
Supplementary Figure 1. Important properties of an interaction function Λv(ϕ). The maximum and minimum

values Λv(ϕ
+) and Λv(ϕ

−), which occur at the phases ϕ+ and ϕ−, respectively, determine the range of frequency

detuning for which the oscillator can be entrained using weak forcing. The solutions ϕ∞
1 and ϕ∞

2 of the equation

Λv(ϕ) = −Δω that satisfy Λ′(ϕ) < 0 determine the average phase shift, relative to Ωt, at which the oscillation

stabilizes from a given initial phase. Initial phases in the regions A(ϕ∞
1 ) (grey) and A(ϕ∞

2 ) (green) result in

asymptotic phase shifts of ϕ∞
1 and ϕ∞

2 , respectively. When Λv(ϕ) > −Δω then ϕ̇ > 0 so the phase increases,

and when Λv(ϕ) < −Δω then ϕ̇ < 0 so the phase decreases, as indicated by the arrows to illustrate equation (10).

Supplementary Figure 2. Interaction function Λv(ϕ) that satisfies the conditions (13)-(14) with ϕ∞
11 for j = 1,

ϕ∞
12 or ϕ∞

22 for j = 2, ϕ∞
13 or ϕ∞

23 for j = 3, and ϕ∞
14 for j = 4. The attractive regions A(ϕ∞

ij ) are indicated in grey

for i = 1 and green for i = 2.
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Supplementary Figure 3. Interaction function Λv(ϕ) designed using the monotonicity method that satisfies the

conditions in equations (13)-(14) with a globally attractive phase pattern. The unique fixed points for each oscillator

are ϕ∞
11, ϕ∞

12, ϕ∞
13, and ϕ∞

14 for j = 1, 2, 3, 4, respectively. The attractive regions are Aj(ϕ
∞
1j ) = [0, 2π) for all j,

as indicated.

Supplementary Figure 4. Interaction function Λv(ϕ) corresponding to a precursor input that entrains oscillators

j = 2 and 3 to the desired phase offsets ϕ∗
2 = ϕ∞

22 and ϕ∗
3 = ϕ∞

13. The attractive regions A2(ϕ
∞
22) = [0, 2π) and

A3(ϕ
∞
12) = [0, 2π) are global. The waveform generated from the interaction function in Figure B repeated here as

an orange dashed line, can be subsequently applied to finalize the pattern.
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Supplementary Figure 5. Interaction function Λv(ϕ) corresponding to desynchronization of a large ensemble

of oscillators with frequencies distributed uniformly on the interval [ωmin, ωmax]. The frequency detuning values

are distributed uniformly on [−Δωmax,Δωmin], so that the control generated from Λv(ϕ) will disperse the phase

offsets uniformly on the interval [ϕ∞
min, ϕ

∞
max]. The asymptotic offset ϕ∞

j for an oscillator with an intermediate

frequency ωj ∈ [ωmin, ωmax] is indicated.

Supplementary Notes

Supplementary Note 1: Phase Coordinate Transformation
The technique for phase coordinate transformation stems from the early work of Andronov and

Vitt [1], and can be derived directly from the method of Malkin [2]. We formally define an

oscillator as a system of smooth ordinary differential equations

ẋ = f(x, u), x(0) = x0, t ∈ [0,∞) (1)

where x(t) ∈ R
n is the state and u(t) ∈ R is a control function. The oscillatory property of

equation (1) implies the existence of an attractive, non-constant limit cycle γ(t) = γ(t + T ),
which is a solution to the unperturbed system γ̇ = f(γ, 0), on the periodic orbit defined by

Γ = {y ∈ R
n : y = γ(t) for 0 ≤ t < T} ⊂ R

n. The key idea is to define a mapping between

γ(t) and ψ(t) in a way such that the phase of the unperturbed system advances proportionally

to time along the periodic orbit, i.e., ψ(t) = ωt, where ω = 2π/T is the natural frequency of

oscillation for the unforced oscillator. The dynamics equation (1) can then be approximated in

phase coordinates by a scalar equation

ψ̇ = ω + Z(ψ)u, (2)

which is called a phase model, where Z is the phase response curve (PRC), also called the

infinitesimal PRC or iPRC, which quantifies the asymptotic phase shift due to an infinitesimal

perturbative input applied at a given phase on the limit cycle. The phase variable ψ(t) is as-
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sociated to the isochronous manifold corresponding to γ(t) ∈ Γ, from which all undisturbed

trajectories asymptotically synchronize [3]. We say that ψ(t) = 0 (mod 2π) when an observed

variable in the state vector y = γ(t) attains its maximum on Γ. The phase model equation (2)

accurately represents the dynamics equation (1) for sufficiently weak inputs u(t) such that the

solution x(t, x0, u) to equation (1) remains within a small enough neighborhood of Γ [4]. The

PRC for a system with known dynamics of the form in equation (1) can be computed by various

procedures [5, 6, 7, 8, 9], including an approach similar to that of Malkin that is described in

Appendix C of [10].

Supplementary Note 2: Model Identification for Oscillating Systems
Several approaches to model identification have been used to estimate the PRC in real oscillating

systems subject to noise and disturbances [11, 12]. We describe our technique for phase model

identification, which has been applied previously in experiments on electrochemical systems

[13]. This model identification procedure does not require online state observations or feedback,

but rather relies on post-processing of a pseudo-random input sequence and observations of the

effect on a state variable. Suppose that a brief impulse of duration Δt and magnitude M is

applied to an oscillator at time t0, when the phase is ψ(t0). Specifically, suppose u(t) = M for

t ∈ [t0, t0 + Δt], and u(t) = 0 elsewhere. Let ψ1(t0 + NT ) and ψ0(t0 + NT ) represent the

phase value when the oscillator has completed N cycles after the pulse is applied, and in the

absence of a pulse, respectively. Because Γ is strongly attractive, the system will relax back to

the periodic orbit several cycles after the pulse is applied. Assuming that the pulse duration Δt
is brief, Z(ψ(t)) is approximately constant on t ∈ [t0, t0 +Δt], so that integrating equation (2)

results in

ψ0(t0 +NT ) = ωNT + ψ(t0), (3)

ψ1(t0 +NT ) = ωNT + ψ(t0) +

∫ t0+Δt

t0

Z(ψ(t))Mdt

≈ ωNT + ψ(t0) + Z(ψ(t0))MΔt. (4)

Subtracting equation (3) from equation (4) and solving for Z(ψ(t0)) results in

Z(ψ(t0)) =
ψ1(t0 +NT )− ψ0(t0 +NT )

MΔt
. (5)

The phases ψ0 and ψ1 are valued at 0 (equivalently 2π) at peaks of the observed state variable,

and their values between peaks are reasonably approximated by linear interpolation [14]. If y(t)
is the observed oscillator output, let T−1 and TN denote the latest time at which y(t) reaches

a peak before time t0, and the time when y(t) reaches the N th peak after the pulse is applied.

Because phase on the limit cycle is linearly proportional to time, i.e., ψ(t) = ωt, the phases at

two distinct time points t1, t2 ∈ [0, T ) will satisfy ψ(t1)−ψ(t2) = ω · (t1 − t2). As a result, the

4



linear interpolation yields

ψ1(t0 +NT )− ψ0(t0 +NT ) ≈ ω · (TN − T−1)− ω ·NT

= 2π · (TN − T−1)−NT

T
, (6)

where N is greater than the sufficient number of limit cycles for the perturbed system ψ1 to

have relaxed to the periodic orbit Γ. In our implementation, we create a sequence of pulses at

intervals of T (N + rj), where rj ∈ (0, 1) are pseudo-random, so that post-processing results in

a time series Z(ψj) where ψj = ψj−1 + ωT (N + rj) (mod 2π). The pulse sequence is applied,

and the measured peak times are used to estimate the phase differences in equation (6) in a

postprocessing step. The data are fitted using a Fourier series to estimate the PRC Z(ψ). One

important advantage of this approach is to enable the concurrent identification of the PRCs for

a large ensemble of rhythmic systems with simultaneously measurable output by using a single

globally applied pulse sequence applied to the entire ensemble. The measurement state variable

signal for each oscillator can then subsequently be processed off-line to produce a collection of

phase models. This procedure is used to estimate the PRCs of each electrochemical oscillator

in our experimental array, which are shown in Figure 1A of the main text.

Supplementary Note 3: Ergodic Averaging for Oscillating Systems
The central mechanism of our control methodology is entrainment, which refers to the dynamic

synchronization of an oscillating system to a periodic input. The properties that characterize

entrainment of the system in equation (2) to a periodic forcing control u(t) = v(Ωt), where v
is 2π-periodic and Ω is the forcing frequency, are closely approximated by ergodic averaging

when the forcing signal is weak, i.e., v = εv1 where v1 has unit energy and ε � 1. Given

such an input, the system in equation (1) is guaranteed to remain in a neighborhood of Γ in

which the phase model in equation (2) remains valid [4]. A slow phase variable is defined by

φ(t) = ψ(t) − Ωt, and the difference Δω = ω − Ω is called the frequency detuning. The

dynamic equation for the slow phase is then

φ̇ = ψ̇ − Ω = Δω + Z(Ωt+ φ)v(Ωt), (7)

where φ̇ is called the phase drift. The asymptotic behavior of equation (7) is obtained by ergodic

averaging, which eliminates the explicit dependence on time on the right hand side [15, 16]. We

define an averaging operator 〈·〉 : P → R, where P is the set of 2π-periodic functions on R, by

〈x〉 = 1

2π

∫ 2π

0

x(θ)dθ. (8)
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Then the weak ergodic theorem for measure-preserving dynamical systems on the torus [17]

implies that for any periodic function v, the interaction function

Λv(φ) � 〈Z(θ + φ)v(θ)〉

=
1

2π

∫ 2π

0

Z(θ + φ)v(θ)dθ

= lim
T→∞

1

T

∫ T

0

Z(Ωt+ φ)v(Ωt)dt (9)

exists as a continuous, 2π-periodic function in P , where θ = Ωt is called the forcing phase.

The formal averaging theorem [16] permits us to approximate equation (7) by the averaged

system

ϕ̇ = Δω + Λv(ϕ), (10)

in the sense that there exists a change of variables ϕ = φ + εh(ϕ, φ) that maps solutions of

equation (7) to those of equation (10). It has been proved that this approximation is of order

O(ε2) (Appendix B of [18]), and hence it is appropriate in the case of weak forcing (v = εv1
with ε � 1). The averaged equation (10) is autonomous, and approximately characterizes the

asymptotic behavior of the system in equation (2) under periodic forcing. Specifically, we say

that the system is entrained by a control u = v(Ωt) when the phase drift equation (10) satisfies

ϕ̇ = 0, which will occur as t → ∞ if there exists a phase ϕ∞ that satisfies Δω + Λv(ϕ
∞) = 0.

Conversely, when both the control waveform v and PRC Z are non-zero, the function Λv(ϕ)
is not identically zero, so when the system is entrained there exists at least one ϕ∞ ∈ [0, 2π)
that is an attractive fixed point of equation (10). Such stable fixed points {ϕ∞

i } of equation (10)

are the roots of the equation Δω + Λv(ϕ) = 0 that also satisfy Λ′
v(ϕ) < 0, where Λ′

v(ϕ) =
d
dϕ
Λv(ϕ). The values {ϕ∞

i } determine the average phase shift, relative to the forcing phase

θ = Ωt, at which the oscillation stabilizes from an initial phase difference ϕ(0). We denote

by A(ϕ∞
i ) ⊂ [0, 2π) the set of initial phases ϕ(0) that result in convergence of the oscillator

to ϕ∞
i . In addition, we define the phases ϕ+ = argmaxϕ Λv(ϕ) and ϕ− = argminϕ Λv(ϕ)

at which the interaction function achieves its maximum and minimum values, respectively. In

order for entrainment to occur, −Λv(ϕ
+) ≤ Δω ≤ −Λv(ϕ

−) must hold, so that at least one

stable fixed point of Λv exists. Thus the range of the interaction function determines which

values of the frequency detuning Δω yield phase locking, and the shape of Λv determines the

possible asymptotic phase shifts ϕ∞
i . These properties are illustrated in Supplementary Figure

1.
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Supplementary Note 4: Ensemble Interaction Function and Control Input
Construction
In this note we examine the interaction function of a structurally similar ensemble and how one

can be constructed and processed to create a control input with a desired phase selection effect.

We use the interaction function formalism to derive the long-run behavior of a collection of N
nonlinear oscillators with phase-reduced dynamics of the form in equation (2) given by

F = {ψ̇j = ωj + Z(ψj)u, j = 1, . . . , N} (11)

which all share an identical PRC. We suppose, without loss of generality, that the natural fre-

quencies of the ensemble elements are ordered according to ω1 < ω2 < . . . < ωN . If an input of

the form u(t) = v(Ωt), where v is 2π-periodic, is applied to all the oscillators in F , we obtain

the collection of average phase drift dynamics of the form in equation (10) given by

〈F〉 = {ϕ̇j = Δωj + Λv(ϕj), j = 1, . . . , N}. (12)

If each average drift equation in 〈F〉 has a fixed point, then the input waveform v(Ωt) entrains

all of the oscillators in F to the frequency Ω, and the pattern that emerges in the phase offsets

ϕ∞
j of the oscillators relative to the forcing phase θ = Ωt can be inferred from the interaction

function, the frequencies ωj , and the initial conditions ϕj(0). Specifically, the average phase

drift ϕ̇j of each synchronized oscillator will be zero, and the average phase offset from the

forcing phase θ = Ωt will be ϕ∞
ij , depending on which set Aj(ϕ

∞
ij ) the initial phase ϕj(0)

belongs to. Here Aj(ϕ
∞
ij ) denotes the set of initial phases for which the jth oscillator of 〈F〉 is

attracted to the asymptotic phase offset ϕ∞
ij . When synchronization of the collection 〈F〉 to the

fixed points ϕ∞
ij occurs, then ϕ̇j = Δωj + Λv(ϕj) = 0 holds, with

Λv(ϕ
∞
ij ) = −Δωj j = 1, . . . , N, (13)

Λ′
v(ϕ

∞
ij ) < 0, j = 1, . . . , N, (14)

where ϕ∞
ij one of the possible asymptotic phases for the jth oscillator. The condition in equation

(14) guarantees that the dynamical configuration is locally attractive and stable, as illustrated for

an individual oscillator in Supplementary Figure 1. Conversely, if Λv satisfies equations (13)-

(14), and the initial phases of the oscillators in F satisfy ψj(0) = ϕ∞
ij for j = 1, . . . , N , then

the synchronization pattern will be maintained. The pattern is also established and maintained

when the initial conditions are relaxed to ψj(0) ∈ Aj(ϕ
∞
ij ) for j = 1, . . . , N . These regions are

illustrated for an example interaction function in Supplementary Figure 2. Note that for a given

collection of entrained oscillators in equation (12) the stable synchronization pattern may not

be unique, but depends on the initial conditions ψj(0) of the collection (11).

The above analysis describes how the interaction function between a forcing waveform v
and the PRC Z common to the collection F characterizes the asymptotic phase structure of an

oscillator ensemble with heterogeneous natural frequencies. We can then examine the construc-
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tion of ideal interaction functions for desired phase patterns, and the properties of the ensemble

that determine their realizability. Because the Z(θ), v(θ), and Λv(ϕ) are all 2π-periodic, they

may be expressed using Fourier series, and the Fourier series for Λv(ϕ) is readily computed

using equation (9), trigonometric identities, and the orthogonality of the Fourier basis. We

represent the functions Z and v using the truncated series expansions

Z(θ) ≈ Zr(θ) =
a0
2

+
r∑

n=1

[an cos(nθ) + bn sin(nθ)], (15)

v(θ) ≈ vr(θ) =
c0
2
+

r∑
n=1

[cn cos(nθ) + dn sin(nθ)], (16)

where the appropriate order r will be discussed below. Applying trigonometric angle sum

identities to equation (9) and the orthogonality of the Fourier basis to eliminate terms yields

Λr
v(ϕ) =

f0
2

+
1

2

r∑
n=1

[fn cos(nϕ) + gn sin(nϕ)], (17)

where

f0 =
a0c0
2

, fn = ancn + bndn, gn = bncn − andn. (18)

Therefore given truncated Fourier series expansions Λr
v(θ) and Zr(θ), the Fourier coefficients

of the corresponding truncated series for the control waveform vr(θ) are given by

c0 = 2
f0
a0

χ[a0 �=0], cn = 2
fnan + bngn
a2n + b2n

χ[a2n+b2n �=0], dn = 2
fnbn − angn
a2n + b2n

χ[a2n+b2n �=0], (19)

where χA = 1 if A is true, and χA = 0 otherwise.

An ideal interaction function Λv(ϕ) that corresponds to the desired phase assignment task

in equations (13)-(14) can be designed using a sum of scaled and shifted sigmoid functions. We

use the error function, which is given by

erf(x) =
2√
π

∫ x

0

e−t2dt, (20)

as the basic element of our construction of the designed ideal interaction function that passes

precisely through the coordinates (ϕ∗
j ,−Δωj). We first define a smooth approximation to the

unit step function by

σ(x) =
1

2
(erf(2x) + 1), (21)
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which satisfies σ(−1) ≈ 0, σ(1) ≈ 1, and σ(0) = 1/2. We then create the range points

r1 = −Δω1 +
1

2
(−Δω1 +Δω2), (22)

rj =
1
2
(−Δωj −Δωj−1), j = 2, . . . , N (23)

rN+1 = −ΔωN +
1

2
(−ΔωN−1 +ΔωN), (24)

domain points

s1 =
1
2
(ϕ∗

1 + ϕ∗
N − 2π), (25)

sj =
1
2
(ϕ∗

j + ϕ∗
j−1), j = 2, . . . , N (26)

sN+1 =
1
2
(ϕ∗

1 + ϕ∗
N + 2π), (27)

and domain scaling factors

h1 = min{s2 − ϕ∗
1, (ϕ

∗
1 − s1)/2}, (28)

hj = min{sj+1 − ϕ∗
j , ϕ

∗
j − sj}, j = 2, . . . , N (29)

hN+1 = min{1
2
(sN+1 − ϕ∗

N),
1
2
(ϕ∗

1 − s1)}. (30)

A suitable interaction function Λ∗
v is then constructed by

Λ∗
v(ϕ) = r1 + (r1 − rN+1)σ((ϕ− s1)/hN+1)

+
N∑
j=2

(rj+1 − rj)σ((ϕ− ϕ∗
j)/hj) +

N∑
j=2

(rj+1 + rj)σ((ϕ+ 2π − ϕ∗
j)/hj)

+ (r1 − rN+1)σ((ϕ− sN+1)/hN+1). (31)

The function in equation (31) will thus pass close to the phase and detuning pairs (ϕj,−Δωj).
The sums in (31) are repeated with the added offset factors 2π and −2π because the sigmoid

function (21) is not a perfect Heaviside unit step, but a periodic interaction function Λ∗
v must

nevertheless be created. We note that the particular methodology used to automatically create

a suitable interaction function Λ∗
v that approximately satisfies (13)-(14) is not crucial in itself.

As long as the designed interaction function satisfies these properties, the Fourier coefficients

(19) obtained by circular de-convolution of this interaction function Λ∗
v and the nominal ensem-

ble PRC Z yields the control that produces the desired phase pattern. We provide equations

(20)-(31) as a suggested example algorithm, which we have ourselves used for automatic con-

trol design for the experiments in the main text. We emphasize that a satisfactory interaction

function curve Λ∗
v is not unique, could be constructed using many different algorithms, and the

need to satisfy (13)-(14) is the only common requirement. The key idea is the indirect design

of control inputs by constructing an interaction function, and this is the concept that we wish to
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communicate.

The resulting function Λ∗
v is approximated by a truncated r-order Fourier series Λr

v as in

equation (17), which is then used to compute the input waveform in equation (19). The maximal

order r is determined by the number of square amplitudes A2
n of the Fourier series terms in the

PRC that exceed a tolerance δZ . In order for Λr
v(ϕ) to satisfy the design conditions in equations

(13)-(14), it must sufficiently well approximate Λv(ϕ), and therefore the realizability of the

design in equations (13)-(14) ultimately depends on the complexity of the PRC, in addition to

the frequency distribution of the ensemble and the desired phase offsets. When these conditions

are satisfied, the control waveform vr(θ) that results in the desired phase pattern can be easily

synthesized using the Fourier coefficient formula in equation (19).

Supplementary Note 5: Interaction Function Realizability
The nonlinear complexity of the common PRC of oscillating subsystems in an ensemble deter-

mines the realizability of a desired interaction function for the ensemble. Specifically, a greater

number of significant terms in the Fourier series approximation of the PRC are obtained as the

oscillation exhibits higher relaxational behavior. Typically, this occurs as the oscillation moves

farther past a Hopf bifurcation.

By inspecting equation (19), it is evident that vr(θ) exists for a pair Λr
v(θ) and Zr(θ) only if

a2n + b2n > 0 for all n for which fn > 0 or gn > 0, and when a0 �= 0 if f0 �= 0. Therefore, any

terms of the Fourier series for Λv for which these conditions are not satisfied must be removed

from the construction. For actual biological and chemical oscillating systems, the magnitudes

A2
n = a2n + b2n decay approximately exponentially. It is thus crucial for the expansion order r to

be appropriately chosen such that A2
n > δZ for n ≤ r, where δZ is an appropriate tolerance, and

any order n for which An = 0 occurs must be omitted from the truncated series. This guarantees

that numerical conditioning errors do not arise, and also that the designed vr(θ) satisfies the

weak forcing assumption. An appropriate empirical value for the tolerance is δZ = 〈Z2〉 · 10−4.

Hence given the input u(t) = vr(Ωt), the asymptotic configuration of the entrained oscillators

of equation (12) will approximately satisfy the conditions in equations (13)-(14).

For the experimental electrochemical oscillators described in the main text, the appropriate

series truncation is r = 5. This limits the types of phase patterns that can be achieved for

ensembles of such oscillators, and in particular, explains why the observed and desired values

of Δϕ in the parity diagram in Figure 1B of the main text diverge near Δϕ = 4
5
· 2π. The

interaction function must be decreasing at Λv(ϕ
∗
2) = −Δω2, then return and again decrease

at Λv(ϕ
∗
1) = −Δω1. Because only 5 Fourier series terms can be used to synthesize Λv, the

derivative d
dϕ
Λv(ϕ) is limited when v has limited amplitude, so there is a minimum phase gap

required for this return. This capacity for return of Λv disappears as Δϕ approaches 2π, as seen

in the left panel of Figure 1D of the main text.

The realizability of the interaction function in the above sense corresponds directly to realiz-

ability of a particular phase pattern in the ensemble. Thus, the existence of a periodic waveform

that entrains an ensemble to such a phase pattern depends on the PRC of the ensemble sub-
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elements. In particular, a greater number of significant terms in the Fourier series expansion of

Z corresponds to greater flexibility in phase pattern construction. Thus, more highly nonlinear

and relaxational oscillation dynamics reflect greater controllability of the ensemble. Further

work to more rigorously characterize this property of oscillatory ensembles is compelling.

Supplementary Note 6: Interaction Functions for Globally Attractive Pat-
terns
A control input waveform is globally attractive for a phase pattern if frequency detuning values

for the oscillators are monotone decreasing as desired phase offsets increase, and the corre-

sponding interaction function can be realized. Recall that we suppose the natural frequencies

of the ensemble F to be ordered according to ω1 < ω2 < . . . < ωN . Then the frequency

detuning values Δωj = ωj − Ω in 〈F〉 satisfy −Δω1 > −Δω2 > . . . > −ΔωN . Suppose

also that the desired phase assignment satisfies ϕ∗
1 < ϕ∗

2 < . . . < ϕ∗
N . Then an ideal inter-

action function that satisfies the appropriate conditions in equations (13)-(14) can be designed

to have a unique set of asymptotic average phase offsets ϕ∞
j = ϕ∗

j that are globally attractive,

with Aj(ϕ
∗
j) = [0, 2π). The desired interaction function is monotone decreasing for phases on

[−δ1, ϕ
∗
N + δ2) (mod 2π) and monotone increasing on (ϕ∗

N + δ2, 2π− δ1) to satisfy periodicity,

where δ1 and δ2 are sufficient gaps for d
dϕ
Λv(ϕ) to change sign. An example of such a Λv,

which is of the same form as those used in the experiments shown in Figure 2 of the main text,

is illustrated in Supplementary Figure 3.

Application of the waveform v that produces the interaction function Λv in Supplementary

Figure 3 through the circular convolution in equation (9) will asymptotically guide a rhythmic

ensemble of four oscillators into a coherent phase configuration with phase offsets ϕ∞
11, ϕ

∞
12,

ϕ∞
13, and ϕ∞

14 for oscillators j = 1, 2, 3, 4. In essence, we take advantage of the heterogeneity

in natural frequencies ωj and the nonlinearity in Z to design a weak, low-amplitude waveform

that achieves and maintains such a synchronization structure without altering the fundamental

dynamics of individual rhythmic units. Monotone ordering of the assigned phases in the same

order as natural frequencies allows the synthesis of an ideal interaction function that achieves

the desired stable fixed-point average phases ϕ∞
1j = limt→∞ ϕj(t) = ϕ∗

j . Moreover, such a

Λv satisfies Aj(ϕ
∗
j) = [0, 2π) for all j = 1, . . . , N , so that the pattern will be established for

any set of initial conditions ψi(0), so that the phase structure is globally attractive. Finally,

suppose that the coefficients of the Fourier series of the PRC Z of the oscillators in F satisfy

A2
n > δZ = 〈Z2〉 · 10−4 for all n < N , so that the deconvolution of Λv as given in equations

(15)-(19) may be done using truncated series with r = N terms.

Supplementary Note 7: Precursor Waveforms for Non-Globally Attractive
Patterns
If the desired phase pattern is not monotone in the sense described in Supplementary Note 6,

then a control waveform does not exist such that the pattern is globally attractive. In that case,
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a precursor waveform is required to bring the phases of ensemble elements into an arrangement

after which an ultimate waveform is applied to finalize and hold the phase pattern. When the

desired phase offsets ϕ∗
j corresponding to natural frequencies ωj are not uniformly increasing

on [0, 2π), a globally attractive phase structure cannot be achieved. In such cases, as the one

illustrated in Supplementary Figure 2, one or more precursor inputs must be applied to steer

subsets of the ensemble elements into the desired attractive regions Aj(ϕ
∗
j), after which a final

input is applied to finalize and subsequently hold the pattern. For the example in Supplementary

Figure 2, a precursor waveform can be applied to entrain oscillators j = 2 and 3 to designed

phase offsets ϕ∗
2 = ϕ∞

22 and ϕ∗
3 = ϕ∞

13, as shown in Supplementary Figure 4. When this pre-

liminary entrainment step is accomplished with respect to the chosen forcing phase, the control

input is changed to the one corresponding to the Λv for the full pattern in Supplementary Fig-

ure 2, which is outlined using a dashed line in Supplementary Figure 4 as well. This two-step

procedure guarantees that the final outcome is the desired phase assignment, rather than one of

several possible patterns. This is the situation that characterizes the experiment “O→K→O” as

illustrated in Fig. 3 and Fig. 6 in the main text.

Supplementary Note 8: Interaction Function for Desynchronization
Suppose that we wish to accomplish phase desynchronization of a very large ensemble of os-

cillators F , where N is large but uncertain with the frequencies ωj distributed uniformly on an

interval [ωmin, ωmax]. The ideal interaction function Λv corresponding to a waveform that will

spread the phase offsets of the ensemble uniformly across a large domain is shown in Supple-

mentary Figure 5. Note that because the interaction function satisfies the monotonicity property,

the desynchronizing effect is global for any initial configuration of the ensemble. The Fourier

series coefficients of the desynchronizing control waveform v are then obtained from the for-

mula in equation (19) for circular deconvolution from Λv. A natural continuation of our work

on generation of coherent phase structures using global controls without feedback pertains to

the effect of such controls on networks of weakly coupled oscillators. Specifically, in the pres-

ence of weak coupling, the averaged dynamic equation in (12) for the jth oscillator becomes

ϕ̇j = Δωj + Λv(ϕj) + ε
∑

i Hij(ϕj − ϕi), where Hij characterizes the interaction between the

ith and jth oscillators. If the coupling strength is weak relative to the interaction function Λv,

i.e., 0 < ε � 1, then the coupling terms will have little influence on the ability to construct

phase patterns in the ensemble by external inputs. We may then pose the mathematical problem

of characterizing the desynchronization action of this type of control and how it is affected as

coupling strength ε increases. A phase transition may occur after a critical coupling strength

is reached after which the desynchronizing action is overpowered by synchronization due to

coupling. As a result, a continued investigation in the direction of effectively desynchronizing

entrainment controls that account for couplings and topology is warranted. In the context of

affecting pathologically synchronized neuronal ensembles, progress in this direction will have

particularly important implications for research and clinical neuroscience applications.

Consider that a simple sinusoidal forcing of the form v(Ωt) = sin(Ωt) can be used to desyn-
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chronize the ensemble with phase offsets on [0, π). This is because it results in an interaction

function that decreasing on an interval of length π, so the maximum phase difference achievable

is |ϕ∞
max − ϕ∞

min| < π. Hence, our approach enables more versatile manipulation of phase rela-

tionships beyond this limitation. In fact, it is possible to quantify how our approach increases

the achievable relative phase desynchronization difference relative to sinusoidal forcing. If the

PRC has non-trivial terms in its Fourier series up to order r, then it is possible to create an input

waveform that results in an interaction function that is monotone on the interval [0, (2 − 1
r
π)].

Thus, our approach can be used to achieve maximal desynchronization of an oscillator ensemble

by increasing the phase offset distribution range by a factor of 2− 1
r

period.
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