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Supplementary Figure 1. Images of rolled-up microtubes. a) Optical image of asymmetric 

microtubes rolled up from circular patterns. Scale bar, 20 μm. b) A SEM image of a 

microtube prepared by rolling up a nanomembrane. Scale bar, 5 μm. c) Cross-sectional SEM 

image (Scale bar, 2 μm.) of a rolled-up microtube revealing multi-layered thin tube wall 

structure (see bottom panel), where the HfO2 layers appear bright and the middle SiOx/SiO2 

nanomembrane appears dark. 

 

 

Supplementary Figure 2. Optical characterizations of the asymmetric shape of 

microtube. (a) Color-coded photoluminescence intensity map along the axis of an 

asymmetric tube. The left panel shows a sketch of the microtube cavity. (b) In the top panel, a 

spectrum showing three groups of high-Q resonant modes. In the bottom panel, a spectrum 

showing three groups of low-Q resonant modes. The blueshift of azimuthal modes and the 

decrease of mode spacing imply the tube diameter variation. 
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Supplementary Figure 3. Geometry of rolled-up microtube. (a) Schematic top view of an 

asymmetric tube rolled-up from a circular nanomembrane and (b) sketch of the spiral cross 

section of the rolled-up tube showing a layer structure of the tube wall. 

 

 

 

Supplementary Figure 4. Calculation of the tilted optical trajectory in asymmetric 

microtube. The optical light path reaches a minimum on an inclined trajectory due to the 

inhomogeneity of the tube wall. The tilt angle at the minimum of optical path depends on the 

tube geometry. 
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Supplementary Figure 5. Anisotropy of the tube cavity. Effective refractive indices of nax 

and naz are plotted as a function of wavelength, manifesting an anisotropic nature in the 

microtubular structure. 

 

 

Supplementary Figure 6. Characterization of polarization states. A comparison between 

elliptical (left panel) and linear polarization (right panel) measured in the asymmetric and 
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symmetric tubes, respectively. The top panel is a PL intensity map, and the bottom panel 

shows the corresponding polarization state plotted in a polar diagram. 

 

 

Supplementary Figure 7. Measured polarization states. The polarization states evolve 

from linear to elliptical polarization states with increasing the tilt angles and the ellipticities 

(panels from a to f). These polarization states were plotted on a Poincaré sphere as shown in 

Fig. 3. The ellipticity variations indicate a mode conversion between right and left 

polarization components, which were shown in Fig. 4. 
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Supplementary Figure 8. Relation between CA and φ. CA values (red diamond) obtained by 

fitting the pair of measured |𝑎+|
2 and |𝑎−|

2 at each phase φ. The comparison between CA and 

φ in our sample implies a relation 𝐶𝐴 = 2.3 × 𝜑
0.25, which is used to represent the overall 

evolution traces shown in Figs. 3 and 4. To better justify the relation between CA and φ, two 

additionally measured at 1.0° and 2.4° positions data were added. 

 

Supplementary Note 1 Rolled-up asymmetric microtube cavities 

Microtube cavities were fabricated by releasing differentially strained SiOx/SiO2 bilayer 

nanomembranes (in circular pattern) which curl into microtube structures on a silicon 

substrate. In the present work, cone-like asymmetric microtubes were prepared by releasing 

and rolling up tubes in an uneven fashion as discussed previously [see Ref. (29)]. The 

resonators were subsequently coated with a layer of HfO2 by atomic layer deposition (ALD) 

to modify their effective refractive indices. As shown in Supplementary Fig. 1, the tube has 

less than two windings in the end of the tube, where the measurements were performed. The 

layered thin tube wall (~100 nm) was examined using cross-sectional scanning electron 

microscopy (SEM). The white traces in outer sides of the tube wall correspond to the HfO2 

layer, while the middle dark layer corresponds to the SiOx/SiO2 nanomembrane. The 

refractive index of the tube wall is calculated by averaging the refractive indices of each layer 

in the tube wall. Therefore, the averaged refractive index of the tube wall varies along the 

tube axis due to the variation of the number of windings.   

 

Supplementary Note 2 Conical angle estimation 

Optical resonant modes can directly reflect the tube diameter based on azimuthal resonant 

condition πD = MλM/neff, where D is the tube diameter, M is azimuthal mode number, λM is 

resonant wavelength, and neff is effective refractive index. Photoluminescence intensity 

mapping was performed by scanning along the tube axis, as shown in Supplementary Fig. 2. 

The resonant modes of high quality (Q) factor are located at the larger diameter side of the 
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tube due to the enhanced light confinement. The lower-Q azimuthal modes continuously 

blueshift, while scanning from the large to small diameter region. The continuous blueshift of 

the resonant modes is a direct evidence of the diameter variation ΔD along the tube axis, 

which can be calculated by considering the azimuthal resonant condition πD = MλM/neff. The 

microtube has a mean diameter of 7 µm and a diameter difference ΔD (= Dt - Db) of ~ 1.5 μm 

between the diameters Dt at the top end and Db at the bottom end. Based on these 

measurements, the conical angle of the asymmetric tube was estimated to be ~2°. 

 

Supplementary Note 3 Inclined trajectory calculation 

    For the optical light path calculation, a geometric model of the asymmetric tube cavity was 

built up by defining the size of the initial circular pattern as well as the parameters of rolling.  

In the larger diameter side of the tube, the variation of windings along the tube axis results in 

distinct thick and thin parts (with thickness T1 and T2, respectively). The averaged refractive 

indices are represented by n1 and n2 for the thin and thick parts, respectively. The lengths of 

the spiral cross sections are obtained by integrating the middle radius (Rint+Ti/2, i = 1, 2) of 

the thick part (with length L1) and thin part (with length L2) of the spiral tube wall. They are 
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The angle θ1 is determined by θ1 = 2πp1 (and θ2=2π -θ1), where p1 = L1/(L1+L2) and p2 = 1-p1. 

Since the θi depends on the Li, Eqs. (1) and (2) must be solved in self-consistent way. 

The thick and thin parts are considered separately as follows: We first estimate the 𝑛avg
(𝑖)
, 𝑖 =

1,2  by averaging the refractive index along the multilayer wall structure. The following 

formula is used: 

𝑛avg
(𝑖)
= [∑ 𝑇𝑗𝑛𝑗

2𝑁𝑖
𝑗=1 /(∑ 𝑇𝑗

𝑁𝑖
𝑗=1 )]

1/2

,        (3) 
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where Tj is the thickness of the layer j on the tube wall (with the refractive index nj) , and 𝑁𝑖 is 

the number of layers in the thick or thin parts, respectively. Each subscript refers to an 

individual layer in the multilayered tube wall. In this way each multilayer wall structure is 

approximated by a single layer planar waveguide and the resulting averaged, effective 

refractive index
1
 is used in the following calculations. 

The optical paths were calculated as a function of the inclination angles. At each inclination 

angle, the optical path is separated into two parts, 𝐿1(𝛽) and 𝐿2(𝛽) located in thin and thick 

part with effective refractive indices of 𝑛avg
(1)

 and 𝑛avg
(2)

, respectively. The total light path is 

𝐹 = 𝑛avg
(1)
 𝐿1(𝛽) + 𝑛avg

(2)
 𝐿2(𝛽). The 𝐿1(𝛽) and 𝐿2(𝛽) are obtained by numerical integration 

using MATLAB. The shortest optical path is obtained if the trajectory inclined by a few 

degrees. This result indicates the light should travel along a slightly inclined trajectory in 

accordance with Fermat’s principle.  

 

Supplementary Note 4 Anisotropic refractive indices in the microtube cavity 

The effective refractive index is calculated by solving Maxwell’s equations in the 

microtubular curved structure
1
. In a planar slab waveguide, a first-order approximation is 

sufficient for the calculation of the effective refractive index. In the microtubular curved 

structure, the effect of curvature should be considered, and therefore, a second-order 

correction needs to be taken into account. 

For the case of light propagating along the tube axis, the effective refractive index 𝑛avg
(𝑥)

 is 

calculated by solving the equation 

[
𝜕2

𝜕𝜌2
+
1

𝜌

𝛿

𝜕𝜌
−

1

𝜌2
+ 𝜀(𝜌) (

𝜔

𝑐
)
2

] 𝐹 = 𝜀avg
(𝑥)
 (
𝜔

𝑐
)
2

𝐹.     (4) 

Similarly, for the case of light propagating in the azimuthal direction, the effective refractive 

index 𝑛avg
(𝜃)

 is calculated using the equation 

[𝜌2
𝜕2

𝜕𝜌2
+ 𝜌

𝛿

𝜕𝜌
−

1

𝜌2
+ 𝜌2𝜀(𝜌) (

𝜔

𝑐
)
2

] 𝐹 = 𝜀avg
(𝜃)
 (
𝜔

𝑐
)
2

𝐹.    (5) 

In Supplementary Fig. 5, the effective refractive indices of 𝑛avg
(𝑥)

 and 𝑛avg
(𝜃)

 are plotted as a 

function of wavelength. It is shown that the microtube cavity exhibits an anisotropic effective 
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refractive index. Along the inclined trajectory imposed by Fermat’s principle, the light will 

experience a weakly anisotropic and inhomogeneous medium, satisfying the condition for a  

non-Abelian evolution as theoretically discussed in Ref. (17).  

 

Supplementary Note 5 Measurement results of polarization states 

Polarization state of the emitted light was examined with the measurement setup shown in Fig. 

2. Linear polarization states were found in symmetric microtube cavities, with the polarization 

oriented parallel to tube axis, as shown in Supplementary Fig. 6. In contrast to symmetric 

microtubes, elliptical polarization states were revealed in asymmetric microcavities, where the 

polarization orientation was greatly biased away from the tube axis.  

 

Supplementary Note 6 Derivation of the theoretical model to fit measurements 

The mapping matrix in Eq. (6) in the manuscript reads 

M̂ = exp (−𝑖𝜑
𝑖𝐶A

𝑖𝐶A
𝑖𝜑
) = exp [𝑖(−𝜑σ̂3 + 𝐶Aσ̂1)],     (6) 

which can be expanded in Taylor series as 

M̂ = Î + 𝑖(−𝜑σ̂3 + 𝐶Aσ̂1) +
𝑖2

2!
(−𝜑σ̂3 + 𝐶Aσ̂1)

2 +
𝑖3

3!
(−𝜑σ̂3 + 𝐶Aσ̂1)

3 

       +
𝑖4

4!
(−𝜑σ̂3 + 𝐶Aσ̂1)

4 +⋯       (7) 

where Î is a unit matrix. Taking into account the basic properties of the Pauli matrices
2
:  

σ̂1
2 = σ̂3

2 = Î; σ̂3σ̂1 + σ̂1σ̂3 = 0, Equation (7) reads 

M̂ = Î + 𝑖(−𝜑σ̂3 + 𝐶Aσ̂1) +
𝑖2

2!
(𝜑2 + 𝐶A

2)Î +
𝑖3

3!
(−𝜑σ̂3 + 𝐶Aσ̂1)(𝜑

2 + 𝐶A
2) + 

          
𝑖4

4!
(𝜑2 + 𝐶A

2)
2
Î + ⋯        (8) 

Arranging coefficients for each of the independent matrices, a compact expression for the 

mapping matrix is found 

M̂ = Î𝑐𝑜𝑠√𝜑2 + 𝐶A
2 + 𝑖(−𝜑σ̂3 + 𝐶Aσ̂1)

𝑠𝑖𝑛√𝜑2 + 𝐶A
2

√𝜑2 + 𝐶A
2
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     =

(

 
 
 
 
cos√𝜑2 + 𝐶A

2 − 𝑖𝜑
sin√𝜑2+𝐶A

2

√𝜑2+𝐶A
2

𝑖𝐶A
sin√𝜑2+𝐶A

2

√𝜑2+𝐶A
2

𝑖𝐶A
sin√𝜑2+𝐶A

2

√𝜑2+𝐶A
2

cos√𝜑2 + 𝐶A
2 + 𝑖𝜑

sin√𝜑2+𝐶A
2

√𝜑2+𝐶A
2
)

 
 
 
 

. (9) 

Taking Supplementary Eq. (9) to Eq. (6) in the manuscript, the final state of light is described 

as 

(
𝑎+
𝑎−
) = M̂

1

√2
(
1

1
) =

1

√2

(

 
 
 
 
cos√𝜑2 + 𝐶A

2 + 𝑖(𝜑 − 𝐶A)
sin√𝜑2+𝐶A

2

√𝜑2+𝐶A
2

cos√𝜑2 + 𝐶A
2 + 𝑖(𝜑 + 𝐶A)

sin√𝜑2+𝐶A
2

√𝜑2+𝐶A
2
)

 
 
 
 

   (10) 

where 

|𝑎+|
2 =

1

2
(1 − 2𝜑𝐶A

sin2√𝜑2+𝐶A
2

𝜑2+𝐶A
2 ); |𝑎−|

2 =
1

2
(1 + 2𝜑𝐶A

sin2√𝜑2+𝐶A
2

𝜑2+𝐶A
2 ).  (11)  

    

The measured data shown in Fig. 4 were fitted one-by-one at each phase φ using 

Supplementary Eq. (11), as shown in Supplementary Fig. 8. 

Based on the above analysis, the data shown in the Fig. 3 and 4 in the manuscript can be well 

fitted based on Supplementary Eq. (10) and (11) [i.e. Eq. (6) and (7) in the manuscript].  
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