1994	Human Brain Mapping	1	9
30429	Cohen	1997	Nature	3	9/10/8
30436	Desmond	2003	NeuroImage	1	16
30442	Hautzel	2002	Neuroscience Letters	1	16
30443	Honey	2000	NeuroImage	1	10
30444	Jonides	1997	Journal of Cognitive Neuroscience	3	24/22/3
30445	Kim	2002	NeuroImage	3	7/9/6
30447	Martinkauppi	2000	Cerebral Cortex	2	32/30
30449	Owen	1999	European Journal of Neuroscience	2	3/4
30457	Smith	1996	Cerebral Cortex	5	9/4/6/9/14
	l I				1

4020001	Awh	1996	Psychological Science	3	9/12/9
4020003	Becker	1994	Human Brain Mapping	2	15/13
4020005	Fiez	1996	Journal of Neuroscience	2	16/24
4020007	Grasby	1994	Brain	2	16/15
4020009	Kim	2003	American Journal of Psychiatry	1	8
4020014	Ragland	2002	Neuropsychology	6	6/5/7/9/10/6
4020015	Schumacher	1996	NeuroImage	2	12/13
4020017	Zurowski	2002	NeuroImage	1	8
4040029	Honey	1999	Proceedings of the National Academy of Sciences	1	12
4040030	Honey	2002	Schizophrenia Research	1	10
4040045	Wykes	2002	British Journal of Psychiatry	1	5
5040047	Chen	2004	NeuroImage	2	17/27
5040052	Landau	2004	NeuroImage	7	3/3/5/1/8/6/7
5070080	Honey	2003	Psychological Medicine	1	11
5070090	LaBar	1999	NeuroImage	1	8
5070108	van Turennout	2000	Nature Neuroscience	1	1
5070143	Kawashima	1998	Experimental Brain Research	2	22/13
6050066	Breitenstein	2005	NeuroImage	2	14/9
6060082	Drobyshevsky	2006	NeuroImage	1	13
6080114	Cairo	2004	Cognitive Brain Research	5	19/27/12/18/6
6080115	Caldwell	2005	Behavioral Neuroscience	3	11/9/9
6080124	Leung	2002	Journal of Cognitive Neuroscience	2	15/18
6080126	Mendrek	2004	British Journal of Psychiatry	2	6/8
	I	I			I

6080127	Menon	2001	NeuroImage	1	10
6080128	Perlstein	2003	Biological Psychiatry	1	9
6080130	Yoo	2005	International Journal of Neuroscience	1	22
6080132	Johnson	2006	Biological Psychiatry	2	9/13
6080134	Linden	2003	NeuroImage	2	2/15
6080135	Monks	2004	Bipolar Disorders	2	17/17
6080137	Mu	2005	Sleep	3	6/7/5
6080141	Rypma	2001	Psychology and Aging	2	41/46
6080142	Volle	2005	Cerebral Cortex	5	2/7/11/17/2
7010007	Harvey	2005	NeuroImage	1	10
7010024	Manoach	2000	Biological Psychiatry	1	13
7010025	Mendrek	2005	Psychological Medicine	1	12
7020034	Quintana	2003	Biological Psychiatry	4	3/5/7/8
7020042	Bedwell	2005	International Journal of Neuroscience	3	19/24/10
7020051	Druzgal	2001	Neuron	1	17
7020060	Meisenzahl	2006	European Archives of Psychiatry and Clinical Neuroscience	2	20723
7060148	Lagopoulos	2007	Journal of Psychiatry and Neuroscience	3	7717/11
7070182	Koshino	2008	Cerebral Cortex	1	15
7070185	Pfefferbaum	2001	NeuroImage	2	28/24
7080214	van der Wee	2003	NeuroImage	1	6
7080227	Savage	2001	Brain	3	2/2/2
7080235	Matsuo	2007	Molecular Psychiatry	3	4/2/7
7080240	Walter	2007	Journal of Affective Disorders	3	6/11/10
	I	I	1		I
7100281	Sheridan	2007	Journal of the American Academy of Child and Adolescent Psychiatry	3	8/12/2
---------	-----------------	------	--	---	--------
7120368	Mayer	2007	NeuroImage	1	33
7120378	Kumari	2006	Schizophrenia Research	1	22
8010016	Postle	2007	Cerebral Cortex	2	10/30
8020070	Neuner	2007	Brain Research	2	15/7
8030078	Koppelstaetter	2008	NeuroImage	1	22
8100252	Sanchez-Carrion	2008	Journal of Neurotrauma	2	16/18
8110297	Ricciardi	2006	Neuroscience	2	46/44
		I	1	I	1

Memory:

BMapID	1st Auth.	Year	Journal	Experiments	Foci
30001	Anderson	2000	Journal of Cognitive Neuroscience	4	21/23/18/19
30009	Buckner	1998	NeuroImage	1	53
30011	Cabeza	2002	NeuroImage	1	36
30018	Duzel	2001	Human Brain Mapping	3	2/2/2
30019	Duzel	1999	Proceedings of the National Academy of Sciences	3	2/2/2
30027	Halsband	1998	Behavioural Brain Research	1	7
30030	Herath	2001	Human Brain Mapping	1	1
30042	Lee	2002	Human Brain Mapping	1	22
30043	Leveroni	2000	Journal of Neuroscience	2	28/13
30050	Nyberg	1996	Journal of Neuroscience	2	7/7
	l			l	l

30071	Tsukiura	2002	Human Brain Mapping	2	10/9
30135	Grady	2001	NeuroImage	2	18/19
30150	Lepage	2001	NeuroImage	5	11/9/2/6/4
30157	Nyberg	1996	Proceedings of the National Academy of Sciences	12	2/2/1/2/1/1/2/2/1/1/1/1
30179	Squire	1992	Proceedings of the National Academy of Sciences	1	3
30263	Mencl	2000	Microscopy Research and Technique	1	14
30269	Andreasen	2003	Human Brain Mapping	1	10
30274	Crespo-Facorro	2001	Human Brain Mapping	1	4
30277	Eldridge	2000	Nature Neuroscience	2	15/3
30299	Sugiura	2001	NeuroImage	2	19/8
30316	Herrmann	2001	Human Brain Mapping	1	5
30330	Paller	2003	Learning & Memory	1	8
30357	Miller	2002	Journal of Cognitive Neuroscience	1	6
30371	Braver	2001	NeuroImage	2	2/1
30424	Cansino	2002	Cerebral Cortex	2	17/17
30458	Suzuki	2002	NeuroImage	2	12/19
30462	Zysset	2001	Neuroscience Letters	1	6
4020004	Cabeza	2003	Journal of Cognitive Neuroscience	2	9/7
5070082	Jackson	2004	NeuroImage	1	61
5070107	van Turennout	2003	Cerebral Cortex	4	3/2/2/2
5070127	Cabeza	2003	Neuropsychologia	1	17
5070170	Ragland	1998	Neuropsychology	1	10
6050045	Daselaar	2001	NeuroImage	1	9
	I				

6050055	Ino	2004	Brain Research Bulletin	4	15/14/18/12
6050059	Mottaghy	1999	Experimental Brain Research	2	11/10
6050063	Sperling	2003	NeuroImage	2	13/5
6060077	Bonner-Jackson	2005	Biological Psychiatry	3	10/46/50
6060079	Buckner	1996	Journal of Neuroscience	2	12/17
6060080	Cabeza	1997	Neuroreport	2	4/10
6060083	Fletcher	1996	Brain	2	6/1
6060097	Halsband	2006	Journal of Physiology - Paris	2	4/5
6080118	Hofer	2003	American Journal of Psychiatry	1	15
7040098	Fliessbach	2006	NeuroImage	1	11
7050135	Vandekerckhove	2005	Behavioural Neurology	1	18
7060144	Dupont	2002	Surgical and Radiologic Anatomy	2	17/20
7060156	Ries	2006	NeuroImage	1	7
7100291	Woodard	2007	Journal of Cognitive Neuroscience	2	12/11
7100296	Maril	2003	NeuroImage	1	11
7110307	Hofer	2007	Brain and Cognition	3	13/6/11
7110325	Kensinger	2007	Neuropsychologia	2	23/25
7110344	Denkova	2006	Neuropsychologia	2	15/18
8020070	Neuner	2007	Brain Research	2	15/13
8020072	Pihlajamaki	2003	Hippocampus	2	15/10
8040092	Assaf	2006	Biological Psychiatry	1	15
8040096	Ragland	2001	American Journal of Psychiatry	1	8
8040098	Weiss	2006	Biological Psychiatry	1	5
	I	I			I

8040100	Fletcher	1998	Archives of General Psychiatry	1	8
8040102	Heckers	1998	Nature Neuroscience	2	3/6
8050122	Daselaar	2006	Journal of Neurophysiology	2	11/9
8050123	Dobbins	2003	Neuropsychologia	1	18
8050131	Johnson	2007	Cerebral Cortex	2	3/1
8060145	Henson	1999	Journal of Neuroscience	1	12
8060151	Murray	2007	Journal of Neuroscience	1	21
8060154	Peters	2007	European Journal of Neuroscience	4	6/10/4/4
8080206	Andreasen	1995	American Journal of Psychiatry	1	13
8080211	Burianova	2007	Journal of Cognitive Neuroscience	3	7/9/3
8110284	Mainero	2004	NeuroImage	2	25
9020043	Lanius	2004	American Journal of Psychiatry	1	16
9020044	Lanius	2007	Psychiatry Research	1	6
					1

Reference List

Anderson ND (2000) The effects of divided attention on encoding- and retrieval-related brain activity: A PET study of younger and older adults. Journal of Cognitive Neuroscience 12:775-792

Arrington CM (2000) Neural mechanisms of visual attention: Object-based selection of a region in space. Journal of Cognitive Neuroscience 12:106-117

Bush G (1998) The counting Stroop: an interference task specialized for functional neuroimaging--validation study with functional MRI. Human Brain Mapping 6:270-282

Rosen AC (1999) Neural basis of endogenous and exogenous spatial orienting: A functional MRI study. Journal of Cognitive Neuroscience 11:135-152

Rushworth MF (2001) Attention systems and the organization of the human parietal cortex. Journal of Neuroscience 21:5262-5271

Sturm W (1999) Functional anatomy of intrinsic alertness: Evidence for a fronto-parietal-thalamic-brainstem network in the right hemisphere. Neuropsychologia 37:797-805

Simon O (2002) Topographical layout of hand, eye, calculation, and language-related areas in the human parietal lobe. Neuron 33:475-487

Corbetta M (1991) Selective and divided attention during visual discriminations of shape, color, and speed: functional anatomy by positron emission tomography. Journal of Neuroscience 11:2383-2402

Gitelman DR (2002) Functional anatomy of visual search: Regional segregations within the frontal eye fields and effective connectivity of the superior colliculus. NeuroImage 15:970-982

Johansen-Berg H (2000) Attention to touch modulates activity in both primary and secondary somatosensory areas. Neuroreport 11:1237-1241

Steel C (2001) Neuroimaging correlates of negative priming. Neuroreport 12:3619-3624

Carter CS (1995) Interference and facilitation effects during selective attention: an H2O15 PET study of Stroop task performance. NeuroImage 2:264-272

Derbyshire SWG (1998) Pain and Stroop interference tasks activate separate processing modules in anterior cingulate cortex. Experimental Brain Research 118:52-60

MacDonald III (2000) Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science 288:1835-1838

Pardo J, V (1990) The anterior cingulate cortex mediates processing selection in the Stroop attentional conflict paradigm. Proceedings of the National Academy of Sciences 87:256-259

Ruff CC (2001) The role of the anterior cingulate cortex in conflict processing: evidence from reverse Stroop interference. NeuroImage 14:1150-1158

Whalen PJ (1998) The emotional counting Stroop paradigm: A functional magnetic resonance imaging probe of the anterior cingulate affective division. Biological Psychiatry 44:1219-1228

de ZG, I (2001) The semantic interference effect in the picture-word paradigm: An event-related fMRI study employing overt responses. Human Brain Mapping 14:218-227

Banich MT (2000) FMRI studies of Stroop tasks reveal unique roles of anterior and posterior brain systems in attentional selection. Journal of Cognitive Neuroscience 12:988-1000

Peterson BS (2002) An event-related functional MRI study comparing interference effects in the Simon and Stroop tasks. Cognitive Brain Research 13:427-440

Bench CJ (1993) Investigations of the functional anatomy of attention using the Stroop test. Neuropsychologia 31:907-922

George MS (1994) Regional brain activity when selecting a response despite interference: an H215O PET study of the Stroop and an emotional Stroop. Human Brain Mapping 1:194-209

Marois R (2000) Neural correlates of the attentional blink. Neuron 28:299-308

Shaywitz BA (2001) The functional neural architecture of components of attention in language-processing tasks. NeuroImage 13:601-612

Stevens AA (2000) Event-related fMRI of auditory and visual oddball tasks. Magnetic Resonance Imaging 18:495-502

O'Leary DS (2002) Effects of smoking marijuana on brain perfusion and cognition. Neuropsychopharmacology 26:802-816

Marois R (2000) A stimulus-driven approach to object identity and location processing in the human brain. Neuron 25:717-728

Brown GG (1999) Brain activation and pupil response during covert performance of the Stroop Color Word task. Journal of the International Neuropsychological Society 5:308-319

Fan J (2003) Cognitive and brain consequences of conflict. NeuroImage 18:42-57

Leung HC (2000) An event-related functional MRI study of the Stroop color word interference task. Cerebral Cortex 10:552-560

Mead LA (2002) Neural basis of the Stroop interference task: response competition or selective attention? Journal of the International Neuropsychological Society 8:735-742

Taylor SF (1997) Isolation of specific interference processing in the Stroop task: PET activation studies. NeuroImage 6:81-92

Brass M (2001) The inhibition of imitative response tendencies. NeuroImage 14:1416-1423

Peterson BS (1999) An fMRI study of Stroop word-color interference: evidence for cingulate subregions subserving multiple distributed attentional systems. Biological Psychiatry 45:1237-1258

Milham MP (2002) Attentional control in the aging brain: Insights from an fMRI study of the Stroop task. Brain and Cognition 49:277-296

Jonides J (1997) Verbal working memory load affects regional brain activation as measured by PET. Journal of Cognitive Neuroscience 9:462-475

Milham MP (2001) The relative involvement of anterior cingulate and prefrontal cortex in attentional control depends on nature of conflict. Cognitive Brain Research 12:467-473

Konishi S H (2002) Hemispheric asymmetry in human lateral prefrontal cortex during cognitive set shifting. Proceedings of the National Academy of Sciences 99:7803-7808

Corbetta M (2000) Voluntary orienting is dissociated from target detection in human posterior parietal cortex. Nature Neuroscience 3:292-297

Corbetta M (1998) A common network of functional areas for attention and eye movements. Neuron 21:761-773

Gitelman DR (1999) A large-scale distributed network for covert spatial attention: Further anatomical delineation based on stringent behavioural and cognitive controls. Brain 122:1093-1106

Hopfinger JB (2000) The neural mechanisms of top-down attentional control. Nature Neuroscience 3:284-291

LaBar KS (1999) Neuroanatomic overlap of working memory and spatial attention networks: A functional MRI comparison within subjects. NeuroImage 10:695-704

Milham MP (2005) Anterior cingulate cortex: An fMRI analysis of conflict specificity and functional differentiation. Human Brain Mapping 25:328-335

Thiel CM (2004) Cerebral correlates of alerting, orienting and reorienting of visuospatial attention: An event-related fMRI study. NeuroImage 21:318-328

Winterer G (2002) Volition to action-An event-related fMRI study. NeuroImage 17:851-858

Astafiev S, V (2003) Functional organization of human intraparietal and frontal cortex for attending, looking, and pointing. Journal of Neuroscience 23:4689-4699

Beauchamp MS (2001) A parametric fMRI study of overt and covert shifts of visuospatial attention. NeuroImage 14:310-321

Berman KF (1995) Physiological activation of a cortical network during performance of the Wisconsin Card Sorting Test: A positron emission tomography study. Neuropsychologia 33:1027-1046

Goldberg TE (1998) Uncoupling cognitive workload and prefrontal cortical physiology: A PET rCBF study. NeuroImage 7:296-303

Nagahama Y (1996) Cerebral activation during performance of a card sorting test. Brain 119:1667-1675

Nagahama Y (2001) Dissociable mechanisms of attentional control within the human prefrontal cortex. Cerebral Cortex 11:85-92

Nagahama Y (1997) Age-related changes in cerebral blood flow activation during a Card Sorting Test. Experimental Brain Research 114:571-577

Peelen M, V (2004) Endogenous and exogenous attention shifts are mediated by the same large-scale neural network. NeuroImage 22:822-830

Ragland JD (1998) Frontotemporal cerebral blood flow change during executive and declarative memory tasks in schizophrenia: A positron emission tomography study. Neuropsychology 12:399-413

Banich MT (2000) Prefrontal regions play a dominant role in imposing an attentional 'set': Evidence from fMRI. Cognitive Brain Research 10:1-9

Cools R (2004) Differential responses in human striatum and prefrontal cortex to changes in object and rule relevance. Journal of Neuroscience 24:1129-1135

DiGirolamo GJ (2001) General and task-specific frontal lobe recruitment in older adults during executive processes: A fMRI investigation of task-switching. Neuroreport 12:2065-2071

Dove A (2000) Prefrontal cortex activation in task switching: An event-related fMRI study. Cognitive Brain Research 9:103-109

Kimberg DY (2000) Modulation of task-related neural activity in task-switching: An fMRI study. Cognitive Brain Research 10:189-196

Kringelbach ML (2003) Neural correlates of rapid reversal learning in a simple model of human social interaction. NeuroImage 20:1371-1383

Milham MP (2003) Competition for priority in processing increases prefrontal cortex's involvement in top-down control: An event-related fMRI study of the stroop task. Cognitive Brain Research 17:212-222

Nakahara K (2002) Functional MRI of macaque monkeys performing a cognitive set-shifting task. Science 295:1532-1536

Omori M (1999) Neuronal substrates participating in attentional set-shifting of rules for visually guided motor selection: A functional magnetic resonance imaging investigation. Neuroscience Research 33:317-323

Pollmann S D (2000) Event-related fMRI: Comparison of conditions with varying BOLD overlap. Human Brain Mapping 9:26-37

Potenza MN (2003) An fMRI Stroop task study of ventromedial prefrontal cortical function in pathological gamblers. American Journal of Psychiatry 160:1990-1994

Smith AB (2004) Neural correlates of switching set as measured in fast, event-related functional magnetic resonance imaging. Human Brain Mapping 21:247-256

Swainson R (2003) Cognitive control mechanisms revealed by ERP and fMRI: Evidence from repeated task-switching. Journal of Cognitive Neuroscience 15:785-799

Banich MT (2001) Attentional selection and the processing of task-irrelevant information: Insights from fMRI examinations of the Stroop task. Progress in Brain Research 134:459-470

Brass M (2002) The role of the frontal cortex in task preparation. Cerebral Cortex 12:908-914

Brass M (2004) Decomposing components of task preparation with functional magnetic resonance imaging. Journal of Cognitive Neuroscience 16:609-620

Braver TS (2003) Neural mechanisms of transient and sustained cognitive control during task switching. Neuron 39:713-726

Dreher JC (2003) Dissociating the roles of the rostral anterior cingulate and the lateral prefrontal cortices in performing two tasks simultaneously or successively. Cerebral Cortex 13:329-339

Dreher JC (2002) The roles of timing and task order during task switching. NeuroImage 17:95-109

Luks TL (2002) Evidence for anterior cingulate cortex involvement in monitoring preparatory attentional set. NeuroImage 17:792-802

Rushworth MF (2002) Role of the human medial frontal cortex in task switching: A combined fMRI and TMS study. Journal of Neurophysiology 87:2577-2592

Sylvester CC (2003) Switching attention and resolving interference: fMRI measures of executive functions. Neuropsychologia 41:357-370

Zysset S M (2001) Color-word matching stroop task: Separating interference and response conflict. NeuroImage 13:29-36

Kerns JG (2005) Decreased conflict- and error-related activity in the anterior cingulate cortex in subjects with schizophrenia. American Journal of Psychiatry 162:1833-1839

Heckers S W (2004) Anterior cingulate cortex activation during cognitive interference in schizophrenia. American Journal of Psychiatry 161:707-715

Jeong BS (2005) Functional imaging evidence of the relationship between recurrent psychotic episodes and neurodegenerative course in schizophrenia. Psychiatry Research 139:219-228

Weiss EM (2003) Brain activation patterns during a selective attention test - A functional MRI study in healthy volunteers and patients with schizophrenia. Psychiatry Research 123:1-15

Mendrek A (2004) Changes in distributed neural circuitry function in patients with first-episode schizophrenia. British Journal of Psychiatry 185:205-214

Eyler LT (2004) Abnormal brain response of chronic schizophrenia patients despite normal performance during a visual vigilance task. Psychiatry Research 130:245-257

Bedwell JS (2005) Functional neuroanatomy of subcomponent cognitive processes involved in verbal working memory. International Journal of Neuroscience 115:1017-1032

Fink GR (1997) Neural mechanisms involved in the processing of global and local aspects of hierarchically organized visual stimuli. Brain 120:1779-1791

Gurd JM (2002) Posterior parietal cortex is implicated in continuous switching between verbal fluency tasks: An fMRI study with clinical implications. Brain 125:1024-1038

Weiss EM (2007) Brain activation patterns during a selective attention test - a functional MRI study in healthy volunteers and unmedicated patients during an acute episode of schizophrenia. Psychiatry Research 154:31-40

Barch DM (2001) Anterior cingulate cortex and response conflict: Effects of response modality and processing domain. Cerebral Cortex 11:837-848

Dichter GS (2007) Social stimuli interfere with cognitive control in autism. NeuroImage 35:1219-1230

Ravnkilde B (2002) Putative tests of frontal lobe function: A PET-study of brain activation during Stroop's test and verbal fluency. Journal of Clinical and Experimental Neuropsychology 24:534-547

Frankenstein UN (2001) Distraction modulates anterior cingulate gyrus activations during the cold pressor test. NeuroImage 14:827-836

Tang J (2006) Imaging informational conflict: A functional magnetic resonance imaging study of numerical stroop. Journal of Cognitive Neuroscience 18:2049-2062

Wrase J (2007) Dysfunction of reward processing correlates with alcohol craving in detoxified alcoholics. NeuroImage 35:787-794

Durston S D (2003) Parametric manipulation of conflict and response competition using rapid mixed-trial event-related fMRI. NeuroImage 20:2135-2141

Fiehler K (2004) Neural correlates of error detection and error correction: Is there a common neuroanatomical substrate? European Journal of Neuroscience 19:3081-3087

Gur RC (2007) Hemodynamic response in neural circuitries for detection of visual target and novelty: An event-related fMRI study. Human Brain Mapping 28:263-274

Hazeltine E B (2003) Material-dependent and material-independent selection processes in the frontal and parietal lobes: An event-related fMRI investigation of response competition. Neuropsychologia 41:1208-1217

Pfefferbaum A (2001) Reorganization of frontal systems used by alcoholics for spatial working memory: An fMRI study. NeuroImage 14:7-20

Fitzgerald KD (2005) Error-related hyperactivity of the anterior cingulate cortex in obsessive-compulsive disorder. Biological Psychiatry 57:287-294

Nakao T (2005) A functional MRI comparison of patients with obsessive-compulsive disorder and normal controls during a Chinese character Stroop task. Psychiatry Research 139:101-114

Wagner G (2006) Cortical inefficiency in patients with unipolar depression: An event-related fMRI study with the Stroop task. Biological Psychiatry 59:958-965

Yucel M (2007) Functional and biochemical alterations of the medial frontal cortex in obsessive-compulsive disorder. Archives of General Psychiatry 64:946-955

Maltby N (2005) Dysfunctional action monitoring hyperactivates frontal-striatal circuits in obsessive-compulsive disorder: An event-related fMRI study. NeuroImage 24:495-503

Ullsperger M (2001) Subprocesses of performance monitoring: A dissociation of error processing and response competition revealed by event-related fMRI and ERPs. NeuroImage 14:1387-1401

Phelps EA (2004) Extinction learning in humans: Role of the amygdala and vmPFC. Neuron 43:897-905

Vuilleumier P (2001) Effects of attention and emotion on face processing in the human brain: An event-related fMRI study. Neuron 30:829-841

Buchel C (1999) Amygdala-hippocampal involvement in human aversive trace conditioning revealed through event-related functional magnetic resonance imaging. Journal of Neuroscience 19:10869-10876

Georgiou-Karistianis N (2007) Increased cortical recruitment in Huntington's disease using a Simon task. Neuropsychologia 45:1791-1800

Kerns JG (2006) Anterior cingulate and prefrontal cortex activity in an FMRI study of trial-to-trial adjustments on the Simon task. NeuroImage 33:399-405

Liu X (2004) Common and distinct neural substrates of attentional control in an integrated Simon and spatial Stroop task as assessed by event-related fMRI. NeuroImage 22:1097-1106

Maclin EL (2001) Visual spatial localization conflict: An fMRI study. Neuroreport 12:3633-3636

Rubia K (2006) Progressive increase of frontostriatal brain activation from childhood to adulthood during event-related tasks of cognitive control. Human Brain Mapping 27:973-993

Wittfoth M (2006) Comparison of two Simon tasks: Neuronal correlates of conflict resolution based on coherent motion perception. NeuroImage 32:921-929

Rogers RD (2000) Contrasting cortical and subcortical activations produced by attentional-set shifting and reversal learning in humans. Journal of Cognitive Neuroscience 12:142-162

Simon O (2004) Automatized clustering and functional geometry of human parietofrontal networks for language, space, and number. NeuroImage 23:1192-1202

Bayless SJ (2006) Spatiotemporal analysis of feedback processing during a card sorting task using spatially filtered MEG. Neuroscience Letters 410:31-36

Stern ER (2007) Preparatory neural activity predicts performance on a conflict task. Brain Research 1176:92-102

Carlsson K (2000) Tickling expectations: Neural processing in anticipation of a sensory stimulus. Journal of Cognitive Neuroscience 12:691-703

Elliott R (1997) Differential neural response to positive and negative feedback in planning and guessing tasks. Neuropsychologia 35:1395-1404

Bermpohl F (2006) Attentional modulation of emotional stimulus processing: An fMRI study using emotional expectancy. Human Brain Mapping 27:662-677

Forstmann BU (2008) Neural mechanisms, temporal dynamics, and individual differences in interference control. Journal of Cognitive Neuroscience 20:1854-1865

Sommer M (2008) Emotion-dependent modulation of interference processes: An fMRI study. Acta Neurobiologiae Experimentalis 68:193-203

Wittfoth M (2008) The influence of response conflict on error processing: Evidence from event-related fMRI. Brain Research 1194:118-129

Coull JT (2004) Functional anatomy of the attentional modulation of time estimation. Science 303:1506-1508

Hamann SB (1999) Amygdala activity related to enhanced memory for pleasant and aversive stimuli. Nature Neuroscience 2:289-293

Maddock RJ (2003) Posterior cingulate cortex activation by emotional words: fMRI evidence from a valence decision task. Human Brain Mapping 18:30-41

Canli T (1998) Hemispheric asymmetry for emotional stimuli detected with fMRI. Neuroreport 9:3233-3239

Elliott R (2000) Dissociable neural responses in human reward systems. Journal of Neuroscience 20:6159-6165

Bystritsky A (2001) Functional MRI changes during panic anticipation and imagery exposure. Neuroreport 12:3953-3957

Paradiso S J (1999) Cerebral blood flow changes associated with attribution of emotional valence to pleasant, unpleasant, and neutral visual stimuli in a PET study of normal subjects. American Journal of Psychiatry 156:1618-1629

Gandour J (2003) A cross-linguistic fMRI study of perception of intonation and emotion in Chinese. Human Brain Mapping 18:149-157

Baker SC (1997) The interaction between mood and cognitive function studied with PET. Psychological Medicine 27:565-578

Beauregard M (1998) The functional neuroanatomy of major depression: an fMRI study using an emotional activation paradigm. Neuroreport 9:3253-3258

Damasio AR (2000) Subcortical and cortical brain activity during the feeling of self-generated emotions. Nature Neuroscience 3:1049-1056

Dolan RJ (2000) Dissociable temporal lobe activations during emotional episodic memory retrieval. NeuroImage 11:203-209

Dougherty DD (1999) Anger in healthy men: a PET study using script-driven imagery. Biological Psychiatry 46:466-472

Gemar MC (1996) Effects of self-generated sad mood on regional cerebral activity: a PET study in normal subjects. Depression 4:81-88

George MS (1995) Brain activity during transient sadness and happiness in healthy women. American Journal of Psychiatry 152:341-351

George MS (1996) Gender differences in regional cerebral blood flow during transient self-induced sadness or happiness. Biological Psychiatry 40:859-871

Kosslyn SM (1996) Neural effects of visualizing and perceiving aversive stimuli: a PET investigation. Neuroreport 7:1569-1576

Lane RD (1997) Neuroanatomical correlates of happiness, sadness, and disgust. American Journal of Psychiatry 154:926-933

Lane RD (1997) Neuroanatomical correlates of pleasant and unpleasant emotion. Neuropsychologia 35:1437-1444

Lane RD (1999) Common effects of emotional valence, arousal and attention on neural activation during visual processing of pictures. Neuropsychologia 37:989-997

Lane RD (1997) Neural activation during selective attention to subjective emotional responses. Neuroreport 8:3969-3972

Liberzon I (2000) Limbic activation and psychophysiologic responses to aversive visual stimuli: Interaction with cognitive task. Neuropsychopharmacology 23:508-516

Liotti M (2000) Differential limbic-cortical correlates of sadness and anxiety in healthy subjects: Implications for affective disorders. Biological Psychiatry 48:30-42

Mayberg HS (1999) Reciprocal limbic-cortical function and negative mood: Converging PET findings in depression and normal sadness. American Journal of Psychiatry 156:675-682

Pietrini P (2000) Neural correlates of imaginal aggressive behavior assessed by positron emission tomography in healthy subjects. American Journal of Psychiatry 157:1772-1781

Reiman EM (1997) Neuroanatomical correlates of externally and internally generated human emotion. American Journal of Psychiatry 154:918-925

Teasdale JD (1999) Functional MRI study of the cognitive generation of affect. American Journal of Psychiatry 156:209-215

Royet JP (2000) Emotional responses to pleasant and unpleasant olfactory, visual, and auditory stimuli: A positron emission tomography study. Journal of Neuroscience 20:7752-7759

Simpson JR (2000) The emotional modulation of cognitive processing: an fMRI study. Journal of Cognitive Neuroscience 12:157-170

Taylor SF (1998) The effect of emotional content on visual recognition memory: A PET activation study. NeuroImage 8:188-197

Taylor SF (2000) The effect of graded aversive stimuli on limbic and visual activation. Neuropsychologia 38:1415-1425

Lee GP (2004) Neural substrates of emotion as revealed by functional magnetic resonance imaging. Cognitive Behavioral Neurology 17:9-17

Mitterschiffthaler MT (2003) Neural response to pleasant stimuli in anhedonia: An fMRI study. Neuroreport 14:177-182

Goldin PR (2005) The neural bases of amusement and sadness: A comparison of block contrast and subject-specific emotion intensity regression approaches. NeuroImage 1:26-36

Markowitsch HJ (2003) Engagement of lateral and medial prefrontal areas in the ecphory of sad and happy autobiographical memories. Cortex 39:643-665

Pelletier M (2003) Separate neural circuits for primary emotions? Brain activity during self-induced sadness and happiness in professional actors. Neuroreport 14:1111-1116

Britton JC (2006) Neural correlates of social and nonsocial emotions: An fMRI study. NeuroImage 31:397-409

Drobyshevsky A (2006) A rapid fMRI task battery for mapping of visual, motor, cognitive, and emotional function. NeuroImage 31:732-744

Keedwell PA (2005) A double dissociation of ventromedial prefrontal cortical responses to sad and happy stimuli in depressed and healthy individuals. Biological Psychiatry 58:495-503

Anand A (2005) Activity and connectivity of brain mood regulating circuit in depression: A functional magnetic resonance study. Biological Psychiatry 57:1079-1088

Cato MA (2004) Processing words with emotional connotation: An FMRI study of time course and laterality in rostral frontal and retrosplenial cortices. Journal of Cognitive Neuroscience 16:167-177

Frey S K (2000) Orbitofrontal involvement in the processing of unpleasant auditory information. European Journal of Neuroscience 12:3709-3712

Bartolo A (2006) Humor comprehension and appreciation: An fMRI study. Journal of Cognitive Neuroscience 18:1789-1798

Buchanan TW (2000) Recognition of emotional prosody and verbal components of spoken language: An fMRI study. Cognitive Brain Research 9:227-238

Ethofer T (2006) Effects of prosodic emotional intensity on activation of associative auditory cortex. Neuroreport 17:249-253

Grandjean D (2005) The voices of wrath: Brain responses to angry prosody in meaningless speech. Nature Neuroscience 8:145-146

Kotz SA (2003) On the lateralization of emotional prosody: An event-related functional MR investigation. Brain and Language 86:366-376

Mitchell RLC (2003) The neural response to emotional prosody, as revealed by functional magnetic resonance imaging. Neuropsychologia 41:1410-1421

Ogino Y (2007) Inner experience of pain: Imagination of pain while viewing images showing painful events forms subjective pain representation in human brain. Cerebral Cortex 17:1139-1146

Zald DH (2002) Brain activitiy in ventromedial prefrontal cortex correlates with individual differences in negative affect. Proceedings of the National Academy of Sciences 99:2450-2454

Shapira NA (2003) Brain activation by disgust-inducing pictures in obsessive-compulsive disorder. Biological Psychiatry 54:751-756

Knutson B (2001) Anticipation of increasing monetary reward selectively recruits nucleus accumbens. Journal of Neuroscience 21:1-5

Phan KL (2005) Neural substrates for voluntary suppression of negative affect: A functional magnetic resonance imaging study. Biological Psychiatry 57:210-219

Taylor SF (2003) Subjective rating of emotionally salient stimuli modulates neural activity. NeuroImage 18:650-659

Stark R (2007) Hemodynamic brain correlates of disgust and fear ratings. NeuroImage 37:663-673

Herwig U (2007) Expecting unpleasant stimuli - An fMRI study. Psychiatry Research 154:1-12

Nitschke JB (2004) Orbitofrontal cortex tracks positive mood in mothers viewing pictures of their newborn infants. NeuroImage 21:583-592

Schienle A (2005) Brain activation of spider phobics towards disorder-relevant, generally disgust- and fear-inducing pictures. Neuroscience Letters 388:1-6

Straube T (2007) Waiting for spiders: Brain activation during anticipatory anxiety in spider phobics. NeuroImage 37:1427-1436

Noriuchi M (2008) The functional neuroanatomy of maternal love: Mother's response to infant's attachment behaviors. Biological Psychiatry 63:415-423

Coan JA (2006) Lending a hand: Social regulation of the neural response to threat. Psychological Science 17:1032-1039

Iaria G (2008) Neural activity of the anterior insula in emotional processing depends on the individuals' emotional susceptibility. Human Brain Mapping 29:363-373

Bartels A (2004) The neural correlates of maternal and romantic love. NeuroImage 21:1155-1166

Bartels A (2000) The neural basis of romantic love. Neuroreport 11:3829-3834

Eippert F (2007) Regulation of emotional responses elicited by threat-related stimuli. Human Brain Mapping 28:409-423

Fitzgerald DA (2004) Neural correlates of internally-generated disgust via autobiographical recall: A functional magnetic resonance imaging investigation. Neuroscience Letters 370:91-96

Goldin PR (2008) The neural bases of emotion regulation: Reappraisal and suppression of negative emotion. Biological Psychiatry 63:577-586

Reiss AL (2008) Anomalous hypothalamic responses to humor in cataplexy. PLoS ONE 3:2225

Dolcos F (2004) Dissociable effects of arousal and valence on prefrontal activity indexing emotional evaluation and subsequent memory: An event-related fMRI study. NeuroImage 23:64-74

Garrett AS (2006) Separating subjective emotion from the perception of emotion-inducing stimuli: An fMRI study. NeuroImage 33:263-274

Mathews A (2004) Individual differences in the modulation of fear-related brain activation by attentional control. Journal of Cognitive Neuroscience 16:1683-1694

Wrase J (2003) Gender differences in the processing of standardized emotional visual stimuli in humans: A functional magnetic resonance imaging study. Neuroscience Letters 348:41-45

Bermpohl F (2006) Attentional modulation of emotional stimulus processing: An fMRI study using emotional expectancy. Human Brain Mapping 27:662-677

Junghofer M (2006) Fleeting images: Rapid affect discrimination in the visual cortex. Neuroreport 17:225-229

Najib A (2004) Regional brain activity in women grieving a romantic relationship breakup. American Journal of Psychiatry 161:2245-2256

Ranote S E (2004) The neural basis of maternal responsiveness to infants: An fMRI study. Neuroreport 15:1825-1829

Stark R (2005) Erotic and disgust-inducing pictures--Differences in the hemodynamic responses of the brain. Biological Psychology 70:19-29

Butler T (2007) Human fear-related motor neurocircuitry. Neuroscience 150:1-7

Malhi GS (2004) Cognitive generation of affect in bipolar depression: An fMRI study. European Journal of Neuroscience 19:741-754

Sanjuan J (2007) Emotional words induce enhanced brain activity in schizophrenic patients with auditory hallucinations. Psychiatry Research 154:21-29

Wicker B (2003) Both of us disgusted in my insula: the common neural basis of seeing and feeling disgust. Neuron 40:655-664

Sabatinelli D (2007) Pleasure rather than salience activates human nucleus accumbens and medial prefrontal cortex. Journal of Neurophysiology 98:1374-1379

Herpertz SC (2008) Emotional processing in male adolescents with childhood-onset conduct disorder. Journal of Child Psychology and Psychiatry 49:781-791

Hariri AR (2000) Modulating emotional responses: effects of a neocortical network on the limbic system. Neuroreport 11:43-46

Abel KM (2003) Ketamine alters neural processing of facial emotion recognition in healthy men: an fMRI study. Neuroreport 14:387-391

Gorno-Tempini ML (2001) Explicit and incidental facial expression processing: an fMRI study. NeuroImage 14:465-473

Kesler-West ML (2001) Neural substrates of facial emotion processing using fMRI. Cognitive Brain Research 11:213-226

Wright C, I (2002) Enhanced amygdala responses to emotional versus neutral schematic facial expressions. Neuroreport 13:785-790

Blair RJ (1999) Dissociable neural responses to facial expressions of sadness and anger. Brain 122:883-893

Breiter HC (1996) Response and habituation of the human amygdala during visual processing of facial expression. Neuron 17:875-887

Kimbrell TA (1999) Regional brain activity during transient self-induced anxiety and anger in healthy adults. Biological Psychiatry 46:454-465

Morris JS (1998) A neuromodulatory role for the human amygdala in processing emotional facial expressions. Brain 121:47-57

Morris JS (1999) Saying it with feeling: neural responses to emotional vocalizations. Neuropsychologia 37:1155-1163

Morris JS (1996) A differential neural response in the human amygdala to fearful and happy facial expressions. Nature 383:812-815

Nakamura K (1999) Activation of the right inferior frontal cortex during assessment of facial emotion. Journal of Neurophysiology 82:1610-1614

Phillips ML (1997) A specific neural substrate for perceiving facial expressions of disgust. Nature 389:495-498

Phillips ML (1998) Neural responses to facial and vocal expressions of fear and disgust. Proceedings of the Royal Society of London. Series B.Biological Sciences 265:1809-1817

Phillips ML (1998) Investigation of facial recognition memory and happy and sad facial expression perception: An fMRI study. Psychiatry Research 83:127-138

Sprengelmeyer R (1998) Neural structures associated with recognition of facial expressions of basic emotion. Proceedings of the Royal Society of London. Series B. Biological Sciences 265:1927-1931

Whalen PJ (1998) Masked presentations of emotional facial expressions modulate amygdala activity without explicit knowledge. Journal of Neuroscience 18:411-418

George MS (1993) Brain regions involved in recognizing facial emotion or identity: An oxygen-15 PET study. Journal of Neuropsychiatry and Clinical Neuroscience 5:384-394

Hall GBC (2004) Sex differences in functional activation patterns revealed by increased emotion processing demands. Neuroreport 15:219-223

Habel U (2005) Same or different? Neural correlates of happy and sad mood in healthy males. NeuroImage 15:206-214

Winston JS (2003) Common and distinct neural responses during direct and incidental processing of multiple facial emotions. NeuroImage 20:84-97

Critchley HD (2000) Explicit and implicit neural mechanisms for processing of social information from facial expressions: A functional magnetic resonance imaging study. Human Brain Mapping 9:93-105

Dolan RJ (1996) Neural activation during covert processing of positive emotional facial expressions. NeuroImage 4:194-200

Wang AT (2004) Neural correlates of facial affect processing in children and adolescents with autism spectrum disorder. Journal of the American Academy of Child and Adolescent Psychiatry 43:481-490

Habel U (2007) Amygdala activation and facial expressions: Explicit emotion discrimination versus implicit emotion processing. Neuropsychologia 45:2369-2377

Malhi GS (2007) Is a lack of disgust something to fear? A functional magnetic resonance imaging facial emotion recognition study in euthymic bipolar disorder patients. Bipolar Disorders 9:345-357

Williams LM (2001) Arousal dissociates amygdala and hippocampal fear responses: evidence from simultaneous fMRI and skin conductance recording. NeuroImage 14:1070-1079

Vuilleumier P (2001) Effects of attention and emotion on face processing in the human brain: An event-related fMRI study. Neuron 30:829-841

Deeley Q (2007) An event related functional magnetic resonance imaging study of facial emotion processing in Asperger syndrome. Biological Psychiatry 62:207-217

Deeley Q (2006) Facial emotion processing in criminal psychopathy: Preliminary functional magnetic resonance imaging study. British Journal of Psychiatry 189:533-539

Britton JC (2006) Facial expressions and complex IAPS pictures: Common and differential networks. NeuroImage 31:906-919

Lennox BR (2004) Behavioural and neurocognitive responses to sad facial affect are attenuated in patients with mania. Psychological Medicine 34:795-802

Holt DJ (2006) Increased medial temporal lobe activation during the passive viewing of emotional and neutral facial expressions in schizophrenia. Schizophrenia Research 82:153-162

Jogia J (2008) Pilot investigation of the changes in cortical activation during facial affect recognition with lamotrigine monotherapy in bipolar disorder. British Journal of Psychiatry 192:197-201

Phillips ML (2004) Differential neural responses to overt and covert presentations of facial expressions of fear and disgust. NeuroImage 21:1484-1496

Altshuler LL (2008) Regional brain changes in bipolar depression: A functional magnetic resonance imaging study. Bipolar Disorders 10:708-717

Keightley ML (2007) Age-related differences in brain activity underlying identification of emotional expressions in faces. Social Cognitive and Affective Neuroscience 2:292-302

Gu X (2007) Attention and reality constraints on the neural processes of empathy for pain. NeuroImage 36:256-267

Ogino Y (2007) Inner experience of pain: Imagination of pain while viewing images showing painful events forms subjective pain representation in human brain. Cerebral Cortex 17:1139-1146

Singer T (2004) Empathy for pain involves the affective but not sensory aspects of pain. Science 303:1157-1162

Moriguchi Y (2007) Empathy and judging other's pain: An fMRI study of alexithymia. Cerebral Cortex 17:2223-2234

Jackson PL (2006) Empathy examined through the neural mechanisms involved in imagining how I feel versus how you feel pain. Neuropsychologia 44:752-761

Botvinick MM (2005) Viewing facial expressions of pain engages cortical areas involved in the direct experience of pain. NeuroImage 25:312-319

Jackson PL (2005) How do we perceive the pain of others? A window into the neural processes involved in empathy. NeuroImage 24:771-779

Saarela M, V (2007) The compassionate brain: Humans detect intensity of pain from another's face. Cerebral Cortex 17:230-237

Cheng Y (2007) Expertise modulates the perception of pain in others. Current Biology 17:1708-1713

Binder JR (1996) Function of the left planum temporale in auditory and linguistic processing. Brain 119:1239-1247

Buckner RL (2000) Functional MRI evidence for a role of frontal and inferior temporal cortex in amodal components of priming. Brain 123:620-640

Duzel E P (2001) Comparative electrophysiological and hemodynamic measures of neural activation during memory-retrieval. Human Brain Mapping 13:104-123

Duzel E C (1999) Task-related and item-related brain processes of memory retrieval. Proceedings of the National Academy of Sciences 96:1794-1799

Kiehl KA (2002) Reading anomalous sentences: An event-related fMRI study of semantic processing. NeuroImage 17:842-850

Dehaene S N (2001) Cerebral mechanisms of word masking and unconscious repetition priming. Nature Neuroscience 4:752-758

Le CG (2000) Distinct cortical areas for names of numbers and body parts independent of language and input modality. NeuroImage 12:381-391

Skosnik PD (2002) Neural correlates of artificial grammar learning. NeuroImage 17:1306-1314

Belin P (2000) Voice-selective areas in human auditory cortex. Nature 403:309-311

Binder JR (2000) Human temporal lobe activation by speech and nonspeech sounds. Cerebral Cortex 10:512-528

Calvert GA (2003) Reading speech from still and moving faces: The neural substrates of visible speech. Journal of Cognitive Neuroscience 15:57-70

Grady CL (1998) Neural correlates of the episodic encoding of pictures and words. Proceedings of the National Academy of Sciences 95:2703-2708

Kuperberg GR (2000) Common and distinct neural substrates for pragmatic, semantic, and syntactic processing of spoken sentences: An fMRI study. Journal of Cognitive Neuroscience 12:321-341

Poldrack RA (1999) Functional specialization for semantic and phonological processing in the left inferior prefrontal cortex. NeuroImage 10:15-35

Roskies AL (2001) Task-dependent modulation of regions in the left inferior frontal cortex during semantic processing. Journal of Cognitive Neuroscience 13:829-843

Shaywitz BA (1995) Localization of semantic processing using functional magnetic resonance imaging. Human Brain Mapping 2:149-158

Noppeney U (2002) A PET study of stimulus- and task-induced semantic processing. NeuroImage 15:927-935

Phillips JA (2002) Can segregation within the semantic system account for category-specific deficits? Brain 125:2067-2080

de ZG, I (2001) The semantic interference effect in the picture-word paradigm: An event-related fMRI study employing overt responses. Human Brain Mapping 14:218-227

Petersen SE (1988) Positron emission tomographic studies of the cortical anatomy of single-word processing. Nature 331:585-589

Hagoort P (1999) The neural circuitry involved in the reading of German words and pseudowords: A PET study. Journal of Cognitive Neuroscience 11:383-398

Herbster AN (1997) Regional cerebral blood flow during word and nonword reading. Human Brain Mapping 5:84-92

O'Leary DS (2002) Effects of smoking marijuana on brain perfusion and cognition. Neuropsychopharmacology 26:802-816

O'Leary DS (2000) Acute marijuana effects on rCBF and cognition: A PET study. Neuroreport 11:3835-3841

Thierry G (2003) Demand on verbal working memory delays haemodynamic response in the inferior prefrontal cortex. Human Brain Mapping 19:37-46

Devlin JT (2003) Semantic processing in the left inferior prefrontal cortex: A combined functional magnetic resonance imaging and transcranial magnetic stimulation study. Journal of Cognitive Neuroscience 15:71-84

Kang AM (1999) An event-related fMRI study of implicit phrase-level syntactic and semantic processing. NeuroImage 10:555-561

Lurito JT (2000) Comparison of rhyming and word generation with FMRI. Human Brain Mapping 10:99-106

Muller RA (1997) Receptive and expressive language activations for sentences: A PET study. Neuroreport 8:3767-3770

Curtis VA (1998) Attenuated frontal activation during a verbal fluency task in patients with schizophrenia. American Journal of Psychiatry 155:1056-1063

De Nil LF (2003) A positron emission tomography study of short and long term treatment effects on functional brain activation in adults who stutter. Journal of Fluency Disorders 28:357-380

Friston KJ (1995) Analysis of fMRI time-series revisited. NeuroImage 2:45-53

Remy F (2003) Pain modulates cerebral activity during cognitive performance. NeuroImage 19:655-664

Stippich C (2003) Robust localization and lateralization of human language function: An optimized clinical functional magnetic resonance imaging protocol. Neuroscience Letters 346:109-113

Brammer MJ (1997) Generic brain activation mapping in functional magnetic resonance imaging: a nonparametric approach. Magnetic Resonance Imaging 15:763-770

Curtis VA (1999) Attenuated frontal activation in schizophrenia may be task dependent. Schizophrenia Research 37:35-44

Demonet JF (1992) The anatomy of phonological and semantic processing in normal subjects. Brain 115:1753-1768

Demonet JF (1994) A PET study of cognitive strategies in normal subjects during language tasks. Influence of phonetic ambiguity and sequence processing on phoneme monitoring. Brain 117:671-682

Frith CD (1991) Willed action and the prefrontal cortex in man: a study with PET. Proceedings of the Royal Society of London. Series B. Biological Sciences 244:241-246

Kuo WJ (2001) A left-lateralized network for reading Chinese words: a 3T fMRI study. Neuroreport 12:3997-4001

Schlosser R (1998) Functional magnetic resonance imaging of human brain activity in a verbal fluency task. Journal of Neurology, Neurosurgery, and Psychiatry 64:492-498

Howard D (1992) The cortical localization of the lexicons: Positron emission tomography evidence. Brain 115:1769-1782

Price CJ (1994) Brain activity during reading: The effects of exposure duration and task. Brain 117:1255-1269

Price CJ (1996) Hearing and saying: The functional neuro-anatomy of auditory word processing. Brain 119:919-931

Zurowski B (2002) Dissociating a common working memory network from different neural substrates of phonological and spatial stimulus processing. NeuroImage 15:45-57

Okada G (2003) Attenuated left prefrontal activation during a verbal fluency task in patients with depression. Neuropsychobiology 47:21-26

De Nil LF (2000) A positron emission tomography study of silent and oral single word reading in stuttering and nonstuttering adults. Journal of Speech, Language, and Hearing Research 43:1038-1053

Chao LL (2002) Experience-dependent modulation of category-related cortical activity. Cerebral Cortex 12:545-551

Chao LL (2000) Representation of manipulable man-made objects in the dorsal stream. NeuroImage 12:478-484

Martin A (1996) Neural correlates of category-specific knowledge. Nature 379:649-652

Price CJ (2003) Cortical localisation of the visual and auditory word form areas: A reconsideration of the evidence. Brain and Language 86:272-286

Price CJ (1996) The neural regions sustaining object recognition and naming. Proceedings of the Royal Society of London. Series B. Biological Sciences 263:1501-1507

Renvall K (2003) Naming multiple objects: neural correlates as measured by positron emission tomography. Applied Neuropsychology 10:224-233

Smith CD (2001) Differences in functional magnetic resonance imaging activation by category in a visual confrontation naming task. Journal of Neuroimaging 11:165-170

Thompson-Schill SL (1999) A neural basis for category and modality specificity of semantic knowledge. Neuropsychologia 37:671-676

Tyler LK (2004) Processing objects at different levels of specificity. Journal of Cognitive Neuroscience 16:351-362

Vandenberghe R (1996) Functional anatomy of a common semantic system for words and pictures. Nature 383:254-256

Vingerhoets G (2003) Multilingualism: An fMRI study. NeuroImage 20:2181-2196

Zelkowicz BJ (1998) An examination of regional cerebral blood flow during object naming tasks. Journal of the International Neuropsychological Society 4:160-166

Maguire EA (2004) The brain network associated with acquiring semantic knowledge. NeuroImage 22:171-178

Booth JR (2004) Development of brain mechanisms for processing orthographic and phonologic representations. Journal of Cognitive Neuroscience 16:1234-1249

Damasio H (1996) A neural basis for lexical retrieval. Nature 380:499-505

Moore CJ (1999) Three distinct ventral occiptotemporal regions for reading and object naming. NeuroImage 10:181-192

Poeppel D (2004) Auditory lexical decision, categorical perception, and FM direction discrimination differentially engage left and right auditory cortex. Neuropsychologia 42:183-200

Votaw JR (1999) A confrontational naming task produces congruent increases and decreases in PET and fMRI. NeuroImage 10:347-356

Vouloumanos A (2001) Detection of sounds in the auditory stream: Event-related fMRI evidence for differential activation to speech and nonspeech. Journal of Cognitive Neuroscience 13:994-1005

Binder JR (2003) Neural correlates of lexical access during visual word recognition. Journal of Cognitive Neuroscience 15:372-393

Cohen LG (2003) Visual word recognition in the left and right hemispheres: Anatomical and functional correlates of peripheral alexias. Cerebral Cortex 13:1313-1333

Fiebach CJ (2002) fMRI evidence for dual routes to the mental lexicon in visual word recognition. Journal of Cognitive Neuroscience 14:11-23

Petersen SE (1989) Positron emission tomographic studies of the processing of single words. Journal of Cognitive Neuroscience 1:153-170

Petersen SE (1990) Activation of extrastriate and frontal cortical areas by visual words and word-like stimuli. Science 249:1041-1044

Poldrack RA (2001) Relations between the neural bases of dynamic auditory processing and phonological processing: Evidence from fMRI. Journal of Cognitive Neuroscience 13:687-697

Price CJ (1997) Segregating semantic from phonological processes during reading. Journal of Cognitive Neuroscience 9:727-733

Siok WT (2004) Biological abnormality of impaired reading is constrained by culture. Nature 431:71-76

Calarge C (2003) Visualizing how one brain understands another: A PET study of theory of mind. American Journal of Psychiatry 160:1954-1964

Henke K (1999) Human hippocampus associates information in memory. Proceedings of the National Academy of Sciences 96:5884-5889

Peck KK (2004) Comparison of baseline conditions to investigate syntactic production using functional magnetic resonance imaging. NeuroImage 23:104-110

Riecker A (2000) Opposite hemispheric lateralization effects during speaking and singing at motor cortex, insula and cerebellum. Neuroreport 11:1997-2000

Drobyshevsky A (2006) A rapid fMRI task battery for mapping of visual, motor, cognitive, and emotional function. NeuroImage 31:732-744

Hamzei F (2003) The human action recognition system and its relationship to Broca's area: An fMRI study. NeuroImage 19:637-644

Rowan A (2004) Cortical lateralization during verb generation: A combined ERP and fMRI study. NeuroImage 22:665-675

Saccuman MC (2006) The impact of semantic reference on word class: An fMRI study of action and object naming. NeuroImage 32:1865-1878

Kumari V (2003) Neural abnormalities during cognitive generation of affect in treatment-resistant depression. Biological Psychiatry 54:771-791

Mo L (2005) Brain activation during semantic judgment of Chinese sentences: A functional MRI study. Human Brain Mapping 24:305-312

Poldrack RA (2001) Characterizing the neural mechanisms of skill learning and repetition priming: Evidence from mirror reading. Brain 124:67-82

Poldrack RA (1998) The neural basis of visual skill learning: An fMRI study of mirror reading. Cerebral Cortex 8:1-10

Martin A (1995) Discrete cortical regions associated with knowledge of color and knowledge of action. Science 270:102-105

Paulesu E G (1997) Functional heterogeneity of left inferior frontal cortex as revealed by fMRI. Neuroreport 8:2011-2016

Pihlajamaki M (2000) Verbal fluency activates the left medial temporal lobe: A functional magnetic resonance imaging study. Annals of Neurology 47:470-476

Shapiro KA (2006) Cortical signatures of noun and verb production. Proceedings of the National Academy of Sciences 103:1644-1649

Tranel D (2005) Effects of noun-verb homonymy on the neural correlates of naming concrete entities and actions. Brain and Language 92:288-299

Vitali P (2005) Generating animal and tool names: An fMRI study of effective connectivity. Brain and Language 93:32-45

Gurd JM (2002) Posterior parietal cortex is implicated in continuous switching between verbal fluency tasks: An fMRI study with clinical implications. Brain 125:1024-1038

Katzir T (2005) Imaging phonology without print: Assessing the neural correlates of phonemic awareness using fMRI. NeuroImage 27:106-115

Kemeny S Y (2005) Comparison of continuous overt speech fMRI using BOLD and arterial spin labeling. Human Brain Mapping 24:173-183

Voets NL (2006) Distinct right frontal lobe activation in language processing following left hemisphere injury. Brain 129:754-766

Mummery CJ (1996) Generating 'tiger' as an animal name or a word beginning with T: Differences in brain activation. Proceedings of the Royal Society of London. Series B. Biological Sciences 263:989-995

Audenaert K (2000) Verbal fluency as a prefrontal activation probe: A validation study using 99m Tc-ECD brain SPET. European Journal of Nuclear Medicine 27:1800-1808

Fu CHY (2005) Effects of psychotic state and task demand on prefrontal function in schizophrenia: An fMRI study of overt verbal fluency. American Journal of Psychiatry 162:485-494

Fu CHY (2002) A functional magnetic resonance imaging study of overt letter verbal fluency using a clustered acquisition sequence: Greater anterior cingulate activation with increased task demand. NeuroImage 17:871-879

Allen PP (2006) Effect of acute tryptophan depletion on pre-frontal engagement. Psychopharmacology 187:486-497

Kotz SA (2003) On the lateralization of emotional prosody: An event-related functional MR investigation. Brain and Language 86:366-376

Smith CD (2002) Women at risk for AD show increased parietal activation during a fluency task. Neurology 58:1197-1202

Jardri R (2007) Self awareness and speech processing: An fMRI study. NeuroImage 35:1645-1653

Ravnkilde B (2002) Putative tests of frontal lobe function: A PET-study of brain activation during Stroop's test and verbal fluency. Journal of Clinical and Experimental Neuropsychology 24:534-547

Jobard G (2007) Impact of modality and linguistic complexity during reading and listening tasks. NeuroImage 34:784-800

Frankenstein UN (2001) Distraction modulates anterior cingulate gyrus activations during the cold pressor test. NeuroImage 14:827-836

Dick F (2007) What is involved and what is necessary for complex linguistic and nonlinguistic auditory processing: Evidence from functional magnetic resonance imaging and lesion data. Journal of Cognitive Neuroscience 19:799-816

Seghier ML (2008) Group analysis and the subject factor in the functional magnetic resonance imaging: Analysis of fifty right-handed healthy subjects in a semantic language task. Human Brain Mapping 29:461-477

Meschyan G (2006) Impact of language proficiency and orthographic transparency on bilingual word reading: An fMRI investigation. NeuroImage 29:1135-1140

Perani D (1996) Brain processing of native and foreign language. Neuroreport 7:2439-2444

Eddington KM (2007) Neural correlates of promotion and prevention goal activation: An fMRI study using an idiographic approach. Journal of Cognitive Neuroscience 19:1152-1162

Liu Y (2007) Evidence for neural accommodation to a writing system following learning. Human Brain Mapping 28:1223-1234

Thompson CK (2007) Neural correlates of verb argument structure processing. Journal of Cognitive Neuroscience 19:1753-1767

Ilg R (2007) Neural processes underlying intuitive coherence judgments as revealed by fMRI on a semantic judgment task. NeuroImage 38:228-238

Shibata M (2007) Neural mechanisms involved in the comprehension of metaphoric and literal sentences: An fMRI study. Brain Research 1166:92-102

Prince SE (2005) Neural correlates of relational memory: Successful encoding and retrieval of semantic and perceptual associations. Journal of Neuroscience 25:1203-1210

Haller S R (2005) Overt sentence production in event-related fMRI. Neuropsychologia 43:807-814

Grossman M (2003) Neural basis for semantic memory difficulty in Alzheimer's disease: An fMRI study. Brain 126:292-311

Klein D (2001) A cross-linguistic PET study of tone perception in Mandarin Chinese and English speakers. NeuroImage 13:646-653

Booth JR (2002) Modality independence of word comprehension. Human Brain Mapping 16:251-261

Simon O (2002) Topographical layout of hand, eye, calculation, and language-related areas in the human parietal lobe. Neuron 33:475-487

Meyer ME (2002) FMRI reveals brain regions mediating slow prosodic modulations in spoken sentences. Human Brain Mapping 17:73-88

Mechelli A (2000) The effects of presentation rate during word and pseudoword reading: a comparison of PET and fMRI. Journal of Cognitive Neuroscience 12 Supplement 2:145-156

Dapretto M (1999) Form and content: Dissociating syntax and semantics in sentence comprehension. Neuron 24:427-432

Gandour J (2003) A cross-linguistic fMRI study of perception of intonation and emotion in Chinese. Human Brain Mapping 18:149-157

Beauregard M (1997) The neural substrate for concrete, abstract, and emotional word lexica: A positron emission tomography study. Journal of Cognitive Neuroscience 9:441-461

Fiez JA (1996) A positron emission tomography study of the short-term maintenance of verbal information. Journal of Neuroscience 16:808-822

Zald DH (2002) Neural correlates of tasting concentrated quinine and sugar solutions. Journal of Neurophysiology 87:1068-1075

de A, I (2003) Representation of umami taste in the human brain. Journal of Neurophysiology 90:313-319

de A, I (2003) Taste-olfactory convergence, and the representation of the pleasantness of flavour, in the human brain. European Journal of Neuroscience 18:2059-2068

Zald DH (1998) Aversive gustatory stimulation activates limbic circuits in humans. Brain 121:1143-1154

Berns GS (2001) Predictability modulates human brain response to reward. Journal of Neuroscience 21:2793-2798

Schoenfeld MA (2004) Functional magnetic resonance tomography correlates of taste perception in the human primary taste cortex. Neuroscience 127:347-353

Haase L (2007) On-line psychophysical data acquisition and event-related fMRI protocol optimized for the investigation of brain activation in response to gustatory stimuli. Journal of Neuroscience Methods 159:98-107

Francis ST (1999) The representation of pleasant touch in the brain and its relationship with taste and olfactory areas. Neuroreport 10:453-459

de A, I (2004) Representation in the human brain of food texture and oral fat. Journal of Neuroscience 24:3086-3093

Kobayashi M (2004) Functional imaging of gustatory perception and imagery: "Top-down" processing of gustatory signals. NeuroImage 23:1271-1282

O'Doherty J (2001) Representation of pleasant and aversive taste in the human brain. Journal of Neurophysiology 85:1315-1321

Ogawa H (2005) Functional MRI detection of activation in the primary gustatory cortices in humans. Chemical Senses 30:583-592

Small DM (2003) Dissociation of neural representation of intensity and affective valuation in human gustation. Neuron 39:701-711

Arnow BA (2002) Brain activation and sexual arousal in healthy, heterosexual males. Brain 125:1014-1023

Athwal BS (2001) Brain responses to changes in bladder volume and urge to void in healthy men. Brain 124:369-377

Brannan SK (2001) Neuroimaging of cerebral activations and deactivations associated with hypercapnia and hunger for air. Proceedings of the National Academy of Sciences 98:2029-2034

Liotti M (2001) Brain responses associated with consciousness of breathlessness (air hunger). Proceedings of the National Academy of Sciences 98:2035-2040

Parsons LM (2001) Neuroimaging evidence implicating cerebellum in the experience of hypercapnia and hunger for air. Proceedings of the National Academy of Sciences 98:2041-2046

Beauregard M (2001) Neural correlates of conscious self-regulation of emotion. Journal of Neuroscience 21:1-6

Karama S L (2002) Areas of brain activation in males and females during viewing of erotic film excerpts. Human Brain Mapping 16:1-13

Rauch SL (1999) Neural activation during sexual and competitive arousal in healthy men. Psychiatry Research 91:1-10

Redoute J (2000) Brain processing of visual sexual stimuli in human males. Human Brain Mapping 11:162-177

Nunneley SA (2002) Changes in regional cerebral metabolism during systemic hyperthermia in humans. Journal of Applied Physiology 92:846-851

Britton JC (2006) Neural correlates of social and nonsocial emotions: An fMRI study. NeuroImage 31:397-409

Desseilles M (2006) A prominent role for amygdaloid complexes in the Variability in Heart Rate (VHR) during Rapid Eye Movement (REM) sleep relative to wakefulness. NeuroImage 32:1008-1015

Porubska K (2006) Subjective feeling of appetite modulates brain activity: An fMRI study. NeuroImage 32:1273-1280

Smeets PAM (2006) Effect of satiety on brain activation during chocolate tasting in men and women. American Journal of Clinical Nutrition 83:1297-1305

Uher R (2006) Cerebral processing of food-related stimuli: Effects of fasting and gender. Behavioural Brain Research 169:111-119

Blok BFM (1997) A PET study on brain control of micturition in humans. Brain 120:111-121

Blok BFM (1998) Brain activation during micturition in women. Brain 121:2033-2042

Wu J (1999) Prediction of antidepressant effects of sleep deprivation by metabolic rates in the ventral anterior cingulate and medial prefrontal cortex. American Journal of Psychiatry 156:1149-1158

de A, I (2003) Human cortical responses to water in the mouth, and the effects of thirst. Journal of Neurophysiology 90:1865-1876

Denton D (1999) Correlation of regional cerebral blood flow and change of plasma sodium concentration during genesis and satiation of thirst. Proceedings of the National Academy of Sciences 96:2532-2537

Egan GF (2003) Neural correlates of the emergence of consciousness of thirst. Proceedings of the National Academy of Sciences 100:15241-15246

Fukuyama H (1996) Neural control of micturition in man examined with single photon emission computed tomography using 99mTc-HMPAO. Neuroreport 7:3009-3012

Kuhtz-Buschbeck JP (2005) Cortical representation of the urge to void: A functional magnetic resonance imaging study. Journal of Urology 174:1477-1481

Matsuura S K (2002) Human brain region response to distention or cold stimulation of the bladder: A positron emission tomography study. Journal of Urology 168:2035-2039

Nour S S (2000) Cerebral activation during micturition in normal men. Brain 123:781-789

Seseke S B (2006) Voluntary pelvic floor muscle control - An fMRI study. NeuroImage 31:1399-1407

Denton D (1999) Neuroimaging of genesis and satiation of thirst and an interoceptor-driven theory of origins of primary consciousness. Proceedings of the National Academy of Sciences 96:5304-5309

Farrell MJ (2006) Unique, common, and interacting cortical correlates of thirst and pain. Proceedings of the National Academy of Sciences 103:2416-2421

Yin Y (2006) Cerebral activation during withholding urine with full bladder in healthy men using 99mTc-HMPAO SPECT. Journal of Nuclear Medicine 47:1093-1098

Killgore WDS (2003) Cortical and limbic activation during viewing of high- versus low-calorie foods. NeuroImage 19:1381-1394

Tataranni PA (1999) Neuroanatomical correlates of hunger and satiation in humans using positron emission tomography. Proceedings of the National Academy of Sciences 96:4569-4574

Safron A (2007) Neural correlates of sexual arousal in homosexual and heterosexual men. Behavioral Neuroscience 121:237-248

Ferretti A (2005) Dynamics of male sexual arousal: Distinct components of brain activation revealed by fMRI. NeuroImage 26:1086-1096

Mehnert U (2008) Brain activation in response to bladder filling and simultaneous stimulation of the dorsal clitoral nerve--An fMRI study in healthy women. NeuroImage 41:682-689

Kim SW (2006) Brain activation by visual erotic stimuli in healthy middle aged males. International Journal of Impotence Research 18:452-457

Lowell SY (2008) Sensory stimulation activates both motor and sensory components of the swallowing system. NeuroImage 42:285-295

Miyagawa Y (2007) Differential brain processing of audiovisual sexual stimuli in men: Comparative positron emission tomography study of the initiation and maintenance of penile erection during sexual arousal. NeuroImage 36:830-842

Ponseti J (2006) A functional endophenotype for sexual orientation in humans. NeuroImage 33:825-833

Stark R (2005) Erotic and disgust-inducing pictures--Differences in the hemodynamic responses of the brain. Biological Psychology 70:19-29

Stoleru S G (1999) Neuroanatomical correlates of visually evoked sexual arousal in human males. Archives of Sexual Behavior 28:1-21

Tsujimura A (2006) Brain processing of audiovisual sexual stimuli inducing penile erection: A positron emission tomography study. Journal of Urology 176:679-683

McKay LC (2008) A bilateral cortico-bulbar network associated with breath holding in humans, determined by functional magnetic resonance imaging. NeuroImage 40:1824-1832
Moulier V (2006) Neuroanatomical correlates of penile erection evoked by photographic stimuli in human males. NeuroImage 33:689-699

Anderson ND (2000) The effects of divided attention on encoding- and retrieval-related brain activity: A PET study of younger and older adults. Journal of Cognitive Neuroscience 12:775-792

Buckner RL (1998) Functional-anatomical study of episodic retrieval using fMRI I. Retrieval effort versus retrieval success. NeuroImage 7:151-162

Cabeza R (2002) Similarities and differences in the neural correlates of episodic memory retrieval and working memory. NeuroImage 16:317-330

Duzel E P (2001) Comparative electrophysiological and hemodynamic measures of neural activation during memory-retrieval. Human Brain Mapping 13:104-123

Duzel E C (1999) Task-related and item-related brain processes of memory retrieval. Proceedings of the National Academy of Sciences 96:1794-1799

Halsband U (1998) Encoding and retrieval in declarative learning: A positron emission tomography study. Behavioural Brain Research 97:69-78

Herath P (2001) Visual recognition: Evidence for two distinctive mechanisms from a PET study. Human Brain Mapping 12:110-119

Lee TMC (2002) Lie detection by functional magnetic resonance imaging. Human Brain Mapping 15:157-164

Leveroni CL (2000) Neural systems underlying the recognition of familiar and newly learned faces. Journal of Neuroscience 20:878-886

Nyberg L (1996) Network analysis of positron emission tomography regional cerebral blood flow data: Ensemble inhibition during episodic memory retrieval. Journal of Neuroscience 16:3753-3759

Tsukiura T (2002) Medial temporal lobe activation during context-dependent relational processes in episodic retrieval: An fMRI study. Human Brain Mapping 17:203-213

Grady CL (2001) An examination of the effects of stimulus type, encoding task, and functional connectivity on the role of right prefrontal cortex in recognition memory. NeuroImage 14:556-571

Lepage M (2001) Transperceptual encoding and retrieval processes in memory: a PET study of visual and haptic objects. NeuroImage 14:572-584

Nyberg L (1996) General and specific brain regions involved in encoding and retrieval of events: What, where, and when. Proceedings of the National Academy of Sciences 93:11280-11285

Squire LR (1992) Activation of the hippocampus in normal humans: A functional anatomical study of memory. Proceedings of the National Academy of Sciences 89:1837-1841

Mencl WE (2000) Network analysis of brain activations in working memory: Behavior and age relationships. Microscopy Research and Technique 51:64-74

Andreasen NC (2003) The cerebellum plays a role in conscious episodic memory retrieval. Human Brain Mapping 8:226-234

Crespo-Facorro B (2001) Neural basis of novel and well-learned recognition memory in schizophrenia: A positron emission tomography study. Human Brain Mapping 12:219-231

Eldridge LL (2000) Remembering episodes: A selective role for the hippocampus during retrieval. Nature Neuroscience 3:1149-1152

Sugiura M (2001) Activation reduction in anterior temporal cortices during repeated recognition of faces of personal acquaintances. NeuroImage 13:877-890

Herrmann M (2001) Control of semantic interference in episodic memory retrieval is associated with an anterior cingulate-prefrontal activation pattern. Human Brain Mapping 13:94-103

Paller KA (2003) Neural correlates of person recognition. Learning & Memory 10:253-260

Miller MB (2002) Extensive individual differences in brain activations associated with episodic retrieval are reliable over time. Journal of Cognitive Neuroscience 14:1200-1214

Braver TS (2001) Direct comparison of prefrontal cortex regions engaged by working and long-term memory tasks. NeuroImage 14:48-59

Cansino S M (2002) Brain activity underlying encoding and retrieval of source memory. Cerebral Cortex 12:1048-1056

Suzuki M (2002) Neural basis of temporal context memory: A functional MRI study. NeuroImage 17:1790-1796

Zysset S M (2001) Retrieval of long and short lists from long term memory: A functional magnetic resonance imaging study with human subjects. Neuroscience Letters 314:1-4

Cabeza R (2003) Lateralization of prefrontal activity during episodic memory retrieval: Evidence for the production-monitoring hypothesis. Journal of Cognitive Neuroscience 15:249-259

Jackson IO (2004) Encoding activity in anterior medial temporal lobe supports subsequent associative recognition. NeuroImage 21:456-462

van TM (2003) Modulation of neural activity during object naming: Effects of time and practice. Cerebral Cortex 13:381-391

Cabeza R (2003) Attention-related activity during episodic memory retrieval: A cross-function fMRI study. Neuropsychologia 41:390-399

Ragland JD (1998) Frontotemporal cerebral blood flow change during executive and declarative memory tasks in schizophrenia: A positron emission tomography study. Neuropsychology 12:399-413

Daselaar SM (2001) Parahippocampal activation during successful recognition of words: A self-paced event-related fMRI study. NeuroImage 13:1113-1120

Ino T (2004) Neural substrates of the performance of an auditory verbal memory: Between-subjects analysis by fMRI. Brain Research Bulletin 64:115-126

Mottaghy FM (1999) Neuronal correlates of encoding and retrieval in episodic memory during a paired-word association learning task: A functional magnetic resonance imaging study. Experimental Brain Research 128:332-342

Sperling RA (2003) Putting names to faces: Successful encoding of associative memories activates the anterior hippocampal formation. NeuroImage 20:1400-1410

Bonner-Jackson A (2005) The influence of encoding strategy on episodic memory and cortical activity in schizophrenia. Biological Psychiatry 58:47-55

Buckner RL (1996) Functional anatomic studies of memory retrieval for auditory words and visual pictures. Journal of Neuroscience 16:6219-6235

Cabeza R (1997) Age-related differences in effective neural connectivity during encoding and recall. Neuroreport 8:3479-3483

Fletcher PC (1996) Brain activity during memory retrieval. The influence of imagery and semantic cueing. Brain 119:1587-1596

Halsband U (2006) Learning in trance: Functional brain imaging studies and neuropsychology. Journal of Physiology - Paris 99:470-482

Hofer A (2003) An FMRI study of episodic encoding and recognition of words in patients with schizophrenia in remission. American Journal of Psychiatry 160:911-918

Fliessbach K (2006) The effect of word concreteness on recognition memory. NeuroImage 32:1413-1421

Vandekerckhove MMP (2005) Bi-hemispheric engagement in the retrieval of autobiographical episodes. Behavioural Neurology 16:203-210

Dupont S S (2002) Anatomy of verbal memory: A functional MRI study. Surgical and Radiologic Anatomy 24:57-63

Ries ML (2006) Task-dependent posterior cingulate activation in mild cognitive impairment. NeuroImage 29:485-492

Woodard JL (2007) Temporally graded activation of neocortical regions in response to memories of different ages. Journal of Cognitive Neuroscience 19:1113-1124

Maril A (2003) Feeling-of-knowing in episodic memory: An event-related fMRI study. NeuroImage 18:827-836

Hofer A (2007) Neural substrates for episodic encoding and recognition of unfamiliar faces. Brain and Cognition 63:174-181

Kensinger EA (2007) Remembering the specific visual details of presented objects: Neuroimaging evidence for effects of emotion. Neuropsychologia 45:2951-2962

Denkova E B (2006) Neural correlates of remembering/knowing famous people: An event-related fMRI study. Neuropsychologia 44:2783-2791

Neuner I (2007) Wechsler Memory Scale Revised Edition: Neural correlates of the visual paired associates subtest adapted for fMRI. Brain Research 1177:66-78

Pihlajamaki M (2003) Encoding of novel picture pairs activates the perirhinal cortex: An fMRI study. Hippocampus 13:67-80

Assaf M (2006) Abnormal object recall and anterior cingulate overactivation correlate with formal thought disorder in schizophrenia. Biological Psychiatry 59:452-459

Ragland JD (2001) Effect of schizophrenia on frontotemporal activity during word encoding and recognition: A PET cerebral blood flow study. American Journal of Psychiatry 158:1114-1125

Weiss AP (2006) Fronto-hippocampal function during temporal context monitoring in schizophrenia. Biological Psychiatry 60:1268-1277

Fletcher PC (1998) Brain activations in schizophrenia during a graded memory task studied with functional neuroimaging. Archives of General Psychiatry 55:1001-1008

Heckers S R (1998) Impaired recruitment of the hippocampus during conscious recollection in schizophrenia. Nature Neuroscience 1:318-323

Daselaar SM (2006) Triple dissociation in the medial temporal lobes: Recollection, familiarity, and novelty. Journal of Neurophysiology 96:1902-1911

Dobbins IG (2003) Memory orientation and success: Separable neurocognitive components underlying episodic recognition. Neuropsychologia 41:318-333

Johnson JD (2007) Recollection and the reinstatement of encoding-related cortical activity. Cerebral Cortex 17:2507-2515

Henson RNA (1999) Recollection and familiarity in recognition memory: An event-related functional magnetic resonance imaging study. Journal of Neuroscience 19:3962-3972

Murray LJ (2007) The dorsolateral prefrontal cortex contributes to successful relational memory encoding. Journal of Neuroscience 27:5515-5522

Peters J (2007) Domain-specific retrieval of source information in the medial temporal lobe. European Journal of Neuroscience 26:1333-1343

Andreasen NC (1995) Remembering the past: Two facets of episodic memory explored with positron emission tomography. American Journal of Psychiatry 152:1576-1585

Burianova H (2007) Common and unique neural activations in autobiographical, episodic, and semantic retrieval. Journal of Cognitive Neuroscience 19:1520-1534

Mainero C (2004) fMRI evidence of brain reorganization during attention and memory tasks in multiple sclerosis. NeuroImage 21:858-867

Lanius RA (2004) The nature of traumatic memories: A 4-T FMRI functional connectivity analysis. American Journal of Psychiatry 161:36-44

Lanius RA (2007) Neural correlates of trauma script-imagery in posttraumatic stress disorder with and without comorbid major depression: A functional MRI investigation. Psychiatry Research 155:45-56

Desmurget M (2001) Functional anatomy of nonvisual feedback loops during reaching: a positron emission tomography study. Journal of Neuroscience 21:2919-2928

Ehrsson HH (2000) Simultaneous movements of upper and lower limbs are coordinated by motor representations that are shared by both limbs: a PET study. European Journal of Neuroscience 12:3385-3398

Gosain AK (2001) Localization of the cortical response to smiling using new imaging paradigms with functional magnetic resonance imaging. Plastic and Reconstructive Surgery 108:1136-1144

Indovina I (2001) Combined visual attention and finger movement effects on human brain representations. Experimental Brain Research 140:265-279

Rao SM (1997) Distributed neural systems underlying the timing of movements. Journal of Neuroscience 17:5528-5535

van MH (1998) Changes in brain activity during motor learning measured with PET: Effects of hand of performance and practice. Journal of Neurophysiology 80:2177-2199

Gerardin E S (2000) Partially overlapping neural networks for real and imagined hand movements. Cerebral Cortex 10:1093-1104

Simon O (2002) Topographical layout of hand, eye, calculation, and language-related areas in the human parietal lobe. Neuron 33:475-487

Gelnar PA (1999) A comparative fMRI study of cortical representations for thermal painful, vibrotactile, and motor performance tasks. NeuroImage 10:460-482

Colebatch JG (1991) Regional cerebral blood flow during voluntary arm and hand movements in human subjects. Journal of Neurophysiology 65:1392-1401

Grafton ST (1993) Within-arm somatotopy in human motor areas determined by positron emission tomography. Experimental Brain Research 95:172-176

Lotze M (2000) The representation of articulation in the primary sensorimotor cortex. Neuroreport 11:2985-2989

Winstein CJ (1997) Motor task difficulty and brain activity: Investigation of goal-directed reciprocal aiming using positron emission tomography. Journal of Neurophysiology 77:1581-1594

Corfield DR (1999) Cortical and subcortical control of tongue movement in humans: a functional neuroimaging study using fMRI. Journal of Applied Physiology 86:1468-1477

Carey LM (2000) The functional neuroanatomy and long-term reproducibility of brain activation associated with a simple finger tapping task in older, healthy volunteers: a serial PET study. NeuroImage 11:124-144

Kawashima R (2000) The effect of verbal feedback on motor learning-a PET study. NeuroImage 12:698-706

Umetsu A (2002) Brain activation during the fist-edge-palm test: A functional MRI study. NeuroImage 17:385-392

Binkofski F (2000) Broca's region subserves imagery of motion: a combined cytoarchitectonic and fMRI study. Human Brain Mapping 11:273-285

Inoue K (2001) Activation in the ipsilateral posterior parietal cortex during tool use: a PET study. NeuroImage 14:1469-1475

Menon V (2001) Error-related brain activation during a Go/NoGo response inhibition task. Human Brain Mapping 12:131-143

Casey BJ (1998) Reproducibility of fMRI results across four institutions using a spatial working memory task. NeuroImage 8:249-261

Ehrsson HH (2001) Differential fronto-parietal activation depending on force used in a precision grip task: an fMRI study. Journal of Neurophysiology 85:2613-2623

Grafton ST (1992) Functional anatomy of human procedural learning determined with regional cerebral blood flow and PET. Journal of Neuroscience 12:2542-2548

Maldjian JA (1998) The sensory somatotopic map of the human hand demonstrated at 4 Tesla. NeuroImage 10:55-62

Blinkenberg M (1996) Rate dependence of regional cerebral activation during performance of a repetitive motor task: a PET study. Journal of Cerebral Blood Flow and Metabolism 16:794-803

Catalan MJ (1998) The functional neuranatomy of simple and complex sequential finger movements: a PET study. Brain 121:253-264

Joliot M (1998) Anatomical congruence of metabolic and electromagnetic activation signals during a self-paced motor task: A combined PET-MEG study. NeuroImage 7:337-351

Lerner A (2004) Regional cerebral blood flow correlates of the severity of writer's cramp symptoms. NeuroImage 21:904-913

Ramsey NF (1996) Functional mapping of human sensorimotor cortex with 3D BOLD fMRI correlates highly with H2(15)O PET rCBF. Journal of Cerebral Blood Flow and Metabolism 16:755-764

Astafiev S, V (2003) Functional organization of human intraparietal and frontal cortex for attending, looking, and pointing. Journal of Neuroscience 23:4689-4699

Connolly JD (2000) A comparison of frontoparietal fMRI activation during anti-saccades and anti-pointing. Journal of Neurophysiology 84:1645-1655

Watanabe J (2004) The human parietal cortex is involved in spatial processing of tongue movementc -- an fMRI study. NeuroImage 21:1289-1299

De LM (2005) Blood oxygenation level dependent contrast resting state networks are relevant to functional activity in the neocortical sensorimotor system. Experimental Brain Research 167:587-594

Wilson SM (2004) Listening to speech activates motor areas involved in speech production. Nature Neuroscience 7:701-702

Nowak M (2005) "Central command" and insular activation during attempted foot lifting in paraplegic humans. Human Brain Mapping 25:259-265

Wong SW (2007) Ventral medial prefrontal cortex and cardiovagal control in conscious humans. NeuroImage 35:698-708

Mallol R (2007) Compensatory cortical mechanisms in Parkinson's disease evidenced with fMRI during the performance of pre-learned sequential movements. Brain Research 1147:265-271

Milner TE (2007) Central control of grasp: Manipulation of objects with complex and simple dynamics. NeuroImage 36:388-395

Ghatan PH (1995) Brain activation induced by the perceptual maze test: A PET study of cognitive performance. NeuroImage 2:112-124

Blok BFM (1997) A PET study on cortical and subcortical control of pelvic floor musculature in women. Journal of Comparative Neurology 389:535-544

Gavazzi C (2007) Combining functional and structural brain magnetic resonance imaging in Huntington disease. Journal of Computer Assisted Tomography 31:574-580

Lissek S H (2007) Sex differences in cortical and subcortical recruitment during simple and complex motor control: An fMRI study. NeuroImage 37:912-926

Simon O (2004) Automatized clustering and functional geometry of human parietofrontal networks for language, space, and number. NeuroImage 23:1192-1202

Leslie KR (2004) Functional imaging of face and hand imitation: Towards a motor theory of empathy. NeuroImage 21:601-607

Martin RE (2004) Cerebral areas processing swallowing and tongue movement are overlapping but distinct: A functional magnetic resonance imaging study. Journal of Neurophysiology 92:2428-2443

Mostofsky SH (2006) Atypical motor and sensory cortex activation in attention-deficit/hyperactivity disorder: A functional magnetic resonance imaging study of simple sequential finger tapping. Biological Psychiatry 59:48-56

Onozuka M (2002) Mapping brain region activity during chewing: A functional magnetic resonance imaging study. Journal of Dental Research 81:743-746

Onozuka M (2003) Age-related changes in brain regional activity during chewing: A functional magnetic resonance imaging study. Journal of Dental Research 82:657-660

Stephan KM (1995) Functional anatomy of the mental representation of upper extremity movements in healthy subjects. Journal of Neurophysiology 73:373-386

Brown S N (2008) A larynx area in the human motor cortex. Cerebral Cortex 18:837-845

Gerardin E L (2003) Foot, hand, face and eye representation in the human striatum. Cerebral Cortex 13:162-169

Hamdy S R (1999) Identification of the cerebral loci processing human swallowing with H2(15)O PET activation. Journal of Neurophysiology 81:1917-1926

Harris ML (2005) Mapping metabolic brain activation during human volitional swallowing: A positron emission tomography study using [18F]fluorodeoxyglucose. Journal of Cerebral Blood Flow and Metabolism 25:520-526

Wild B (2003) Why are smiles contagious? An fMRI study of the interaction between perception of facial affect and facial movements. Psychiatry Research 123:17-36

Fesl G (2003) Inferior central sulcus: Variations of anatomy and function on the example of the motor tongue area. NeuroImage 20:601-610

Rotte M (2002) Functional magnetic resonance imaging for the evaluation of the motor system: Primary and secondary brain areas in different motor tasks. Stereotactic and Functional Neurosurgery 78:3-16

Hanakawa T (2008) Motor planning, imagery, and execution in the distributed motor network: A time-course study with functional MRI. Cerebral Cortex

Martin RE (2001) Cerebral cortical representation of automatic and volitional swallowing in humans. Journal of Neurophysiology 85:938-950

Dziewas R (2003) Neuroimaging evidence for cortical involvement in the preparation and in the act of swallowing. NeuroImage 20:135-144

Fraser C (2002) Driving plasticity in human adult motor cortex in associated with improved motor function after brain injury. Neuron 34:831-840

Furlong PL (2004) Dissociating the spatio-temporal characteristics of cortical neuronal activity associated with human volitional swallowing in the healthy adult brain. NeuroImage 22:1447-1455

Guillot A (2008) Brain activity during visual versus kinesthetic imagery: An fMRI study. Human Brain Mapping

Martin R (2007) Cerebral cortical processing of swallowing in older adults. Experimental Brain Research 176:12-22

Bengtsson SL (2005) Effector-independent voluntary timing: Behavioural and neuroimaging evidence. European Journal of Neuroscience 22:3255-3265

Poellinger A (2001) Activation and habituation in olfaction - An fMRI study. NeuroImage 13:547-560

Savic I (2000) Olfactory functions are mediated by parallel and hierarchical processing. Neuron 26:735-745

Savic I (2001) Smelling of odorous sex hormone-like compounds causes sex-differentiated hypothalamic activations in humans. Neuron 31:661-668

Zatorre RJ (2000) Neural mechanisms involved in odor pleasantness and intensity judgements. Neuroreport 11:2711-2716

Sobel N (2000) Time course of odorant-induced activation in the human primary olfactory cortex. Journal of Neurophysiology 83:537-551

Bengtsson S B (2001) Brain activation during odor perception in males and females. Neuroreport 12:2027-2033

de A, I (2003) Taste-olfactory convergence, and the representation of the pleasantness of flavour, in the human brain. European Journal of Neuroscience 18:2059-2068

Rolls ET (2003) Different representations of pleasant and unpleasant odours in the human brain. European Journal of Neuroscience 18:695-703

Francis ST (1999) The representation of pleasant touch in the brain and its relationship with taste and olfactory areas. Neuroreport 10:453-459

Ciumas C (2008) Imaging of odor perception delineates functional disintegration of the limbic circuits in mesial temporal lobe epilepsy. NeuroImage 39:578-592

Suzuki Y (2001) Functional magnetic resonance imaging of odor identification: The effect of aging. Journal of Gerontology 56A:756-760

Zatorre RJ (1992) Functional localization and lateralization of human olfactory cortex. Nature 360:339-340

Gelnar PA (1999) A comparative fMRI study of cortical representations for thermal painful, vibrotactile, and motor performance tasks. NeuroImage 10:460-482

Coghill RC (1994) Distributed processing of pain and vibration by the human brain. Journal of Neuroscience 14:4095-4108

Ploner M (2000) Differential organization of touch and pain in human primary somatosensory cortex. Journal of Neurophysiology 83:1770-1776

Derbyshire SWG (1998) Pain and Stroop interference tasks activate separate processing modules in anterior cingulate cortex. Experimental Brain Research 118:52-60

Becerra LR (1999) Human brain activation under controlled thermal stimulation and habituation to noxious heat: an fMRI study. Magnetic Resonance in Medicine 41:1044-1057

Bingel U (2002) Subcortical structures involved in pain processing: evidence from single-trial fMRI. Pain 99:313-321

Bornhovd K (2002) Painful stimuli evoke different stimulus-response functions in the amygdala, prefrontal, insula and somatosensory cortex: a single-trial fMRI study. Brain 125:1326-1336

Casey KL (1996) Comparison of human cerebral activation pattern during cutaneous warmth, heat pain, and deep cold pain. Journal of Neurophysiology 76:571-581

Coghill RC (2001) Hemispheric lateralization of somatosensory processing. Journal of Neurophysiology 85:2602-2612

Coghill RC (1999) Pain intensity processing within the human brain: a bilateral, distributed mechanism. Journal of Neurophysiology 82:1934-1943

Coghill RC (2003) Neural correlates of interindividual differences in the subjective experience of pain. Proceedings of the National Academy of Sciences 100:8538-8542

Giesecke T (2004) Evidence of augmented central pain processing in idiopathic chronic low back pain. Arthritis & Rheumatism 50:613-623

Ibinson JW (2004) Functional magnetic resonance imaging studies of pain: an investigation of signal decay during and across sessions. Anesthesiology 101:960-969

Nemoto H (2003) Fluvoxamine modulates pain sensation and affective processing of pain in human brain. Neuroreport 14:791-797

Paulson PE (1998) Gender differences in pain perception and patterns of cerebral activation during noxious heat stimulation in humans. Pain 76:223-229

Smith KA (2002) Cerebellar responses during anticipation of noxious stimuli in subjects recovered from depression. British Journal of Psychiatry 181:411-415

Strigo IA (2003) Differentiation of visceral and cutaneous pain in the human brain. Journal of Neurophysiology 89:3294-3303

Svensson P (1998) Cerebral blood-flow changes evoked by two levels of painful heat stimulation: a positron emission tomography study in humans. European Journal of Pain 2:95-107

Xu X (1997) Functional localization of pain perception in the human brain studied by PET. Neuroreport 8:555-559

Becerra LR (2001) Reward circuitry activation by noxious thermal stimuli. Neuron 32:927-946

Bingel U (2003) Single trial fMRI reveals significant contralateral bias in responses to laser pain within thalamus and somatosensory cortices. NeuroImage 18:740-748

Derbyshire SWG (2002) Cerebral responses to noxious thermal stimulation in chronic low back pain patients and normal controls. NeuroImage 16:158-168

Derbyshire SWG (1997) Pain processing during three levels of noxious stimulation produces differential patterns of central activity. Pain 73:431-445

Derbyshire SWG (2002) Gender differences in patterns of cerebral activation during equal experience of painful laser stimulation. Journal of Pain 3:401-411

Jones AKP (1997) Reduced cortical responses to noxious heat in patients with rheumatoid arthritis. Annals of the Rheumatic Diseases 56:601-607

Lorenz J (2002) A unique representation of heat allodynia in the human brain. Neuron 35:383-393

Svensson P (1997) Cerebral processing of acute skin and muscle pain in humans. Journal of Neurophysiology 78:450-460

Tolle TR (1999) Region-specific encoding of sensory and affective components of pain in the human brain: A positron emission tomography correlation analysis. Annals of Neurology 45:40-47

Tracey I (2000) Noxious hot and cold stimulation produce common patterns of brain activation in humans: A functional magnetic resonance imaging study. Neuroscience Letters 288:159-162

Casey KL (2001) Temporal and spatial dynamics of human forebrain activity during heat pain: Analysis by positron emission tomography. Journal of Neurophysiology 85:951-959

Derbyshire SWG (1998) Cerebral responses to a continual tonic pain stimulus measured using positron emission tomography. Pain 76:127-135

Frankenstein UN (2001) Distraction modulates anterior cingulate gyrus activations during the cold pressor test. NeuroImage 14:827-836

de LR (2006) Brain activity during stimulation of the trigeminal nerve with noxious heat. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontics 102:750-757

Mochizuki H (2007) Neural correlates of perceptual difference between itching and pain: a human fMRI study. NeuroImage 36:706-717

Peyron R (1999) Haemodynamic brain responses to acute pain in humans: Sensory and attentional networks. Brain 122:1765-1779

Rolls ET (2003) Representations of pleasant and painful touch in the human orbitofrontal and cingulate cortices. Cerebral Cortex 13:308-317

Petrovic P (2002) A regression analysis study of the primary somatosensory cortex during pain. NeuroImage 16:1142-1150

Valet M (2004) Distraction modulates connectivity of the cingulo-frontal cortex and the midbrain during pain - An fMRI analysis. Pain 109:399-408

Petrovic P (2002) Placebo and opioid analgesia - Imaging a shared neuronal network. Science 295:1737-1740

Farrell MJ (2006) Unique, common, and interacting cortical correlates of thirst and pain. Proceedings of the National Academy of Sciences 103:2416-2421

Singer T (2004) Empathy for pain involves the affective but not sensory aspects of pain. Science 303:1157-1162

Schmahl C (2006) Neural correlates of antinociception in borderline personality disorder. Archives of General Psychiatry 63:659-667

Geuze E W (2007) Altered pain processing in veterans with posttraumatic stress disorder. Archives of General Psychiatry 64:76-85

Maihofner C (2007) Brain imaging of analgesic and antihyperalgesic effects of cyclooxygenase inhibition in an experimental human pain model: A functional MRI study. European Journal of Neuroscience 26:1344-1356

Botvinick MM (2005) Viewing facial expressions of pain engages cortical areas involved in the direct experience of pain. NeuroImage 25:312-319

ladarola MJ (1998) Neural activation during acute capsaicin-evoked pain and allodynia assessed with PET. Brain 121:931-947

Adcock JE (2003) Quantitative fMRI assessment of the differences in lateralization of language-related brain activation in patients with temporal lobe epilepsy. NeuroImage 18:423-438

Fox PT (1996) A PET study of the neural systems of stuttering. Nature 382:158-162

Fox PT (2001) Location-probability profiles for the mouth region of human primary motor-sensory cortex: Model and validation. NeuroImage 13:196-209

Lotze M (2000) The representation of articulation in the primary sensorimotor cortex. Neuroreport 11:2985-2989

Rosen HJ (2000) Neural correlates of recovery from aphasia after damage to left inferior frontal cortex. Neurology 55:1883-1894

Xiong J (2000) Intersubject variability in cortical activations during a complex language task. NeuroImage 12:326-339

Etard O (2000) Picture naming without Broca's and Wernicke's area. Neuroreport 11:617-622

Tan LH (2001) An fMRI study with written Chinese. Neuroreport 12:83-88

Bookheimer SY (1995) Regional cerebral blood flow during object naming and word reading. Human Brain Mapping 3:93-106

Braun AR (1997) Altered patterns of cerebral activity during speech and language production in developmental stuttering. Brain 120:761-784

Paus T (1993) Role of the human anterior cingulate cortex in the control of oculomotor, manual, and speech responses: A positron emission tomography study. Journal of Neurophysiology 70:453-469

Petersen SE (1988) Positron emission tomographic studies of the cortical anatomy of single-word processing. Nature 331:585-589

Fiez JA (1999) Effects of lexicality, frequency, and spelling-to-sound consistency on the functional anatomy of reading. Neuron 24:205-218

Hagoort P (1999) The neural circuitry involved in the reading of German words and pseudowords: A PET study. Journal of Cognitive Neuroscience 11:383-398

Jernigan TL (1998) Brain activation during word identification and word recognition. NeuroImage 8:93-105

Rumsey JM (1997) Phonological and orthographic components of word recognition. Brain 120:739-759

Bookheimer SY (2000) Activation of language cortex with automatic speech tasks. Neurology 55:1151-1157

Ingham RJ (2000) Is overt stuttered speech a prerequisite for the neural activations associated with chronic developmental stuttering? Brain and Language 75:163-194

Chee MWL (1999) Mandarin and English single word processing studied with functional magnetic resonance imaging. Journal of Neuroscience 19:3050-3056

De Nil LF (2003) A positron emission tomography study of short and long term treatment effects on functional brain activation in adults who stutter. Journal of Fluency Disorders 28:357-380

Tatsumi IF (1999) Verb generation in Japanese - A multicenter PET activation study. NeuroImage 9:154-164

Price CJ (1996) Hearing and saying: The functional neuro-anatomy of auditory word processing. Brain 119:919-931

Price CJ (1996) The effect of varying stimulus rate and duration on brain activity during reading. NeuroImage 3:40-52

De Nil LF (2000) A positron emission tomography study of silent and oral single word reading in stuttering and nonstuttering adults. Journal of Speech, Language, and Hearing Research 43:1038-1053

Martin A (1996) Neural correlates of category-specific knowledge. Nature 379:649-652

Murtha S C (1999) The neural substrate of picture naming. Journal of Cognitive Neuroscience 11:399-423

Nakamura K (2000) Participation of the left posterior inferior temporal cortex in writing and mental recall of kanji orthography: A functional MRI study. Brain 123:954-967

Petersen SE (1989) Positron emission tomographic studies of the processing of single words. Journal of Cognitive Neuroscience 1:153-170

Heim S O (2002) Broca's area in the human brain is involved in the selection of grammatical gender for language production: Evidence from event-related functional magnetic resonance imaging. Neuroscience Letters 328:101-104

Brown S M (2006) Music and language side by side in the brain: A PET study of the generation of melodies and sentences. European Journal of Neuroscience 23:2791-2803

Riecker A (2000) Opposite hemispheric lateralization effects during speaking and singing at motor cortex, insula and cerebellum. Neuroreport 11:1997-2000

Soros P (2006) Clustered functional MRI of overt speech production. NeuroImage 32:376-387

Mechelli A (2006) Semantic relevance explains category effects in medial fusiform gyri. NeuroImage 30:992-1002

Wildgruber D (1996) Functional lateralization of speech production at primary motor cortex: an fMRI study. Neuroreport 7:2791-2795

Riecker A (2002) Hemispheric lateralization effects of rhythm implementation during syllable repetitions: An fMRI study. NeuroImage 16:169-176

Riecker A (2006) The cerebral control of speech tempo: Opposite relationship between speaking rate and BOLD signal changes at striatal and cerebellar structures. NeuroImage 29:46-53

Riecker A (2005) fMRI reveals two distinct cerebral networks subserving speech motor control. Neurology 64:700-706

Wilson SM (2004) Listening to speech activates motor areas involved in speech production. Nature Neuroscience 7:701-702

Tremblay P (2006) Contribution of the frontal lobe to externally and internally specified verbal responses: fMRI evidence. NeuroImage 33:947-957

Kemeny S Y (2005) Comparison of continuous overt speech fMRI using BOLD and arterial spin labeling. Human Brain Mapping 24:173-183

Basho S P (2007) Effects of generation mode in fMRI adaptations of semantic fluency: Paced production and overt speech. Neuropsychologia 45:1697-1706

Bohland JW (2006) An fMRI investigation of syllable sequence production. NeuroImage 32:821-841

Riecker A (2000) Articulatory/phonetic sequencing at the level of the anterior perisylvian cortex: A functional magnetic resonance imaging (fMRI) study. Brain and Language 75:259-276

Kircher TTJ (2004) Pausing for thought: Engagement of left temporal cortex during pauses in speech. NeuroImage 21:84-90

Kleber B (2007) Overt and imagined singing of an Italian aria. NeuroImage 36:889-900

Brown S N (2008) A larynx area in the human motor cortex. Cerebral Cortex 18:837-845

Andreasen NC (1995) Remembering the past: Two facets of episodic memory explored with positron emission tomography. American Journal of Psychiatry 152:1576-1585

Rektorova I (2007) Functional abnormalities in the primary orofacial sensorimotor cortex during speech in Parkinson's disease. Movement Disorders 22:2043-2051

Ghosh SS (2008) A neuroimaging study of premotor lateralization and cerebellar involvement in the production of phonemes and syllables. Journal of Speech, Language, and Hearing Research 51:1183-1202

Tourville JA (2008) Neural mechanisms underlying auditory feedback control of speech. NeuroImage 39:1429-1443

Wilson SM (2009) The neural basis of surface dyslexia in semantic dementia. Brain 132:71-86

Cabeza R (2002) Similarities and differences in the neural correlates of episodic memory retrieval and working memory. NeuroImage 16:317-330

Dade LA (2001) Working memory in another dimension: functional imaging of human olfactory working memory. NeuroImage 14:650-660

Garavan H (2000) Practice-related functional activation changes in a working memory task. Microscopy Research and Technique 51:54-63

Kapur S T (1996) The neural correlates of intentional learning of verbal materials: A PET study in humans. Journal of Cognitive Neuroscience 4:243-249

Lee TMC (2002) Lie detection by functional magnetic resonance imaging. Human Brain Mapping 15:157-164

Leveroni CL (2000) Neural systems underlying the recognition of familiar and newly learned faces. Journal of Neuroscience 20:878-886

Owen AM (1998) Functional organization of spatial and nonspatial working memory processing within the human lateral frontal cortex. Proceedings of the National Academy of Sciences 95:7721-7726

Sperling RA (2001) Encoding novel face-name associations: A functional MRI study. Human Brain Mapping 14:129-139

Stern CE (2000) Activity in ventrolateral and mid-dorsolateral prefrontal cortex during nonspatial visual working memory processing: Evidence from functional magnetic resonance imaging. NeuroImage 11:392-399

Pessoa L (2002) Neural correlates of visual working memory: fMRI amplitude predicts task performance. Neuron 35:975-987

Petit L (1998) Sustained activity in the medial wall during working memory delays. Journal of Neuroscience 18:9429-9437

Pochon JB (2001) The role of dorsolateral prefrontal cortex in the preparation of forthcoming actions: An fMRI study. Cerebral Cortex 11:260-266

Bunge SA (2001) Prefrontal regions involved in keeping information in and out of mind. Brain 124:2074-2086

Hasson U (2002) Eccentricity bias as an organizing principle for human high-order object areas. Neuron 34:479-490

Kelley WM (1998) Hemispheric specialization in human dorsal frontal cortex and medial temporal lobe for verbal and nonverbal memory encoding. Neuron 20:927-936

Mellet E B (2000) Neural correlates of topographic mental exploration: the impact of route versus survey perspective learning. NeuroImage 12:588-600

Rypma B (1999) Load-dependent roles of frontal brain regions in the maintenance of working memory. NeuroImage 9:216-226

Mazard A (2002) Impact of fMRI acoustic noise on the functional anatomy of visual mental imagery. Journal of Cognitive Neuroscience 14:172-186

Zago L (2002) Distinguishing visuospatial working memory and complex mental calculation areas within the parietal lobes. Neuroscience Letters 331:45-49

Rowe JB (2000) The prefrontal cortex: Response selection or maintenance within working memory? Science 288:1656-1660

Clark CR (2000) Updating working memory for words: A PET activation study. Human Brain Mapping 9:42-54

Crespo-Facorro B (2001) Neural basis of novel and well-learned recognition memory in schizophrenia: A positron emission tomography study. Human Brain Mapping 12:219-231

Thierry G (2003) Demand on verbal working memory delays haemodynamic response in the inferior prefrontal cortex. Human Brain Mapping 19:37-46

Braver TS (2001) Direct comparison of prefrontal cortex regions engaged by working and long-term memory tasks. NeuroImage 14:48-59

Braver TS (1997) A parametric study of prefrontal cortex involvement in human working memory. NeuroImage 5:49-62

Callicott JH (1999) Physiological characteristics of capacity constraints in working memory as revealed by functional MRI. Cerebral Cortex 9:20-26

Carlson S M (1998) Distribution of cortical activation during visuospatial n-back tasks as revealed by functional magnetic resonance imaging. Cerebral Cortex 8:743-752

Druzgal TJ (2001) Activity in fusiform face area modulated as a function of working memory load. Cognitive Brain Research 10:355-364

Gruber O (2003) The functional neuroanatomy of human working memory revisited: Evidence from 3-T fMRI studies using classical domain-specific interference tasks. NeuroImage 19:797-809

Phillips ML (1998) Investigation of facial recognition memory and happy and sad facial expression perception: An fMRI study. Psychiatry Research 83:127-138

Veltman DJ (2003) Maintenance versus manipulation in verbal working memory revisited: An fMRI study. NeuroImage 18:247-256

Casey BJ (1998) Reproducibility of fMRI results across four institutions using a spatial working memory task. NeuroImage 8:249-261

Cohen JD (1994) Activation of the prefrontal cortex in a nonspatial working memory task with functional MRI. Human Brain Mapping 1:293-304

Cohen JD (1997) Temporal dynamics of brain activation during a working memory task. Nature 386:604-608

Desmond JE (2003) Increased frontocerebellar activation in alcoholics during verbal working memory: an fMRI study. NeuroImage 19:1510-1520

Hautzel H (2002) Topographic segregation and convergence of verbal, object, shape and spatial working memory in humans. Neuroscience Letters 26:156-160

Honey GD (2000) Prolonged reaction time to a verbal working memory task predicts increased power of posterior parietal cortical activation. NeuroImage 12:495-503

Jonides J (1997) Verbal working memory load affects regional brain activation as measured by PET. Journal of Cognitive Neuroscience 9:462-475

Kim JJ (2002) Dissociation of working memory processing associated with native and second languages: PET investigation. NeuroImage 15:879-891

Martinkauppi S R (2000) Working memory of auditory localization. Cerebral Cortex 10:889-898

Owen AM (1999) Redefining the functional organization of working memory processes within human lateral prefrontal cortex. European Journal of Neuroscience 11:567-574

Smith EE (1996) Dissociating verbal and spatial working memory using PET. Cerebral Cortex 6:11-20

Awh E J (1996) Dissociation of storage and rehearsal in verbal working memory: evidence from positron emission tomography. Psychological Science 7:25-31

Becker JT (1994) Functional neuroanatomy of verbal free recall: A replication study. Human Brain Mapping 1:284-292

Fiez JA (1996) A positron emission tomography study of the short-term maintenance of verbal information. Journal of Neuroscience 16:808-822

Grasby PM (1994) A graded task approach to the functional mapping of brain areas implicated in auditory-verbal memory. Brain 117:1271-1282

Kim JJ (2003) Functional disconnection between the prefrontal and parietal cortices during working memory processing in schizophrenia: a [150]H2O PET study. American Journal of Psychiatry 160:919-923

Ragland JD (2002) Working memory for complex figures: An fMRI comparison of letter and fractal n-back tasks. Neuropsychology 16:370-379

Schumacher EH (1996) PET evidence for an amodal verbal working memory system. NeuroImage 3:79-88

Honey GD (1999) Differences in frontal cortical activation by a working memory task after substitution of risperidone for typical antipsychotic drugs in patients with schizophrenia. Proceedings of the National Academy of Sciences 96:13432-13437

Honey GD (2002) De-coupling of cognitive performance and cerebral functional response during working memory in schizophrenia. Schizophrenia Research 53:45-56

Wykes T (2002) Effects on the brain of a psychological treatment: Cognitive remediation therapy: Functional magnetic resonance imaging in schizophrenia. British Journal of Psychiatry 181:144-152

Chen JK (2004) Functional abnormalities in symptomatic concussed athletes: An fMRI study. NeuroImage 22:68-82

Landau SM (2004) A functional MRI study of the influence of practice on component processes of working memory. NeuroImage 22:211-221

Honey GD (2003) The functional neuroanatomy of schizophrenic subsyndromes. Psychological Medicine 33:1007-1018

LaBar KS (1999) Neuroanatomic overlap of working memory and spatial attention networks: A functional MRI comparison within subjects. NeuroImage 10:695-704

van TM (2000) Long-lasting cortical plasticity in the object naming system. Nature Neuroscience 3:1329-1334

Kawashima R (1998) Oculomotor sequence learning: A positron emission tomography study. Experimental Brain Research 122:1-8

Breitenstein C (2005) Hippocampus activity differentiates good from poor learners of a novel lexicon. NeuroImage 25:958-968

Drobyshevsky A (2006) A rapid fMRI task battery for mapping of visual, motor, cognitive, and emotional function. NeuroImage 31:732-744

Cairo TA (2004) The influence of working memory load on phase specific patterns of cortical activity. Cognitive Brain Research 21:377-387

Caldwell JA (2005) Are individual differences in fatigue vulnerability related to baseline differences in cortical activation? Behavioral Neuroscience 119:694-707

Leung HC (2002) Sustained mnemonic response in the human middle frontal gyrus during on-line storage of spatial memoranda. Journal of Cognitive Neuroscience 14:659-671

Mendrek A (2004) Changes in distributed neural circuitry function in patients with first-episode schizophrenia. British Journal of Psychiatry 185:205-214

Menon V (2001) Functional neuroanatomy of auditory working memory in schizophrenia: Relation to positive and negative symptoms. NeuroImage 13:433-446

Perlstein WM (2003) Prefrontal cortex dysfunction mediates deficits in working memory and prepotent responding in schizophrenia. Biological Psychiatry 53:25-38

Yoo SS (2005) Working memory processing of facial images in schizophrenia: fMRI investigation. International Journal of Neuroscience 115:351-366

Johnson MR (2006) A functional magnetic resonance imaging study of working memory abnormalities in schizophrenia. Biological Psychiatry 60:11-21

Linden DEJ (2003) Cortical capacity constraints for visual working memory: Dissociation of fMRI load effects in a fronto-parietal network. NeuroImage 20:1518-1530

Monks PJ (2004) A functional MRI study of working memory task in euthymic bipolar disorder: Evidence for task-specific dysfunction. Bipolar Disorders 6:550-564

Mu Q (2005) Decreased cortical response to verbal working memory following sleep deprivation. Sleep 28:55-67

Rypma B (2001) Age differences in prefrontal cortical activity in working memory. Psychology and Aging 16:371-384

Volle E P (2005) Specific cerebral networks for maintenance and response organization within working memory as evidenced by the 'double delay/double response' paradigm. Cerebral Cortex 15:1064-1074

Harvey PO (2005) Cognitive control and brain resources in major depression: An fMRI study using the n-back task. NeuroImage 26:860-869

Manoach DS (2000) Schizophrenic subjects show aberrant fMRI activation of dorsolateral prefrontal cortex and basal ganglia during working memory performance. Biological Psychiatry 48:99-109

Mendrek A (2005) Dysfunction of a distributed neural circuitry in schizophrenia patients during a working-memory performance. Psychological Medicine 35:187-196

Quintana J (2003) Prefrontal-posterior parietal networks in schizophrenia: Primary dysfunctions and secondary compensations. Biological Psychiatry 53:12-24

Bedwell JS (2005) Functional neuroanatomy of subcomponent cognitive processes involved in verbal working memory. International Journal of Neuroscience 115:1017-1032

Druzgal TJ (2001) A neural network reflecting decisions about human faces. Neuron 32:947-955

Meisenzahl EM (2006) Effects of treatment with the atypical neuroleptic quetiapine on working memory function: A functional MRI follow-up investigation. European Archives of Psychiatry and Clinical Neuroscience 256:522-531

Lagopoulos J (2007) An event-related functional MRI study of working memory in euthymic bipolar disorder. Journal of Psychiatry and Neuroscience 32:174-184

Koshino H (2008) fMRI investigation of working memory for faces in autism: Visual coding and underconnectivity with frontal areas. Cerebral Cortex 18:289-300

Pfefferbaum A (2001) Reorganization of frontal systems used by alcoholics for spatial working memory: An fMRI study. NeuroImage 14:7-20

van der Wee NJA (2003) Spatial working memory deficits in obsessive compulsive disorder are associated with excessive engagement of the medial frontal cortex. NeuroImage 20:2271-2280

Savage CR (2001) Prefrontal regions supporting spontaneous and directed application of verbal learning strategies: Evidence from PET. Brain 124:219-231

Matsuo K (2007) Prefrontal hyperactivation during working memory task in untreated individuals with major depressive disorder. Molecular Psychiatry 12:158-166

Walter H (2007) Increased left prefrontal activation in patients with unipolar depression: An event-related, parametric, performance-controlled fMRI study. Journal of Affective Disorders 101:175-185

Sheridan MA (2007) Efficiency of the prefrontal cortex during working memory in attention-deficit/hyperactivity disorder. Journal of the American Academy of Child and Adolescent Psychiatry 46:1357-1366

Mayer JS (2007) Common neural substrates for visual working memory and attention. NeuroImage 36:441-453

Kumari V (2006) Neural dysfunction and violence in schizophrenia: An fMRI investigation. Schizophrenia Research 84:144-164

Postle BR (2007) Nonvisual codes and nonvisual brain areas support visual working memory. Cerebral Cortex 17:2151-2162

Neuner I (2007) Wechsler Memory Scale Revised Edition: Neural correlates of the visual paired associates subtest adapted for fMRI. Brain Research 1177:66-78

Koppelstaetter F (2008) Does caffeine modulate verbal working memory processes? An fMRI study. NeuroImage 39:492-499

Sanchez-Carrion R (2008) Frontal hypoactivation on functional magnetic resonance imaging in working memory after severe diffuse traumatic brain injury. Journal of Neurotrauma 25:479-494

Ricciardi E B (2006) Neural correlates of spatial working memory in humans: A functional magnetic resonance imaging study comparing visual and tactile processes. Neuroscience 139:339-349

Naito E K (2000) Fast reaction to different sensory modalities activates common fields in the motor areas, but the anterior cingulate cortex is involved in the speed of reaction. Journal of Neurophysiology 83:1701-1709

Naito E E (1999) Illusory arm movements activate cortical motor areas: a positron emission tomography study. Journal of Neuroscience 19:6134-6144

Gelnar PA (1999) A comparative fMRI study of cortical representations for thermal painful, vibrotactile, and motor performance tasks. NeuroImage 10:460-482

Coghill RC (1994) Distributed processing of pain and vibration by the human brain. Journal of Neuroscience 14:4095-4108

Deuchert M (2002) Event-related fMRI of the somatosensory system using electrical finger stimulation. Neuroreport 13:365-369

Johansen-Berg H (2000) Attention to touch modulates activity in both primary and secondary somatosensory areas. Neuroreport 11:1237-1241

Lepage M (2001) Transperceptual encoding and retrieval processes in memory: a PET study of visual and haptic objects. NeuroImage 14:572-584

Ploner M (2000) Differential organization of touch and pain in human primary somatosensory cortex. Journal of Neurophysiology 83:1770-1776

Seitz RJ (1992) Vibratory stimulation increases and decreases the regional cerebral blood flow and oxidative metabolism: a positron emission tomography (PET) study. Acta Neurologica Scandinavica 86:60-67

Seitz RJ (1991) Somatosensory discrimination of shape: tactile exploration and cerebral activation. European Journal of Neuroscience 3:481-492

Kitada R (2003) Moving tactile stimuli of fingers are integrated in the intraparietal and inferior parietal cortices. Neuroreport 14:719-724

Yoo SS (2003) Neural substrates of tactile imagery: A functional MRI study. Neuroreport 14:581-585

Bodegard A (2000) Somatosensory areas in man activated by moving stimuli: cytoarchitectonic mapping and PET. Neuroreport 11:187-191

Burton H (1997) Multiple foci in parietal and frontal cortex activated by rubbing embossed grating patterns across fingerpads: a positron emission tomography study in humans. Cerebral Cortex 7:3-17

Burton H (1999) Tactile attention tasks enhance activation in somatosensory regions of parietal cortex: a positron emission tomography study. Cerebral Cortex 9:662-674

Francis ST (2000) fMRI of the responses to vibratory stimulation of digit tips. NeuroImage 11:188-202

Hagen MC (2002) Somatosensory processing in the human inferior prefrontal cortex. Journal of Neurophysiology 88:1400-1406

Blakemore SJ (1999) The cerebellum contributes to somatosensory cortical activity during self-produced tactile stimulation. NeuroImage 10:448-459

Numminen J (2004) Cortical activation during a spatiotemporal tactile comparison task. NeuroImage 22:815-821

Yoo SS (2004) Modulation of cerebellar activities by acupuncture stimulation: evidence from fMRI study. NeuroImage 22:932-940

Lorenz J (2002) A unique representation of heat allodynia in the human brain. Neuron 35:383-393

Hlushchuk Y (2006) Transient suppression of ipsilateral primary somatosensory cortex during tactile finger stimulation. Journal of Neuroscience 26:5819-5824

Hagen MC (2002) Tactile motion activates the human middle temporal/V5 (MT/V5) complex. European Journal of Neuroscience 16:957-964

Kitada R (2005) Tactile estimation of the roughness of gratings yields a graded response in the human brain: An fMRI study. NeuroImage 25:90-100

Zhang M (2005) Tactile discrimination of grating orientation: fMRI activation patterns. Human Brain Mapping 25:370-377

Rolls ET (2003) Representations of pleasant and painful touch in the human orbitofrontal and cingulate cortices. Cerebral Cortex 13:308-317

Eickhoff SB (2006) Segregation of visceral and somatosensory afferents: An fMRI and cytoarchitectonic mapping study. NeuroImage 31:1004-1014

Carlsson K (2000) Tickling expectations: Neural processing in anticipation of a sensory stimulus. Journal of Cognitive Neuroscience 12:691-703

Francis ST (1999) The representation of pleasant touch in the brain and its relationship with taste and olfactory areas. Neuroreport 10:453-459

Hobday D, I (2001) A study of the cortical processing of ano-rectal sensation using functional MRI. Brain 124:361-368

ladarola MJ (1998) Neural activation during acute capsaicin-evoked pain and allodynia assessed with PET. Brain 121:931-947

Lowell SY (2008) Sensory stimulation activates both motor and sensory components of the swallowing system. NeuroImage 42:285-295

Hui KKS (2005) The integrated response of the human cerebro-cerebellar and limbic systems to acupuncture simulation at ST 36 as evidenced by fMRI. NeuroImage 27:479-496

Lotze M (2001) Cerebral activation during anal and rectal stimulation. NeuroImage 14:1027-1034